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1 Introduction

Consider the Navier-Stokes equations (NSE) for incompressible fluid flow in a
domain Ω in R

N (N = 2 or 3) with no-slip boundary conditions on Γ := ∂Ω:

∂tu + u·∇u + ∇p = ν∆u + f in Ω, (1)

∇ · u = 0 in Ω, (2)

u = 0 on Γ. (3)

Here u is the fluid velocity, p the pressure, and ν = 1/Re is the kinematic
viscosity coefficient, assumed to be a fixed positive constant. Below, we denote
the inner product of functions f and g in L2(Ω) by 〈f, g〉Ω and let ‖ · ‖Ω denote
the corresponding norm, omitting the subscript if obvious in context. The vector
n denotes an outward unit normal to Γ.

The incompressibility constraint has long been a source of difficulties in
both analysis and computation for NSE in bounded domains. We will study
discretization schemes that relate to a well-posed extension of the dynamics of
the NSE system (1)-(3), in which the incompressibility constraint (2) is replaced
by a weak-form Poisson equation for the pressure. Up to a spatial constant, the
pressure is determined by requiring that

〈∇p,∇q〉 = 〈f − u · ∇u,∇q〉 + ν〈∇ ×u, n×∇q〉Γ ∀q ∈ H1(Ω). (4)

This is implied by (1)–(3) through dotting (1) with ∇q, using the vector identity
∆u −∇∇ · u = −∇×∇ × u, and integrating by parts. In our previous paper
[LLP], the system of equations consisting of (1), (3) and (4), but omitting (2),
was proved to be well-posed locally in time, for strong solutions in C3 domains
with arbitrary initial data uin ∈ H1

0 (Ω, RN ). For solutions in general, ∇ · u is
non-zero and satisfies a heat equation with no-flux boundary conditions. But
the divergence ∇·u is zero for all time if initially so, yielding the usual solution of
NSE. The well-posedness proof is based on estimates showing that the pressure
gradient determined by (4) is strictly dominated by the viscosity term in (1) at
leading order.

In this paper we refer to equations (1), (3) and (4) as the unconstrained
Navier-Stokes equations (UNSE). For analysis of equivalent and related formula-
tions also see [GrS1, GrS2]. See [SSPG] for recent discussion of the longstanding
problem of replacing the divergence constraint by a pressure Poisson equation,
and an interesting alternative formulation.

The well-posedness proof in [LLP] was based on showing the stability of a
simple time-difference scheme: Given an approximation un ∈ H2 ∩ H1

0 (Ω, RN )
to the velocity at time tn = n∆t, determine ∇pn ∈ L2(Ω, RN ) by requiring

〈∇pn,∇q〉 = 〈fn − un · ∇un,∇q〉 + ν〈∇ × un, n ×∇q〉 ∀q ∈ H1(Ω), (5)

then determine un+1 ∈ H2 ∩ H1
0 (Ω, RN ) to solve

un+1 − un

∆t
− ν∆un+1 = fn − un · ∇un −∇pn in Ω, (6)

un+1 = 0 on Γ. (7)
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Intriguingly, the analysis extended easily in [LLP] to prove the stability of a class
of fully discrete finite-element methods, in which the approximation spaces for
pressure and velocity need not satisfy the classical inf-sup (LBB) criterion for
stability of weak solutions in mixed methods. It is an important question to un-
derstand whether finite-element schemes can perform well without satisfying the
inf-sup condition, since this condition has been a serious complication inhibiting
the development and use of finite-element methods for problems involving in-
compressible viscous flow. As is well known, for example, piecewise polynomial
spaces of equal order for velocity and pressure fail to be inf-sup stable. Finite el-
ement schemes based on fast Stokes solvers work well at low Reynolds number if
the inf-sup condition holds, but these solvers typically converge slowly when the
Reynolds number becomes high. Ways of circumventing the inf-sup condition
have been developed (e.g., stabilized finite-element methods), but at the cost
of additional complexity [BBGS] or for just the lowest-order velocity-pressure
pairs [BDG].

Our aim in the present paper is to investigate further the performance of the
class of finite-element methods treated in [LLP], which derived from the work
of Johnston and Liu [JL]. We will establish error estimates for these schemes
(higher-order in space and first-order in time), and examine their performance
numerically for a smooth test problem and for benchmark tests involving flow
in a driven cavity and over a backward-facing step.

We will also compare the performance of some closely related methods that
incorporate an approximate Leray projection on divergence-free velocity fields.
These projection methods suppress divergence errors in a more robust way that
appears to be useful in numerical tests such as flow over a backward-facing
step, for which the flow field may fail to have sufficient spatial regularity. The
projection schemes we treat are essentially finite-element versions of classic
projection methods described in work of Orszag, Israeli, DeVille and Karni-
adakis [OID, KIO] and studied recently by Leriche et al. [LPLD]. These schemes
involve improved pressure boundary conditions that figured in many later de-
velopments of projection methods, e.g., see [KIO, TMV, HP, BCM, GMS]. For
a comprehensive recent review of projection schemes see [GMS]. Also see [LLP]
for discussion of the relation of the Johnston-Liu scheme to schemes of Kim &
Moin [KM], Timmermans et al. [TMV], Henshaw and Petersson [HP], Brown et
al. [BCM], and the gauge method of E and Liu [EL].

A difference between the schemes we study and classic projection methods is
that we determine pressure directly by discretization of the well-posed formula
(4). In this paper we will also prove a nonlinear stability result for the simplest
finite-element projection method of this type, one that is formally first-order in
time and is a variant of the schemes studied in [LLP]. Again, for this stability
result to hold, the finite-element spaces for velocity and pressure need not be
related in any way; there is no need for the classic inf-sup condition.

What our analysis does require at present is that finite elements for pressure
be C0 and finite elements for velocity be C1. Computationally it is generally
not so attractive to use C1 finite elements, due to the complexity and expense
of solving biharmonic-type equations, say. However, the analysis that we per-
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form for these fully discrete schemes provides fundamental support for a design
philosophy that more practical C0 schemes may be based upon.

Our numerical analysis relies heavily on an estimate of the part of the pres-
sure due to viscosity, called the Stokes pressure pS = pS(u) in [LLP] and deter-
mined from any u ∈ H2(Ω, RN ) by the requirement that

〈∇pS,∇q〉 = 〈∇ × u, n ×∇q〉Γ ∀q ∈ H1(Ω). (8)

The Stokes pressure is a harmonic function, solving the boundary value problem

∆pS = 0 in Ω, n · ∇pS = −n · ∇ ×∇× u on Γ. (9)

Since the right-hand side of (8) equals 〈∆u −∇∇ · u,∇q〉, it follows

∇pS(u) = (I − P)(∆u −∇∇ · u) = (∆P − P∆)u. (10)

Here P denotes the Leray-Helmholtz projection operator onto divergence-free
fields with zero normal component, providing the Helmholtz decomposition u =
Pu + ∇φ where

〈Pu,∇q〉 = 〈u −∇φ,∇q〉 = 0 ∀q ∈ H1(Ω). (11)

A central tool is the following result proved in [LLP], showing that the com-
mutator (10) between the Laplacian and Leray projection operators is strictly
dominated by the viscosity term at leading order.

Theorem 1 Let Ω ⊂ R
N (N ≥ 2) be a connected bounded domain with C3

boundary. Then for any ε > 0, there exists C ≥ 0 such that for all vector fields
u ∈ H2 ∩ H1

0 (Ω, RN ),

∫

Ω

|(∆P − P∆)u|2 ≤

(

1

2
+ ε

) ∫

Ω

|∆u|2 + C

∫

Ω

|∇u|2. (12)

The rest of this paper is organized as follows. In the next section, we establish
error estimates for the basic class of finite-element schemes treated in [LLP], and
in section 3, we prove a stability theorem for a related projection method. The
numerical analysis is based on Theorem 1 and is limited to C3 domains—it is an
open question whether similar results hold in domains with corners, particularly
in domains where H2 regularity may fail naturally due to corner singularities.

