Due Wednesday, Sept. 9:

1.1. (i) Let \(a_{n,k} \geq 0 \) for \(n, k \in \mathbb{N} \). Prove that

\[
\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{n,k} = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} a_{n,k}.
\]

(ii) Suppose only that \(a_{n,k} \in \mathbb{R} \) for \(n, k \in \mathbb{N} \). Show that (1) does not necessarily follow. (Give an explicit counterexample.)

1.2. Suppose that \(\mathcal{F} \) is a \(\sigma \)-algebra of subsets of \(\mathbb{R}^p \) which contains every half-space of the form \(\{ x \in \mathbb{R}^p : x_j < c \} \), where \(j = 1, \ldots, p \) and \(c \in \mathbb{R} \) are fixed. Prove that \(\mathcal{F} \) contains every open cell in \(\mathbb{R}^p \) (i.e., every product of bounded open intervals).

1.3. For any set \(E \subset \mathbb{R}^p \) recall \(\text{diam} E = \sup\{|x - y| : x, y \in E\} \). (Here \(|x| \) is the usual Euclidean norm of \(x \).) Given \(s \geq 0, \delta > 0 \), for each \(E \subset \mathbb{R}^p \) define \(\eta_{s,\delta}(E) \in [0, \infty] \) by

\[
\eta_{s,\delta}(E) = \inf \left\{ \sum_{n=1}^{\infty} (\text{diam } E_n)^s : E \subset \bigcup_{n=1}^{\infty} E_n, \text{diam } E_n < \delta \right\}.
\]

(i) Prove \(\eta_{s,\delta} \) is countably subadditive on arbitrary subsets of \(\mathbb{R}^p \).

(ii) Prove that if \(0 < \delta < \delta \) and \(E \subset \mathbb{R}^p \), then \(\eta_{s,\delta}(E) \geq \eta_{s,\delta}(E) \).

(iii) Define \(\eta_s(E) := \sup_{\delta > 0} \eta_{s,\delta}(E) \). Prove that \(\eta_s \) is countably subadditive on arbitrary subsets of \(\mathbb{R}^p \).

(\(\eta_s \) is a constant multiple of \textit{s-dimensional Hausdorff outer measure} on \(\mathbb{R}^p \).)

1.4. Suppose \(\mathcal{F} \) is a \(\sigma \)-algebra that has infinitely many elements.

(i) Show there is a countable family of pairwise disjoint sets in \(\mathcal{F} \).

(ii) Show \(\mathcal{F} \) is uncountable.

1.5. Given \(f : \mathbb{R} \to \mathbb{R} \) increasing, let \(\mu_f^* \) be the Lebesgue-Stieltjes outer measure generated by \(f \):

\[
\mu_f^*(E) := \inf \left\{ \sum_{k=1}^{\infty} f(b_k) - f(a_k) : E \subset \bigcup_{k=1}^{\infty} (a_k, b_k) \right\}.
\]

If \(E \subset \mathbb{R} \), we say \(E \) is \(\mu_f^* \)-measurable if for every \(A \subset \mathbb{R} \) we have

\[
\mu_f^*(A) = \mu_f^*(A \cap E) + \mu_f^*(A \cap E^c).
\]

If \(c \in \mathbb{R} \), show that \((-\infty, c) \) is \(\mu_f^* \)-measurable. (Hint: First consider the case that \(f \) is continuous at \(c \). You may use the fact that the collection of \(\mu_f^* \)-measurable sets is a \(\sigma \)-algebra; the proof goes just the same as that in class for Lebesgue-measurable sets.)

1.6. Let \(X, Y \) be sets, \(f : X \to Y \), and \(\mathcal{X} \) be a \(\sigma \)-algebra of subsets of \(X \).

(i) Let \(\mathcal{Y} = \{ E \subset Y : f^{-1}(E) \in \mathcal{X} \} \) be the collection of all subsets of \(Y \) whose pre-images are in \(\mathcal{X} \). Show that \(\mathcal{Y} \) is a \(\sigma \)-algebra.

(ii) Suppose \(\mathcal{A} \) is a collection of subsets of \(Y \) such that whenever \(E \in \mathcal{A} \) then \(f^{-1}(E) \in \mathcal{X} \). Show that \(f^{-1}(F) \in \mathcal{X} \) for every set \(F \) in the \(\sigma \)-algebra generated by \(\mathcal{A} \).