21-832 PDE II Fall 2016 R.L. Pego

Homework 1 Due Friday, Sept. 16

- 1. Find the distributional derivative of the function $f(x) = \ln |x|$ in $\mathcal{D}'(\mathbb{R})$.
- 2. (Distribution limit of harmonic functions) Let Ω be open in \mathbb{R}^n , and let $\{f_j\}$ be a sequence of harmonic functions in Ω that converges in the sense of distributions to some $T \in \mathcal{D}'(\Omega)$, meaning

$$\forall \phi \in \mathcal{D}(\Omega), \qquad (T, \phi) = \lim_{j \to \infty} \int_{\Omega} f_j(x) \phi(x) \, dx.$$

It is a consequence of the Banach-Steinhaus theorem on Fréchet spaces that this convergence is uniform in ϕ for ϕ in any *bounded* subset of $\mathcal{D}(\Omega)$. (A set $E \subset \mathcal{D}(\Omega)$ is bounded if all $\phi \subset E$ are supported in the same compact set $K \subset \Omega$ and $\sup_{\phi \in E} \sup_{x \in K} |D^{\alpha}\phi(x)| < \infty$ for every multiindex α .)

Prove that f_j converges uniformly on every compact subset of Ω to a harmonic function f where f = T in $\mathcal{D}'(\Omega)$. (Suggestion: recall the use of mean values and mollifiers last term.)

- 3. In \mathbb{R}^3 , find a fundamental solution of the biharmonic equation $\Delta \Delta u = f$, i.e., find a distribution G on \mathbb{R}^3 satisfying $\Delta \Delta G = \delta$. (Suggestion: Seek G = g(|x|) where g(r) is a radially symmetric bi-harmonic function away from r = 0.)
- 4. Let Ω be open in \mathbb{R}^n , and suppose $f, g: \Omega \to \mathbb{R}$ are continuous and have compact support in Ω . Show that if some partial derivative $\partial_{x_i} f = g$ in the sense of distributions, then the partial derivative $\partial_{x_i} f(x)$ exists for each $x \in \Omega$ in the classical sense and $\partial_{x_i} f(x) = g(x)$. (Hint: Mollify.)
- 5. (a) Let ϕ be a test function on $(-\pi, \pi)$. Regarding e^{ikx} as a (complex-valued) distribution, show that

$$|(e^{ikx},\phi)| \le 2\pi |k|^{-n} ||D^n\phi||_{\infty}$$
.

(b) Schrödinger's equation $iu_t = u_{xx}$ is linear and has solutions of the form $u_k(x,t) = e^{itk^2 + ikx}$. Show that for fixed $t \ge 0$, the infinite series

$$u(t) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} e^{itk^2 + ikx}$$

converges in the sense of distributions on $(-\pi, \pi)$. (Note $u(0) = \delta$. u(t) is the (very strange) fundamental solution of Schrödinger's equation for 2π -periodic solutions.)

6. Let $f(x) = e^x$ and $g(x) = e^x \cos(e^x)$. Show g is a tempered distribution but that f is not.