We discuss several practical issues in section 4, related to non-homogeneous
boundary conditions for velocity, numerical treatment of re-entrant corners,
higher-order time discretization, and how to compute the pressure. Then in
Section 5, we present and discuss numerical results for the finite-element schemes
that we study. We conclude in Section 6 with a discussion of the relation of our
results to the inf-sup condition in the time-independent linear case.
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2 Error estimates for extended Navier-Stokes

dynamics

Since pressure is determined directly from current velocity and forcing fields in
the UNSE system, discretization is rather straightforward, as indicated already
by Johnston and Liu in [JL]. An implicit treatment of the viscosity term is
appropriate for low to moderate Reynolds number flow, but for efficiency and
simplicity we discretize the remaining terms explicitly in time. For the spa-
tial discretization, we let Yh ⊂ H1(Ω)/R be a space of C0 finite elements for
pressure, and let X0,h ⊂ H2 ∩ H1

0 (Ω, RN ) be a space of C1 finite elements for
velocity. Here h > 0 is a bounded discretization parameter.

The class of schemes we study is defined as follows. Given un
h ∈ X0,h as

an approximation to velocity at time tn = n∆t, we determine pn
h ∈ Yh through

discretization of the pressure Poisson equation (4), by requiring

〈∇pn
h,∇qh〉 = 〈fn − un

h ·∇un
h,∇qh〉 + ν〈∇ × un

h, n×∇qh〉Γ ∀qh ∈ Yh. (13)

Then we find un+1

h ∈ X0,h so that

〈

∇un+1

h −∇un
h

∆t
,∇vh

〉

+ ν〈∆un+1

h , ∆vh〉

= 〈∇pn
h − fn + un

h · ∇un
h, ∆vh〉

(14)

for all vh ∈ X0,h. This scheme is analogous to a C0 scheme described by
Johnston & Liu [JL], the difference being that to derive the weak form of (1),
instead of dotting with vh, we dot with ∆vh to get (14).

In this section we prove the following error estimates for (13)+(14), which
ensure high-order accuracy in space given a sufficiently smooth solution of the
UNSE system for t ≥ 0. Like the stability proof from [LLP], the proof is
based on H1 estimates and crucially uses the estimate on Stokes pressure from
Theorem 1. Thus the result is limited to C3 domains and to initial data that
satisfy nonlocal compatibility conditions implied by UNSE. We are not aware,
however, of any previous results of this type for fully nonlinear NSE that treat
viscosity terms implicitly and nonlinear and pressure terms explicitly in general
domains with smooth boundary.

Theorem 2 Assume Ω is a bounded domain in R
N (N=2,3) with C3 boundary.

Let M0, ν > 0, and let T∗ > 0 be given by the stability theorem 4.1 from [LLP].
Let m ≥ 2, m′ ≥ 2 be integers, and assume

(i) The spaces X0,h ⊂ H2 ∩ H1
0 (Ω, RN ) and Yh ⊂ H1(Ω) have the property

that whenever 0 < h < 1, v ∈ Hm+1 ∩ H1
0 (Ω, RN ) and q ∈ Hm′

(Ω),

inf
vh∈X0,h

‖∆(v − vh)‖ ≤ C0h
k−1‖v‖Hk+1 for k = 2 and m, (15)

inf
qh∈Yh

‖∇(q − qh)‖ ≤ C0h
m′−1‖q‖Hm′ , (16)

where C0 > 0 is independent of v, q and h.
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(ii) f ∈ C1([0, T ], L2(Ω, RN )), T > 0, and a given solution of (1), (3), (4)
satisfies

(u, p) ∈ C1([0, T ]; Hm+1(Ω, RN )) × C1([0, T ]; Hm′

(Ω)/R).

Then there exists C1 > 0 with the following property. Whenever u0
h ∈ X0,h,

0 < h < 1, 0 < n∆t ≤ min(T, T∗), and

‖∇u0
h‖

2 + ν∆t‖∆u0
h‖

2 +

n
∑

k=0

‖f(tk)‖2∆t ≤ M0, (17)

then the velocity and pressure errors en = u(tn) − un
h, rn = p(tn) − pn

h for the
solution to the finite-element scheme (13) and (14) satisfy

sup
0≤k≤n

‖∇ek‖2 +
n

∑

k=0

(

‖∆ek‖2 + ‖∇rk‖2
)

∆t

≤ C1(∆t2 + h2m−2 + h2m′−2 + ‖∇e0‖2 + ‖∆e0‖2∆t). (18)

Remark: When m = m′, the time-averaged error estimates for velocity in H2

and pressure in H1 have optimal convergence rates in terms of the approximation
assumptions (15) and (16). For typicial C1 finite element spaces X0,h, whose
element restrictions contain all polynomials of degree d, standard results for
polygonal domains with quasi-uniform meshes assert that (15) holds when 2 ≤
m ≤ d. Similarly, for C0 finite element spaces Yh whose element restrictions
include all polynomials of degree d′, (16) holds for 2 ≤ m′ ≤ d′ + 1. Theorem 2
does not apply in domains with corners, but for smooth enough solutions, the
convergence rate from (18) would be optimal (the same as interpolation error)
for both velocity and pressure provided that d′ + 1 = d. (The theorem can
be applied in principle in the case of C3 domains if suitable parametrically
mapped piecewise polynomial finite elements are used.) For the FVS (locally
cubic) C1 finite elements used in our numerical tests, hypothesis (15) holds for
both m = 2 and 3 and hypothesis (16) holds for both m′ = 3 and 4 (see [Ci,
6.1.5, p. 357]); for smooth solutions the best rate in (18) would then correspond
to m = m′ = 3, which is not optimal for pressure. In our tests, though, we
actually observe optimal convergence rates for both velocity and pressure — see
section 5 below.

Proof: Let M0, ν > 0 and let T∗, C∗ be given by Theorem 4.1 of [LLP]. Fix
integers m ≥ 2 and m′ ≥ 1, let C0 > 0 and suppose X0,h, Yh satisfy assumption
(i) of the Theorem. Suppose that T , f , u and p satisfy assumption (ii), so
that (1) and (2) hold. The pressure p then satisfies (4). More generally we can
suppose u and p satisfy the unconstrained system UNSE consisting of (1), (3)
and (4), without (2).

In what follows, C denotes a generic constant independent of ∆t and h,
whose value may change from case to case. (The value of C will depend on
the solution, so it may depend on quantities such as ν in ways that we will not
attempt to track here.)
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2.1 Approximation error

We first project the solution into the finite element spaces and estimate the
resulting approximation error. Define projections Πh on H2 ∩ H1

0 (Ω, RN ) and
Ph on H1(Ω)/R as follows: Given any a ∈ H2 ∩ H1

0 (Ω, RN ) and b ∈ H1(Ω)/R,
we define

ah = Πha ∈ X0,h, bh = Phb ∈ Yh, (19)

as the solutions of the following weak-form Poisson equations:
〈

∆ah, ∆vh

〉

=
〈

∆a, ∆vh

〉

∀vh ∈ X0,h, (20)
〈

∇bh,∇qh

〉

=
〈

∇b,∇qh

〉

∀qh ∈ Yh. (21)

Notice that since
〈

∆(a − ah), ∆ah

〉

= 0,

‖∆a‖2 = ‖∆ah‖
2 + ‖∆(a − ah)‖2. (22)

Moreover, we have the following basic estimates.

Lemma 1 For any a ∈ H2 ∩ H1
0 (Ω, RN ), b ∈ H1(Ω)/R,

‖∆(a − ah)‖ ≤ inf
vh∈X0,h

‖∆(a − vh)‖, (23)

‖∇(b − bh)‖ ≤ inf
qh∈Yh

‖∇(b − qh)‖, (24)

‖∇(a − ah)‖ ≤ Ch‖∆(a − ah)‖. (25)

Proof: For any vh ∈ X0,h,
〈

∆(a−ah), ∆(a−ah)
〉

=
〈

∆(a−ah), ∆(a− vh)
〉

+
〈

∆(a−ah), ∆(vh −ah)
〉

.

The last term is zero because of (20), hence the Cauchy-Schwarz inequality gives
(23). Similarly one can prove (24). To prove (25), define w ∈ H3 ∩ H1

0 to be
the solution of

−∆w = a − ah. (26)

By assumption (15) with k = 2, there exists wh ∈ X0,h such that

‖∆(w − wh)‖ ≤ Ch‖w‖H3 ≤ Ch‖∇(a − ah)‖,

where we have used elliptic regularity for (26). So,

‖∇(a − ah)‖2 = 〈−∆(a − ah), a − ah〉 = 〈∆(a − ah), ∆w〉

= 〈∆(a − ah), ∆(w − wh)〉

≤ ‖∆(a − ah)‖ · Ch‖∇(a − ah)‖.

