Lebesgue Decomposition and Radon-Nikodým Theorems: a clean way

Throughout, \((X, \mathcal{F})\) is a measurable space, and \(\mu, \nu : \mathcal{F} \to [0, \infty]\) are two fixed measures. We focus on the case of finite measures, as extending the results to \(\sigma\)-finite measures is rather straightforward. The goal is to avoid intricate constructions found in many sources.

Theorem (Lebesgue Decomposition for a finite measure) Assume \(\nu(X) < \infty\). Then there are unique measures \(\nu_1, \nu_2\) on \(\mathcal{F}\) such that

\[
\nu = \nu_1 + \nu_2, \quad \nu_1 \ll \mu, \quad \nu_2 \perp \mu.
\]

Furthermore, there is a set \(B \in \mathcal{F}\) with \(\mu(B) = 0\) such that for all \(E \in \mathcal{F}\),

\[
\nu_1(E) = \nu(E \setminus B), \quad \nu_2(E) = \nu(E \cap B).
\]

Proof.

1. Define

\[
\beta = \sup \{ \nu(F) : F \in \mathcal{F} \text{ with } \mu(F) = 0 \}.
\]

Then \(\beta \leq \nu(X) < \infty\), and there is a sequence \((F_n)\) in \(\mathcal{F}\) with \(\mu(F_n) = 0\) and \(\beta = \lim \nu(F_n)\). It follows that the union \(B = \bigcup_{n=1}^{\infty} F_n\) satisfies

\[
B \in \mathcal{F}, \quad \mu(B) = 0 \quad \text{and} \quad \nu(B) = \beta.
\]

2. Define \(\nu_1\) and \(\nu_2\) as in (2). It is straightforward to show \(\nu_1\) and \(\nu_2\) are measures on \(\mathcal{F}\). Then

\[
\nu_2 \perp \mu, \quad \text{because} \quad \nu_2(X \setminus B) = \nu(\emptyset) = 0 \quad \text{and} \quad \mu(B) = 0.
\]

3. We claim \(\nu_1 \ll \mu\). Suppose \(\mu(E) = 0\). Then \(\mu(B \cup E) = 0\), whence

\[
\beta \geq \nu(B \cup E) = \nu(B) + \nu(E \setminus B) = \beta + \nu_1(E) \geq \beta.
\]

Hence \(\nu_1(E) = 0\). Therefore \(\nu_1 \ll \mu\).

4. (uniqueness) Suppose that any two measures \(\hat{\nu}_1\) and \(\hat{\nu}_2\) on \(\mathcal{F}\) satisfy

\[
\nu = \hat{\nu}_1 + \hat{\nu}_2, \quad \hat{\nu}_1 \ll \mu, \quad \hat{\nu}_2 \perp \mu.
\]

Because \(\hat{\nu}_2 \perp \mu\), there exists \(\hat{B} \in \mathcal{F}\) such that \(\hat{\nu}_2(X \setminus \hat{B}) = 0\) and \(0 = \mu(\hat{B}) = \hat{\nu}_1(\hat{B})\). For every \(E \in \mathcal{F}\), then we have

\[
\hat{\nu}_1(E) = \hat{\nu}_1(E \setminus \hat{B}) + \hat{\nu}_1(E \cap \hat{B}) = \hat{\nu}_1(E \setminus \hat{B}) + \hat{\nu}_2(E \setminus \hat{B}) = \nu(E \setminus \hat{B}), \\
\hat{\nu}_2(E) = \hat{\nu}_2(E \setminus \hat{B}) + \hat{\nu}_2(E \cap \hat{B}) = \hat{\nu}_2(E \setminus \hat{B}) + \hat{\nu}_1(E \cap \hat{B}) = \nu(E \cap \hat{B}).
\]
Using this and also (2) we can compute that
\[\nu(B \setminus \hat{B}) = \hat{\nu}_1(B) = 0 \quad \text{since } \hat{\nu}_1 \ll \mu \text{ and } \mu(B) = 0, \]
\[\nu(\hat{B} \setminus B) = \nu_1(\hat{B}) = 0 \quad \text{since } \nu_1 \ll \mu \text{ and } \mu(\hat{B}) = 0. \]

Therefore \(B \setminus \hat{B} \) and \(\hat{B} \setminus B \) are null sets for all the measures \(\mu, \nu, \nu_1, \nu_2, \hat{\nu}_1 \) and \(\hat{\nu}_2 \).