This proves (25). �

Given our regularity and approximation assumptions (i) and (ii), we can
conclude that with the notation

uh(tn) = Πhu(tn), ph(tn) = Php(tn), (27)

the error of approximating the solution by its projection is estimated by

‖∆(u(tn) − uh(tn))‖ ≤ Chm−1, ‖∇(p(tn) − ph(tn))‖ ≤ Chm′−1. (28)
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2.2 Discretization error for pressure

It remains to estimate the discretization or scheme errors

en
h = uh(tn) − un

h, rn
h = ph(tn) − pn

h. (29)

We first focus on estimating the pressure error rn
h in this subsection. Our aim is

to show that for any ε0 > 0 there exists C > 0 such that whenever 0 < n∆t ≤
min(T, T∗) we have

‖∇rn
h‖

2 ≤

(

1

2
+ ε0

)

ν2‖∆en
h‖

2 + C‖∇en
h‖

2 + Ch2m−2. (30)

Recall that for any qh ∈ H1(Ω), the exact pressure satisfies

〈

∇p(tn),∇qh

〉

=
〈

f(tn) − u(tn) · ∇u(tn),∇qh

〉

− ν
〈

∇×∇× u(tn),∇qh

〉

=
〈

f(tn) − uh(tn) · ∇uh(tn),∇qh

〉

− ν
〈

∇×∇× uh(tn),∇qh

〉

− ℓn, (31)

where

ℓn =
〈

(I − Πh)u(tn) · ∇u(tn) + uh(tn) · ∇(I − Πh)u(tn),∇qh

〉

+ ν
〈

∇×∇× (I − Πh)u(tn),∇qh

〉

.

By Lemma 1,

|ℓn| ≤ C(hm + νhm−1)‖∇qh‖ ≤ Chm−1‖∇qh‖. (32)

Subtracting (13) from (31), we get

〈

∇rn
h ,∇qh

〉

= −
〈

en
h · ∇uh(tn) + un

h · ∇en
h,∇qh

〉

− ν
〈

(I − P)∇×∇× en
h,∇qh

〉

− ℓn, (33)

where we have used
〈

P∇×∇× en
h,∇qh

〉

= 0. Take qh = rn
h and let

I1 = ν‖(I − P)∇×∇× en
h‖, I2 = ‖en

h · ∇uh(tn)‖, I3 = ‖un
h · ∇en

h‖.

By the Cauchy-Schwarz inequality we get that for any ε1 > 0,

‖rn
h‖

2 ≤ (I1 + I2 + I3 + Chm−1)2 ≤ I2
1 (1 + ε1) +

1

ε1

(I2 + I3 + Chm−1)2. (34)

We estimate terms as follows. By identity (51) and (10) we have

−(I − P)∇×∇× en
h = (∆P − P∆)en

h,

therefore by Theorem 1 we get the estimate

‖(I − P)∇×∇× en
h‖

2 ≤

(

1

2
+ ε1

)

‖∆en
h‖

2 + C‖∇en
h‖

2. (35)
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Next recall that, as in [LLP], by the Sobolev embedding theorems and La-
dyzhenskaya’s inequalities we have

∫

Ω

|u · ∇v|2 ≤

(∫

Ω

|u|6
)

1
3
(∫

Ω

|∇v|3
)

2
3

≤ C‖∇u‖2‖∇v‖‖∇v‖H1 . (36)

We can use the regularity assumption (ii) together with the approximation
bounds (28) to bound terms involving uh(tn), and the stability result from
Theorem 3 to conclude that as long as (17) holds and 0 < n∆t ≤ min(T, T∗),
we have ‖∇un

h‖ ≤ C and hence

‖en
h · ∇uh(tn)‖2 ≤ C‖∇en

h‖
2‖∇uh(tn)‖‖∇uh(tn)‖H1 ≤ C‖∇en

h‖
2, (37)

‖un
h · ∇en

h‖
2 ≤ C‖∇un

h‖
2‖∇en

h‖‖∇en
h‖H1 ≤ C‖∇en

h‖‖∆en
h‖. (38)

In particular, we obtain

2

ε1

I2
3 ≤

2C

ε1

‖∇en
h‖‖∆en

h‖ ≤ ε1ν
2‖∆en

h‖
2 +

C2

ε3
1ν

2
‖∇en

h‖
2. (39)

Combining this with (37) and (35), from (34) we see that if ε1 is chosen suffi-
ciently small we get (30).

2.3 Discretization error for velocity

If we integrate (1) from tn to tn+1, and use the regularity assumption (ii), we
see that the exact solution satisfies, for any vh ∈ X0,h,

〈

1

∆t
(∇u(tn+1) −∇u(tn)),∇vh

〉

+ ν
〈

∆u(tn+1), ∆vh

〉

=
〈

∇p(tn) + u(tn) · ∇u(tn) − f(tn) + gn∆t, ∆vh

〉

, (40)

where ‖gn‖ is uniformly bounded in n. Using the projections in (27), we can
rewrite this as

〈

1

∆t
(∇uh(tn+1) −∇uh(tn)),∇vh

〉

+ ν
〈

∆uh(tn+1), ∆vh

〉

=
〈

∇ph(tn) + uh(tn) · ∇uh(tn) − f(tn) + gn∆t, ∆vh

〉

+ ℓ̂n, (41)

where, due to (20),

ℓ̂n = −
1

∆t

〈

∇(I − Πh)(u(tn+1) − u(tn)),∇vh

〉

+
〈

∇(I − Ph)p(tn), ∆vh

〉

+
〈

((I − Πh)u(tn)) · ∇u(tn) + (Πhu(tn)) · ∇(I − Πh)u(tn), ∆vh

〉

. (42)

By the regularity assumptions (ii), (28) and (25), and estimates like (37)–(38)
(and the elliptic regularity estimate ‖∇vh‖ ≤ ‖vh‖H2 ≤ C‖∆vh‖), we have

|ℓ̂n| ≤ Chm‖∇vh‖+C(hm′−1+hm−1/2)‖∆vh‖ ≤ ε2‖∆vh‖
2+C(h2m′−2+h2m−1),
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|〈gn∆t, ∆vh〉| ≤ ε2‖∆vh‖
2 + C∆t2.

Subtracting (14) from (41), we find that the scheme errors en
h, rn

h satisfy

〈

∇en+1

h −∇en
h

∆t
,∇vh

〉

+ ν
〈

∆en+1

h , ∆vh

〉

=
〈

∇rn
h , ∆vh

〉

+
〈

en
h · ∇uh(tn) + un

h · ∇en
h, ∆vh

〉

+
〈

gn∆t, ∆vh

〉

+ ℓ̂n. (43)

We will take vh = en+1

h and estimate terms on the right-hand side as follows.
First, using (30) we get

∣

∣

〈

∇rn
h , ∆en+1

h

〉∣

∣ ≤
ν

2
‖∆en+1

h ‖2 +
1

2ν
‖∇rn

h‖
2

≤
ν

2
‖∆en+1

h ‖2 +
(ν

4
+

ε0ν

2

)

‖∆en
h‖

2 + C‖∇en
h‖

2 + Ch2m−2. (44)

Using (37) and (38), we get

∣

∣

〈

en
h · ∇uh(tn) + un

h · ∇en
h, ∆en+1

h

〉∣

∣

≤ ε2‖∆en+1

h ‖2 +
C

ε2

(

‖∇en
h‖

2 + ‖∇en
h‖‖∆en

h‖
)

≤ ε2‖∆en+1

h ‖2 + ε2‖∆en
h‖

2 +
C

ε3
2

‖∇en
h‖

2. (45)

Therefore we find that

1

2∆t

(

‖∇en+1

h ‖2 − ‖∇en
h‖

2
)

+
(

ν −
ν

2
− 3ε2

)

‖∆en+1

h ‖2

≤
(ν

4
+

ε0ν

2
+ ε2

)

‖∆en
h‖

2 + C‖∇en
h‖

2 + C(∆t2 + h2m′−2 + h2m−2). (46)

Now, we can choose ε0 and ε2 sufficiently small so that the quantities

ε̃1 = ν − 6ε2, ε̃2 =
ν

2
− ε0ν − 8ε2,

are positive. Then we can rewrite (46) as

1

∆t

(

‖∇en+1

h ‖2 − ‖∇en
h‖

2
)

+ ε̃1

(

‖∆en+1

h ‖2 − ‖∆en
h‖

2
)

+ ε̃2‖∆en
h‖

2

≤ C‖∇en
h‖

2 + C(∆t2 + h2m′−2 + h2m−2). (47)

By a Gronwall-type argument similar to that above but without the cubic non-
linear terms, we deduce, provided (17) holds and 0 ≤ n∆t ≤ min(T, T∗), that

sup
0≤k≤n

‖∇ek
h‖

2 + ε̃1

n
∑

k=0

‖∆ek
h‖

2∆t

≤ C(∆t2 + h2m−2 + h2m′−2 + ‖∇e0
h‖

2 + ε̃2‖∆e0
h‖

2∆t). (48)
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Going back to (30), we get

n
∑

k=0

‖∇rk
h‖

2∆t ≤ C(∆t2 + h2m−2 + h2m′−2 + ‖∇e0
h‖

2 + ε̃2‖∆e0
h‖

2∆t). (49)

Finally, using (28) we can replace ek
h and rk

h in the two inequalities above by ek

and rk respectively. This finishes the proof of the theorem. �

3 Stability of a projection method

3.1 Divergence suppression by Leray projection

In numerical experiments, we have found that the simple scheme (13)-(14) (and
variants with higher-order time stepping) can work well when the solution is
smooth. But for more challenging problems, such as flow over a backward-
facing step that involves vortex shedding behind an obtuse corner, (13)-(14)
need a little extra help to suppress divergence errors that may generate sources
or sinks that significantly affect the flow. Heuristically, one can see that for the
time-discrete, spatially continuous scheme corresponding to (14), the (generally
nonzero) quantity wn = ∇ · un satisfies

wn+1 − ν∆t∆wn+1 = wn, (50)

with boundary values determined by the solution of the Helmholtz equation
satisfied by un+1. Errors, introduced by spatial discretization perhaps, may
build up due to the nearly neutral stability of this equation.

For this reason we find it useful to incorporate a projection step in the
computation to suppress the right hand side of (50). We will replace un

h on
the left-hand side of (14) by an approximation to the Leray projection Pun

h.
The resulting scheme is a finite-element version of classical projection methods
of Orszag et al. [OID] and Karniadakis et al. [KIO], which incorporate the
curl-curl of velocity in the boundary condition for pressure, see (9). We use
backward-Euler time differencing to get a scheme tractable to analysis.

It turns out that we can elegantly compute a projection of Pun
h into X0,h

using the H1
0 inner product 〈∇u,∇v〉. The identity [LLP, Lemma 1]

∆Pu = ∆u −∇∇ · u = −∇×∇× u (51)

is valid for all u ∈ L2(Ω, RN ), and implies that given any uh, vh ∈ X0,h,

〈∇Puh,∇vh〉 = −〈∆Puh, vh〉 = 〈∇ × uh,∇× vh〉.

Thus we get the following finite-element scheme with divergence suppression:
(i) Given un

h ∈ X0,h, find u
n,∗
h ∈ X0,h (the H1

0 projection of Pun
h) so that

〈∇u
n,∗
h ,∇vh〉 = 〈∇ × un

h,∇× vh〉 (52)

for all vh ∈ X0,h.
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(ii) Determine pressure pn
h ∈ Yh by requiring that for all qh ∈ Yh,

〈∇pn
h,∇qh〉 = 〈fn − un

h ·∇un
h,∇qh〉 + ν〈∇ × un

h, n ×∇qh〉Γ. (53)

(iii) Update the velocity by finding un+1

h ∈ X0,h so that for all vh ∈ X0,h,

〈

∇un+1

h −∇u
n,∗
h

∆t
,∇vh

〉

+ ν〈∆un+1

h , ∆vh〉 = 〈∇pn
h − fn + un

h · ∇un
h, ∆vh〉

(54)

for all qh ∈ Yh and vh ∈ X0,h. Of course, one can avoid the expense of computing
u

n,∗
h by substituting (52) directly in (54).

We remark that since we know UNSE is well posed, we can regard the ap-
proximate projection step (i) as a supplementary measure to suppress divergence
errors; it is not necessary to maintain consistency. To save expense in related
projection methods, a projection could be performed only once every several
time steps, say.

3.2 Stability theorem

Here we establish a stability theorem for the C1 finite element schemes (52)-
(54). Like the proof of stability in [LLP] for the scheme (13)+(14) without
a projection step, the main ingredient is the estimate on Stokes pressure in
Theorem 1, thus the theorem is restricted to domains with C3 boundary.

Theorem 3 Assume Ω is a bounded domain in R
N (N=2,3) with C3 boundary.

Then for any M0, ν > 0, there exist positive constants T∗ and C∗ with the
following property. Suppose Yh ⊂ H1(Ω), u0

h ∈ X0,h ⊂ H2 ∩ H1
0 (Ω, RN ), f ∈

C1([0, T ], L2(Ω, RN )) for some T > 0, and suppose 0 < n∆t ≤ min(T, T∗) and

‖∇u0
h‖

2 + ν∆t‖∆u0
h‖

2 +

n
∑

k=0

‖fk‖2∆t ≤ M0. (55)

Then the solution to the finite element scheme (52)-(54) satisfies

sup
0≤k≤n

‖∇uk
h‖

2 +
n

∑

k=0

(

‖∆uk
h‖

2 + ‖∇pk
h‖

2
)

∆t ≤ C∗, (56)

n
∑

k=0

‖∇ · un
h‖

2∆t ≤ C∗∆t. (57)

Proof: 1. First, we rewrite (53) using (8) as
〈

∇pn
h,∇qh

〉

=
〈

f(tn) − un
h ·∇un

h,∇qh

〉

+ ν
〈

∇pS(u
n
h),∇qh

〉

, (58)

where pS(u
n
h) is the Stokes pressure associated with un

h. Taking qh = pn
h, we get

‖∇pn
h‖ ≤ ‖f(tn) − un

h ·∇un
h‖ + ν‖∇pS(u

n
h)‖. (59)
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Note that

〈∇un+1

h −∇u
n,∗
h ,∇vh〉 = 〈∇×un+1

h −∇×un
h,∇×vh〉 + 〈∇·un+1

h ,∇·vh〉. (60)

Now, let vh = un+1

h in (54) and use (60) and (59). We get

1

2∆t

(

‖∇un+1

h ‖2 − ‖∇un
h‖

2 + ‖∇ × un+1

h −∇× un
h‖

2
)

+
1

2∆t
(‖∇ · un+1

h ‖2 + ‖∇ · un
h‖

2) + ν‖∆un+1

h ‖2

≤‖∆un+1

h ‖
(

2‖f(tn) − un
h ·∇un

h‖ + ν‖∇pS(u
n
h)‖

)

≤
ε1

2
‖∆un+1

h ‖2 +
2

ε1

‖f(tn) − un
h ·∇un

h‖
2 +

ν

2

(

‖∆un+1

h ‖2 + ‖∇pS(u
n
h)‖2

)

for any ε1 > 0. This gives

1

∆t

(

‖∇un+1

h ‖2 − ‖∇un
h‖

2
)

+
1

∆t
‖∇ · un‖2 + (ν − ε1)‖∆un+1

h ‖2

≤
8

ε1

(

‖f(tn)‖2 + ‖un
h ·∇un

h‖
2
)

+ ν‖∇pS(u
n
h)‖2. (61)

Fix any β with 1

2
< β < 1. Using Theorem 1 with u = un

h, one obtains

1

∆t

(

‖∇un+1

h ‖2 − ‖∇un
h‖

2
)

+
1

∆t
‖∇ · un‖2 + (ν − ε1)

(

‖∆un+1

h ‖2 − ‖∆un
h‖

2
)

+ (ν − ε1 − νβ)‖∆un
h‖

2

≤
8

ε1

(

‖f(tn)‖2 + ‖un
h ·∇un

h‖
2
)

+ νCβ‖∇un
h‖

2. (62)

2. The pressure no longer appears at this point. Now, as in [LLP] we use
inequalities of Ladyzhenskaya to obtain that for all g ∈ H1(Ω),

‖g‖2
L4 ≤ C‖g‖L2‖g‖H1 (N = 2), (63)

‖g‖2
L3 ≤ ‖g‖

2/3

L2 ‖g‖
4/3

L4 ≤ C‖g‖L2‖g‖H1 (N = 3). (64)

Since H1(Ω) ⊂ L4 and L6, for all u ∈ H2 ∩ H1
0 (Ω, RN ) we have

‖u · ∇u‖2 ≤

{

‖u‖2
L4‖∇u‖2

L4 ≤ C‖u‖L2‖∇u‖2
L2‖∇u‖H1 (N = 2),

‖u‖2
L6‖∇u‖2

L3 ≤ C‖∇u‖3
L2‖∇u‖H1 (N = 3).

(65)

With u = un
h, using the elliptic regularity estimate ‖un

h‖H2 ≤ C‖∆un
h‖, we find

that for any ε2 > 0 there exists C > 0 such that

‖un
h ·∇un

h‖
2 ≤ C‖∇un

h‖
3‖∆un

h‖ ≤ ε2‖∆un
h‖

2 +
C

ε2

‖∇un
h‖

6. (66)



14

Using this in (62) and taking ε1, ε2 > 0 small, we get that for some ε > 0,

1

∆t

(

‖∇un+1

h ‖2 − ‖∇un
h‖

2
)

+
1

∆t
‖∇ · un‖2 + (ν − ε1)

(

‖∆un+1

h ‖2 − ‖∆un
h‖

2
)

+ ε‖∆un
h‖

2 ≤
8

ε1

‖f(tn)‖2 +
8C

ε1ε2

‖∇un
h‖

6 + νCβ‖∇un
h‖

2. (67)

3. The last step is a discrete Gronwall-type argument. (A general result of
this type of argument is formulated in [LP].) Put bn = ‖f(tn)‖2 and

zn = ‖∇un
h‖

2 + (ν − ε1)∆t‖∆un
h‖

2, wn = ε‖∆un
h‖

2 +
1

∆t
‖∇ · un

h‖
2. (68)

Then by (67) we get zn+1 + wn∆t ≤ zn + C∆t(bn + zn + z3
n). Summing from 0

to n − 1 and using (55) yields

zn +
n−1
∑

k=0

wk∆t ≤ CM0 + C∆t
n−1
∑

k=0

(zk + z3
k) =: yn. (69)

Then yn increases with n and yn+1 − yn = C∆t(zn + z3
n) ≤ C∆t(yn + y3

n).

Let F (y) = ln(y/
√

1 + y2) so that F ′(y) = (y + y3)−1. Then on (0,∞), F is
negative, increasing and concave, and we have

F (yn+1) − F (yn) ≤ F ′(yn)(yn+1 − yn) =
yn+1 − yn

yn + y3
n

≤ C∆t, (70)

hence F (yn) ≤ F (y0) + Cn∆t = F (CM0) + Cn∆t. Choosing T∗ > 0 so that
C∗ := F (CM0)+CT∗ < 0, we deduce that for n∆t ≤ T∗ we have yn ≤ F−1(C∗),
and this with (69) yields (56) and (57). �

Remarks: If nonlinear terms were absent, T∗ could be fixed arbitrarily —
we get unconditional stability in the case of the linear Stokes equation. In
general, T∗ is independent of the spatial discretization, but is limited in size by
nonlinearity, even in two dimensions when solutions exist globally in time. The
same remarks apply to the error estimates proved in the next section for the
scheme (13), (14) without a projection step. Also we point out that although
the data u0

h are required to be in H2, the weak dependence of the bound (55) on
∆u0

h allows one to approximate any data uin ∈ H1
0 (Ω, RN ) with zero divergence

by a suitable u0
h ∈ X0,h. In [LLP] a similar smoothing step was used to prove

the existence and uniqueness of the solution of UNSE with any initial data
uin ∈ H1

0 (Ω, RN ), having the regularity

u ∈ L2(0, T∗; H
2(Ω, RN ) ∩ H1(0, T∗; L

2(Ω, RN )). (71)

4 Practical issues

4.1 Non-homogeneous boundary conditions

We handle non-homogeneous boundary conditions for the velocity in the way
described in [LLP]. Suppose the no-slip boundary condition (3) is replaced by

u = g on Γ. (72)
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The boundary data g is required to satisfy the compatibility condition
∫

Γ

n · g = 0 for t > 0.

In [LLP] we proved unconditional stability and convergence of the following
time-discrete scheme for the NSE equations (1)-(2) and (72), under appropriate
conditions on regularity and initial compatibility for the data. Given un ∈
H2(Ω, RN ), determine ∇pn ∈ L2(Ω, RN ) so that for all q ∈ H1(Ω),

〈∇pn,∇q〉 = 〈fn − un · ∇un,∇q〉 + ν〈∇ × un, n ×∇q〉Γ

−

〈

n · (gn+1 − gn)

∆t
, q

〉

Γ

, (73)

then determine un+1 ∈ H2(Ω, RN ) from the boundary value problem

un+1 − un

∆t
− ν∆un+1 = fn − un · ∇un −∇pn, (74)

un+1
∣

∣

Γ
= gn+1. (75)

To incorporate divergence suppression, we want to approximate a divergence-
free projection un,∗ to un that preserves the normal component, with n ·un,∗ =
n · un on Γ. In practice it is convenient to use L2-projection for this rather
than the H1

0 -projection of the previous section. Given un
h, we determine an

approximation u
n,∗
h to Pun

h in terms of φn
h ∈ Yh so that

u
n,∗
h = un

h −∇φn
h, 〈∇φn

h,∇qh〉 = −〈∇ · un
h, qh〉 ∀qh ∈ Yh. (76)

To save computation, we combine the determination of φn
h and pn

h and simply
compute p̂n

h = pn
h + φn

h/∆t. Thus, in the first step of a fully discrete finite-
element scheme we determine p̂n

h ∈ Yh so that for all qh ∈ Yh,

〈∇p̂n
h,∇qh〉 = 〈fn − un

h ·∇un
h,∇qh〉 + ν〈∇ × un

h, n×∇qh〉Γ

−

〈

n · (gn+1 − gn)

∆t
, qh

〉

Γ

−
1

∆t
〈∇ · un

h, qh〉. (77)

To update velocity, we look for un
h in a space of C1 finite elements Xh ⊇ X0,h,

with Xh ⊂ H2(Ω, RN ). Using ∂τ to denote tangential derivatives, we require

un+1

h = g(tn+1), ∂τun+1

h = ∂τg(tn+1) (78)

for all corresponding boundary degrees of freedom (DOF, i.e., those parameters
which uniquely define a function in the space Xh). Once the DOF at the bound-
ary are taken care of, the DOF at interior points of the triangulated domain are
determined by solving the following equation for any vh ∈ X0,h,

〈

un+1

h − un
h

∆t
, ∆vh

〉

− ν〈∆un+1

h , ∆vh〉 = 〈fn − un
h ·∇un

h −∇p̂n
h, ∆vh〉. (79)
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Figure 1: FVS finite element
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Figure 2: FEs around the corner

4.2 Obtuse corners, C1 finite elements and recycling

It is well-known that even for the linear Poisson equation with zero boundary
condition, the exact solution in a L-shaped domain may fail to be in H2(Ω), even
though the forcing term is C∞ and zero near the corners — a simple example
is based on a cut-off of the function written in polar coordinates as

u(r, θ) = r
2
3 sin

(

2θ

3

)

, (80)

which is harmonic and satisfies u(r, 0) = 0 = u(r, 3π
2

). For the Navier-Stokes
equations, similar singularities are known to occur and may be responsible for
poor performance of C1 finite element methods in problems in domains with
re-entrant corners, such as flow over a backward facing step.

A practical approach we have used to recover reasonable results using C1

finite elements in this situation is to expand the C1 finite element space for
velocity, by “recycling” some basis functions associated with tangential deriva-
tives at the corner, whose associated degrees of freedom are otherwise discarded
when imposing the no-slip condition. These recycled C1 basis functions are then
crudely truncated to make them only C0. This will allow jumps in directional
derivatives at the corner.

To be more specific, we will illustrate the problem in 2D with a particular
kind of C1 finite element that we have used in our computation, namely, the
Fraeijs de Veubeke-Sander (FVS) type C1 finite elements (see [FV], [Ci, Exer-
cises 6.1.5] and [LS]). It will be evident that this recycling technique does not
depend on a detailed understanding of corner singularities and can be extended
to other C1 finite elements in both R

2 and R
3. FVS elements are piecewise

3rd-order polynomials with 16 degrees of freedom in each FVS element. See
Figure 1 for a descriptive diagram—the arrows stand for evaluating directional
derivatives and the dots mean taking values at the associated points.

If we have an obtuse corner, we need to put three elements (or rectangles)
around the corner. See Figure 2 for an illustration. For globally C1 functions
in the finite-element space, there are three degrees of freedom at the vertex of
the corner: one value and two directional derivatives. The problem comes from
the directional derivatives, which we will denote by a and b for the horizontal
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and vertical derivatives, respectively. The basis function associated with a and
b are denoted by φa and φb, which are supported in the rectangles I, II and III
in Figure 2. Any component of uh = (uh, vh), say, uh, is represented as

uh = aφa + bφb + · · · . (81)

In Figure 2, we intentionally use ai and bi (i = 1, 2, 3) to denote the a and b
evaluated separately in different rectangles at the vertex since φa and φb are
supported in all three rectangles.

No-slip boundary values. No-slip boundary conditions require that a1 = b3 =
0. To use C1 finite elements in the standard way, since derivatives of φa and
φb are continuous, one must set ai = bi = 0 for i = 1, 2, 3. Hence the first two
terms in (81) drop, and φa and φb are never used. As reported below in section
5, this leads to poor results for flow over a backward facing step.

The way to “recycle” φa and φb and improve the situation is very simple: We
truncate φa so that it is zero in rectangle I, and remains unchanged in rectangle
II and III. We call it φ̃a. We truncate φb so that it is zero in rectangle III, and
remains unchanged in rectangle I and II. We call it φ̃b. Then, we put φ̃a and
φ̃b back into (81) (with a tilde on top) so that now the a represents the the x
derivatives along the edge between rectangles II and III; b represents the the y
derivatives along the edge between rectangles I and II.

If we recycle basis elements in this way, using U0,h to denote the original
FVS finite element space, we get an expanded FVS finite-element space

Ũ0,h = U0,h ⊕ span{φ̃a, φ̃b} (82)

and a new finite-element space for velocity,

X̃0,h = Ũ0,h × Ũ0,h. (83)

We can then use the same equations, say, (77) and (79) to solve for p̂n
h and

velocity un+1

h . The space Yh remains unchanged. However, terms containing
second derivatives of un

h, un+1

h and vh are now being computed and integrated
element-wise. For example, the term

〈

un
h · ∇un

h, ∆vh

〉

Ω
is now replaced by

∑

k

〈

un
h · ∇un

h, ∆vh

〉

Tk
where {Tk} is the triangulation of Ω associated with

X̃0,h. (We do not add jump terms on the element boundaries. Numerical
experiments we performed including such jump terms showed no essential dif-
ference.) Note that the matrix that we need to invert in order to solve for un+1

h

remains symmetric positive definite when corners are handled in this way.
Non-homogeneous boundary values. In the case that the boundary data

g 6= 0, the space Xh is modified as follows: we use the traditional approach
to treat the x-derivative in rectangle I and y-derivatives in rectangle III. The
other derivatives at the corner in rectangle I and III, and the two derivatives
at the corner in rectangle II are set to be unknown and to be determined from
momentum equations (92). So, for example, for the x-component of uh =
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(uh, vh), suppose g1 is the x-component of g,

uh = (∂xg1)φa + bφb + · · · in rectangle I (84)

uh = aφa + bφb + · · · in rectangle II (85)

uh = aφa + (∂yg1)φb + · · · in rectangle III (86)

where a and b are unknowns to be determined from the momentum equation
as before after we enlarge the test function space X0,h ⊂ H2 ∩ H1

0 (Ω, RN ) to
(83). The information from ∂τg has been fully taken care of and the stiffness
and mass matrices from the momentum equation are still symmetric positive
definite.

A different approach of handling reentrant corners has been introduced by
Soane and Rostamian [So], who use weighted variational problems to determine
the Stokes pressure.

4.3 Higher-order time integration

We get a basic 2nd-order scheme by discretizing the momentum equation us-
ing 2nd-order backward differentiation formula for the viscosity and 2nd-order
extrapolation formulas for explicit treatment of pressure and convection terms.
Using the notation

hn = un · ∇un, (87)

we get the following semi-discrete BD2/X2 scheme:

3un+1 − 4un + un−1

2∆t
+ 2 (∇pn + hn) −

(

∇pn−1 + hn−1
)

= ν∆un+1 + fn+1. (88)

with un+1 = 0 on Γ. The pressure equation is (see [LLP] or (77))

〈∇pn,∇q〉 = 〈fn − hn,∇q〉 + ν〈∇ × un, n ×∇q〉Γ − 〈n · ∂tg(tn), q〉Γ (89)

for any q ∈ H1(Ω). The divergence suppression we mentioned before can be
easily incorporated into the above scheme and we get the following fully discrete
scheme (a finite-element variant of the projection methods of [KIO]):

ūh = −
1

2∆t
(4un

h − un−1

h ) + (2hn
h − hn−1

h ) − fn+1, (90)

〈∇P̄h,∇qh〉 = −〈ūh,∇qh〉 + ν〈∇ × (2un
h − un−1

h ), n ×∇qh〉Γ (91)

−
3

2∆t
〈n · gn+1, qh〉Γ, ∀qh ∈ Yh

〈

3un+1

h

2∆t
, ∆vh

〉

− ν〈∆un+1

h , ∆vh〉 = −〈ūh+∇P̄h, ∆vh〉, ∀vh ∈ X0,h (92)

where hn
h = un

h · ∇un
h. On the boundary Γ, we assign the associated degrees

of freedom of un+1

h equal to either gn+1 or tangential derivative of gn+1. Note
that there is only one pressure-like quantity computed in each time step.
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4.4 How to solve for the pressure

We want to briefly indicate how we solve the pressure equation (13), because
typically one has to deal with a singular mass matrix A =

(〈

∇φi,∇φj

〉)

, where
{φi}

D
i=1 is a basis for the finite-element pressure space Yh. Here D is the number

of degrees of freedom in Yh. If we write pn
h =

∑

i piφi and

bi = 〈fn − un
h ·∇un

h,∇φi〉 + ν〈∇ × un
h, n×∇φi〉Γ, (93)

the pressure equation (13) is equivalent to the system of equations

Ap = b, (94)

with p = (pi) and b = (bi). If Ap = 0 for some p ∈ R
D then correspondingly

pT Ap =
∫

Ω
|∇pn

h|
2 = 0 and hence pn

h must be a constant in Ω. Thus A is
singular if and only if the constant 1 ∈ Yh, which is typical. A solution of
(94) always exists, however, since if 1 =

∑

i ciφi ∈ Yh then b in (93) naturally
satisfies the solvability condition cT b = 0.

What we can do to compute a solution is simply remove some single basis
element φj from the set {φi}

D
i=1, such that if 1 =

∑

i ciφi then cj 6= 0. In
practice, this usually means deleting a single basis element φj such that the value

pj corresponds to a nodal value of pn
h. Then it follows 1 /∈ Ŷh = span{φi : i 6= j}.

Hence we can solve (94) by deleting the jth row and column from matrix A,
and the jth row from b, solving the resulting (D − 1) × (D − 1) (symmetric,
positive definite) system, and setting pj = 0 afterward.

5 Numerical tests

In this section, we document the numerical performance of the C1 finite element
schemes described in this paper. We (i) check the stability and spatial accuracy
of our schemes, and (ii) apply our methods to benchmark problems involving
driven cavity flow and flow over a backward-facing step.

For C1 finite element computations, we use Fraeijs de Veubeke-Sander (FVS)
type elements which are piecewise 3rd-order polynomials with 16 degrees of free-
dom in each FVS quadrilateral. See Figure 1 and the discussion in section 4.2.

We will report results for the following smooth test problem. We take the
domain to be [−1, 1] × [−1, 1] and let the exact solution be:





u(x, y, t)
v(x, y, t)
p(x, y, t)



 =





g(t) cos2(πx/2) sin(πy)
−g(t) sin(πx) cos2(πy/2)
g(t) cos(πx/2) sin(πy/2)



 (95)

where g(t) = cos(t). The forcing term f is chosen so that this is a solution of
NSE. We take ν = 1.
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E \ h 2/32 2/45 2/64 2/91
‖p − ph‖∞ 5.81 (4.39) 6.42 (4.14) 7.06 (4.18) 7.68 (4.09)
‖u − uh‖∞ 6.18 (4.0) 6.78 (3.99) 7.39 (4.0) 8.0 (3.99)
‖∇ · uh‖∞ 4.45 (2.99) 4.89 (3.0) 5.35 (3.0) 5.81 (3.0)
‖p̃ − ph‖ 5.95 (3.94) 6.55 (4.08) 7.16 (3.99) 7.78 (4.04)
‖ũ − uh‖ 6.26 (3.99) 6.86 (4.0) 7.47 (4.0) 8.08 (3.99)
‖∇ · uh‖ 5.59 (3.63) 6.12 (3.58) 6.66 (3.54) 7.20 (3.52)

‖∇(p̃ − ph)‖ 4.28 (3.50) 4.80 (3.51) 5.33 (3.51) 5.87 (3.51)
‖∇(ũ − uh)‖ 5.27 (3.61) 5.80 (3.58) 6.35 (3.56) 6.89 (3.54)
‖∇(p − ph)‖∞ 3.22 (2.93) 3.66 (2.97) 4.12 (2.98) 4.58 (3.0)
‖∇(u − uh)‖∞ 4.45 (2.99) 4.89 (3.0) 5.35 (3.0) 5.81 (3.0)

Table 1: Spatial accuracy check with FVS elements. − log10 E (and local order
α) vs h. Scheme (90)–(92) with ∆t = h2/2, ν = 1, T = 2.

5.1 Stability checks

We studied the stability of the schemes treated in Theorems 2 and 3, and the
schemes (90)–(92) and the fully discrete version of (88)–(89) which are formally
second-order accurate in time. We always finally determine the pressure pn

h from
(13) for no-slip boundary conditions. We fixed a 16 × 16 finite-element mesh
and integrated to T = 10000 using time steps ∆t as large as 8. For the exact
solution in (95), the errors of velocity and pressure remained bounded, indicating
that these schemes are stable for time steps large of order O(1) when ν = 1.
In general, the maximum time step for nonlinear stability appears to depend
on viscosity and nonlinearity in a problem-dependent way; when viscosity is
small, the stability of these implicit-explicit methods is limited by the explicit
treatment of the nonlinear terms. See section 5.3 for examples.

5.2 Spatial accuracy checks

In Table 1, we study the spatial accuracy for the projection method (90)–(92)
using FVS elements. The main quantity tabulated is − log10 E where E is the
quantity listed in the left-hand column. (This indicates the number of essentially
correct digits in E.) We have used a scheme formally second-order accurate in
time and taken ∆t small enough so that the error is mainly due to spatial
discretization. In parentheses we also list the local convergence rate α for E,
determined from the formula

α =
log(Ek/Ek−1)

log(hk/hk−1)
. (96)

Values of α in the first column of Table 1 are based on values of E for a larger
h not shown. Essentially similar results were obtained for this test problem
with the fully discrete version of (88)–(89) that does not involve a projection of
velocity.
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The tabulated L2 errors compare the numerical solution with the interpolants
p̃ and ũ of the exact solution. For both velocity and pressure errors, Table 1
indicates that for this C1 finite element scheme, the error of gradients is of
order O(h3), the optimal rate achieved by the interpolation error ∇(u− ũ) with
FVS elements. (In L2-norm, the gradient of differences between the numerical
solution and the interpolant is one-half order more accurate. This may be
related to well-known superconvergence results for the difference between the
numerical solution and a projection of the exact solution, for method-of-lines
finite-element solutions of parabolic problems such as the heat equation.)

This result is consistent with the (time-integrated) error estimate O(h2) for
the Laplacian of velocity from Theorem 2 for the Backward-Euler/Forward-
Euler version of this scheme without projection in smooth domains. The O(h3)
convergence rate indicated for the pressure gradient error is better, though,
than the O(h2) rate that would be provided by the Theorem for time-integrated
error, were it applicable.

5.3 Driven cavity and backward-facing step tests

In this subsection, we test our finite element schemes for driven cavity flow (with
Re=1000) and flow over a backward facing step (with Re=100 and 600).

For the driven cavity flow, we compute the flow in the domain [0, 1] × [0, 1]
and start from rest, impulsively imposing horizontal velocity u = 1 on the top
boundary for t > 0. Following [BP], we plot the contours of vorticity with values
[-5, -4, -3, -2, -1, -0.5, 0, 0.5, 1, 2, 3]. We also follow [KM] to plot normalized
velocity fields in order to visualize flow details near the corner. These plots
also show the non-uniform mesh used. We refer to computational results of
[KM, BP] for comparison. Although we use a rather coarse mesh, the vorticity
contour plots agree quite well with [BP].

For the backward-facing step, we use FVS finite elements to compute the
flow in the domain

Ω = [0, L] × [−0.5, 0.5] \ [0, 0.5] × [−0.5, 0]

with no-slip boundary conditions everywhere except at the inflow boundary
x = 0 and the outflow boundary x = L. We take L = 8 when Re=100, and take
L = 20 when Re=600. We start from rest and gradually increase the boundary
velocity (u, v) to (12y(1 − 2y), 0) at the inflow boundary and (−3y2 + 3/4, 0)
at the outflow boundary, with no net influx at each time. The time-dependent
function we used for gradually increasing velocity is (1 − cos(πt))/2 on [0, 1].
Once the velocity field is obtained, we use the streamline function in MATLAB
to plot the streamlines. The mesh used is shown in Figure 3.

From Figure 5, we can see that a straight forward application of C1 finite
elements in domains with reentrant corner can lead to wrong results where
continuity of derivatives across elements touching the reentrant corner is main-
tained. For those wrong results, we have tried to use finer grids and smaller
time steps, but they are not very helpful. It seems that the problem is not
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−0.5

0

0.5

Figure 3: Mesh used in backward facing step flow computation when Re=100.

due to under-resolution because the computation works once we turn on the
recycling. Figure 5 compares results with and without recycling at different
times. It also shows the (approximately constant) flux

∫

uh(x, y)dy integrated
along vertical lines x = const plotted against the distance x downstream from
the inlet. Obviously the recycling techniques save the computation. The results
for Re=600 with recycling are shown in Figure 6. Even though we use a rather
coarse mesh, the ratios between the size of the step (S) and the reattachment
length and other characteristic lengths (X1, X2, X3 as indicated in Fig. 6) agree
quite well with what is in the literature results [ADPS, KM].

The time step is listed in the caption of each figure together with hmin, the
side length of the smallest finite element of the mesh (FVS rectangle). We have
taken care to show the results of a large time step for Figures 4 and 6. If the
time steps are increased by 20%, the computations blow up for these two cases.
To have a rough idea of the CFL number in our finite element computations,
keep in mind that the maximum velocities are 1 and 3

2
for these two benchmark

problems.

−5

−
5 −

5−4

−
4

−4

−3

−
3

−3

−
3

−2
−2

−2

−2

−
2

−2

−2
−2

−1

−1

−
1

−1

−
1

−1

−0
.5

−
0.5

−0.5

−0
.5

−
0.

5
−

0.
5

0

0

0

0
0

0 0

0

0.5 0.
5

0.
5

0.5

0.5

0.
5

0.
5

1

1

1

1

1

1 1

1

1

2

2

2
2

2

2

2

2
2

3

3

3
3

3
3

3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4: Driven cavity, Re=1000. 32 × 32 C1 FVS elements for each variable,
hmin = 0.0131. No recycling. Scheme (90)–(92), ∆t = 0.0075, T = 50.
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Figure 5: Backward facing step. Re=100. Scheme (90)–(92) with recycling
(right plots) and without recycling (left plots). 594 FVS elements for each
variable. hmin = 0.0301. ∆t = 0.006. Flow at times T = 1.002, 1.5, 19.998.
Above each streamline plot we plot the flux

∫

uh(x, y) dy vs. x.
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Figure 6: Backward facing step. Re=600. Scheme (90)–(92) with recycling.
1107 FVS elements for each variable. hmin = 0.0301. ∆t = 0.003. T = 120.
X1/S = 8.9. X2/S = 15.4. X3/S = 10.
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6 Discussion

In this paper we have provided rigorous stability and error analysis of schemes
that employ C1 finite elements for velocity, and numerical tests, that lend cre-
dence to the notion that simple and efficient finite-element schemes based on the
use of the well-posed pressure formula (4) may work well even if the standard
inf-sup (LBB) stability condition does not hold.

As the inf-sup condition is most readily understood in the time-independent
linear case, however, it seems worthwhile to briefly discuss that case in order
to better understand how finite element methods based on UNSE may work
regardless of whether the inf-sup condition holds or not.

6.1 Inf-sup condition for steady flow

Recall, for the mixed inhomogeneous Stokes problem

∇p − ∆u = f , ∇ · u = 0, u|Γ = 0, (97)

that standard mixed methods with finite-element approximation spaces Xh and
Yh for velocity and pressure take the form

〈∇uh,∇vh〉 − 〈ph,∇ · vh〉 = 〈f , vh〉 ∀vh ∈ Xh, (98)

〈∇ · uh, qh〉 = 0 ∀q ∈ Yh. (99)

A fundamental fact for this system is that the existence and boundedness of the
solution map from f ∈ H−1 to (uh, ph) in H1

0 × L2 is equivalent to the famous
inf-sup condition: there should exist ch > 0 such that

inf
qh∈Yh

sup
vh∈Xh

〈∇ · vh, qh〉

‖∇vh‖‖qh‖
≥ ch > 0. (100)

Also, the solution map is uniformly bounded in h if and only if ch is uniformly
bounded away from zero [GR]. The main role of the inf-sup condition (100)
lies in ensuring uniformly bounded solvability for the pressure from (98). If the
condition fails to hold, methods typically encounter spurious pressure modes
that destroy solvability or degrade accuracy.

6.2 Reformulation

Despite the well-known existence of a global Leray weak solution, well-posedness
(existence and uniqueness) for the Navier-Stokes equations at present requires
one to consider more regular strong solutions locally in time, and this is the
framework in which we proved local-time well-posedness for UNSE in [LLP].
By analogy, we introduce a corresponding strong reformulation of the Stokes
problem above: Let λ ≥ 0 and consider

∇p − ∆u = f , u|Γ = 0, (101)

〈∇p,∇q〉 = 〈f + λu,∇q〉 + 〈∇ × u, n ×∇q〉Γ ∀q ∈ H1(Ω). (102)
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We require f ∈ L2(Ω, RN ) and seek u ∈ H2 ∩ H1
0 (Ω, RN ), p ∈ H1(Ω)/R.

We claim that if Ω is bounded with C3 boundary, this PDE problem is
always well posed and yields the solution of (97). A clean way to prove this is
by operator theory. (We point out immediately that the usual inf-sup condition
as in (100) will not be relevant for this formulation because the pressure is
stably determined by a Poisson equation, not from (98).) The pressure gradient
in (102) is given by

∇p = (I − P)f + Bλu, where Bλu = λ(I − P)u + ∇pS(u), (103)

in terms of the Stokes pressure ∇pS(u). Thus (101) can be written as

Au + Bλu = Pf , (104)

where the operator A = −∆, regarded as an unbounded operator on L2(Ω, RN )
with domain D(A) = H2 ∩ H1

0 (Ω, RN ), is a positive self-adjoint operator with
compact resolvent. It is a simple consequence of Theorem 1 and interpolation
that there exist positive constants a and K with a < 1 such that for all u ∈
D(A),

‖Bλu‖ ≤ a‖Au‖ + K‖u‖. (105)

From a theorem on perturbation of sectorial operators [He, p. 19, theorem 1.3.2]
it is not difficult to show, using expansions in eigenfunctions of A (details omit-
ted), that A + Bλ is sectorial with the same domain as A. Due to the identity

(µ − A − Bλ)−1 = (µ − A)−1 + (µ − A)−1Bλ(µ − A − Bλ)−1,

the resolvent is compact, and it follows that the spectrum of A+Bλ is discrete,
consisting only of isolated eigenvalues of finite multiplicity.

It remains to show zero is not an eigenvalue of A + Bλ. Suppose u ∈
H2 ∩ H1

0 (Ω, RN ) satisfies (A + Bλ)u = 0. This means

0 = −∆u + (I − P)∆u −∇∇ · u + λ(I − P)u, (106)

hence dotting with ∇q where q = −∇ · u we find

0 = ‖∇∇ · u‖2 + λ‖∇ · u‖2. (107)

It follows ∇ · u = 0 (if λ = 0 the integral of the constant ∇ · u is zero by
boundary conditions) and therefore u = Pu. Hence u = 0, since by (106) it
now follows

0 =
〈

− P∆u, u
〉

=
〈

− ∆u,Pu
〉

= ‖∇u‖2.

By consequence, zero lies in the resolvent set of A + Bλ, so that (A+ Bλ)−1

is bounded on L2(Ω, RN ) and equation (104) always has a solution bounded by
the data (even if Pf is replaced by any g ∈ L2(Ω, RN )). This solution in fact
has zero divergence, which follows by dotting (104) with ∇q where q = ∇ · u.
Again we get (107), hence ∇ · u = 0.
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6.3 A stable discretization

In discretizing the reformulation (101)-(102), of course u and p are coupled
together; there is no simple decoupling analogous to splitting time steps in the
time-dependent case. It is nevertheless relevant to note that if the velocity is
known, pressure will be determined by solving a discrete Poisson equation. For
this reason we can expect that the inf-sup condition (100) will have no role in
determining the stability or accuracy of pressure in this approach, and we can
expect no spurious pressure modes.

Instead the issue becomes whether the velocity can be stably determined
by approximation schemes without regard to (100). A typical finite-element
discretization will provide an approximation to the operator A + Bλ in (104)
acting in a finite-element space X0,h for velocity. The issue is whether this
non-selfadjoint discrete operator has a uniformly bounded inverse.

This question does not seem easy to resolve in general, but we will illustrate
by proving stability for a finite-element scheme from [Li] for (101)-(102), that
uses C1 elements for velocity and C0 elements for pressure with no need for
the inf-sup condition (100). (The method is not practical, but that is not the
point.) The idea behind the scheme comes from the identity

〈−∆u + λ(I − P)u,−∆u + λPu〉 = ‖∆u‖2 + λ‖∇u‖2, (108)

together with the estimate coming from Theorem 1 that

|〈∇pS(u), ∆u〉| ≤
1

2
‖∇pS‖

2 +
1

2
‖∆u‖2 ≤ a‖∆u‖2 + Ca‖∇u‖2 (109)

for a ∈ (0, 1) independent of u. If λ > Ca, then for any nonzero u ∈ H2 ∩ H1
0 (Ω, RN ),

〈−∆u + Bλu,−∆u + λPu〉 ≥ (1 − a)‖∆u‖2 + (λ − Ca)‖∇u‖2. (110)

Thus the bilinear form on the left-hand side is coercive in H2 ∩ H1
0 (Ω, RN ),

meaning that the bounded solvability of (101)-(102) can be ensured by apply-
ing the Lax-Milgram theorem to the weak-form problem of finding u ∈ X =
H2 ∩ H1

0 (Ω, RN ) such that

〈−∆u + Bλu,−∆v + λPv〉 = 〈Pf ,−∆v + λPv〉 ∀v ∈ X. (111)

A corresponding stable finite-element scheme can be obtained as follows. Let
X0,h ⊂ H2 ∩ H1

0 (Ω, RN ) and Yh ⊂ H1(Ω)/R be spaces for approximate velocity
and pressure as before. A discrete Leray projection Ph is defined as follows: For
any a ∈ L2(Ω, RN ), define φh ∈ Yh by solving

〈

∇φh,∇qh

〉

=
〈

a,∇qh

〉

∀qh ∈ Yh. (112)

Then Pha := a − ∇φh. Note 〈Pha, (I − Ph)b〉 = 0 for any a, b ∈ L2(Ω, RN ),
and ‖I − Ph‖ = 1. By dotting (101) by the test function −∆v + λPv and
discretizing (for convenience letting ph denote an approximation to p − Qf
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where ∇Qf = (I − P)f), we obtain the following C1 finite element scheme for
steady-state Stokes equations: Find uh ∈ X0,h and ph ∈ Yh so that

〈−∆uh + ∇ph,−∆vh + λPhvh〉 = 〈Phf ,−∆vh + λPhvh〉, (113)

〈∇ph − λuh − ∆uh + ∇∇ · uh,∇qh〉 = 0, (114)

for all vh ∈ X0,h and qh ∈ Yh.
For large λ > 0 this scheme has a solution uniformly bounded in terms of

the data, for arbitrary spaces X0,h and Yh regardless of (100). For the proof,
note (114) yields

∇ph = λ(I − Ph)uh + (I − Ph)∇pS(uh) (115)

since the Stokes pressure satisfies (8). Plug this into the left-hand side of (113).
The resulting bilinear form on the left-hand side of (113) is coercive, since
choosing vh = uh and arguing as in (108)-(110) above yields

〈−∆uh + λ(I − Ph)uh,−∆uh + λPhuh〉 − 〈(I − Ph)∇pS(uh), ∆uh〉

≥ (1 − a)‖∆uh‖
2 + (λ − Ca)‖∇uh‖

2. (116)

A standard use of the Lax-Milgram theorem finishes the proof.
For further details, error estimates and related results see the PhD thesis of

the second author [Li].
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