For every \(E \in \mathcal{F} \) we have \(E \cap B = (E \cap B \cap \hat{B}) \cup (E \cap B \setminus \hat{B}) \), hence
\[\nu_2(E) = \nu(E \cap B) = \nu(E \cap B \cap \hat{B}), \]
and similarly
\[\hat{\nu}_2(E) = \nu(E \cap \hat{B}) = \nu(E \cap B \cap \hat{B}). \]

Therefore \(\nu_2 = \hat{\nu}_2 \), and also \(\nu_1 = \nu - \nu_2 = \nu - \hat{\nu}_2 = \hat{\nu}_1 \). QED

The Radon-Nikodym theorem will provide a representation of the absolutely continuous part as an integral. Its proof will make use of the Hahn decomposition theorem.

Theorem (Radon-Nikodým for finite measures) Assume \(\mu(X) < \infty \) and \(\nu(X) < \infty \), and suppose \(\nu \ll \mu \). Then there exists an \(\mathcal{F} \)-measurable function \(f : X \to [0, \infty) \) such that
\[\nu(E) = \int_E f \, d\mu \quad \text{for all } E \in \mathcal{F}. \]

Proof. 1. Let \(H \) be the set of all \(\mathcal{F} \)-measurable functions \(h : X \to [0, \infty] \) such that
\[\int_E h \, d\mu \leq \nu(E) \quad \text{for all } E \in \mathcal{F}. \]

Then \(0 \in H \), and if \(h_1, h_2 \in H \) then \(\max(h_1, h_2) \in H \), since with \(F = \{ x : h_1(x) \geq h_2(x) \} \), for any \(E \in \mathcal{F} \) we have
\[\int_E \max(h_1, h_2) \, d\mu = \int_{E \cap F} h_1 \, d\mu + \int_{E \setminus F} h_2 \, d\mu \leq \nu(E \cap F) + \nu(E \setminus F) = \nu(E). \]

2. Define
\[\alpha = \sup_{h \in H} \int h \, d\mu. \]

Then \(0 \leq \alpha \leq \nu(X) < \infty \), and there is a sequence \(h_n \in H \) such that \(\alpha = \lim \int h_n \, d\mu \). Replacing \(h_n \) by \(\max(h_1, \ldots, h_n) \) we may suppose \((h_n) \) is increasing. Letting \(f = \lim h_n \), the Monotone Convergence Theorem ensures
\[\int_E f \, d\mu \leq \nu(E) \quad \text{for all } E \in \mathcal{F}, \quad \text{and} \quad \alpha = \int f \, d\mu \leq \nu(X) < \infty. \quad (6) \]

Therefore \(\{ x : f(x) = \infty \} \) is \(\mu \)-null; redefining \(f \) as 0 on this set, still (6) holds, so \(f \in H \).
3. We claim that equality always holds in (6). Supposing not, there exists $A \in \mathcal{F}$ and $\varepsilon > 0$ such that

$$\nu(A) > \int_A f \, d\mu + \varepsilon \mu(A). \quad (7)$$

This means $\lambda(A) > 0$, where λ is a signed measure on \mathcal{F} defined by

$$\lambda(E) = \nu(E) - \int_E f \, d\mu - \varepsilon \mu(E).$$

There is a Hahn decomposition $X = P \cup N$ with disjoint sets P and N such that (8) holds. In particular it follows that for all $E \in \mathcal{F}$, $\lambda(E \cap P) \geq 0$, meaning

$$\nu(E \cap P) \geq \int_{E \cap P} f \, d\mu + \varepsilon \mu(E \cap P).$$

Since anyway $\nu(E \cap N) \geq \int_{E \cap N} f \, d\mu$ because $f \in H$, we add and deduce

$$\nu(E) \geq \int_E (f + \varepsilon \mathbb{1}_P) \, d\mu.$$

This shows that $f + \varepsilon \mathbb{1}_P \in H$, which implies

$$\alpha = \int f \, d\mu = \int f \, d\mu + \varepsilon \mu(P).$$

We infer $\mu(P) = 0$, whence $\nu(P) = 0$ since $\nu \ll \mu$, hence $\lambda(P) = 0$. From (7) we now obtain

$$0 < \lambda(A) = \lambda(A \cap P) + \lambda(A \cap N) \leq \lambda(P \cap A) + \lambda(P \setminus A) = \lambda(P) = 0,$$

a contradiction. This proves the claim. QED

Remark: This account has merged ideas in these two papers:

together with the Hahn decomposition idea mentioned to me by Gautam Iyer.
To complete this treatment, we give a proof of the Hahn decomposition theorem that I find more straightforward than Folland’s, based upon the 1-page paper

Theorem (Hahn decomposition) Let \(\lambda \) be a signed measure on \(\mathcal{F} \). Then \(X = P \cup N \), where \(P \cap N = \emptyset \), \(P \) is positive and \(N \) is negative, meaning that

\[
\lambda(E \cap P) \geq 0 \geq \lambda(E \cap N) \quad \text{for all } E \in \mathcal{F}.
\]

(8)

We may suppose that \(+\infty \) is not in the range of \(\lambda \) (by replacing \(\lambda \) by \(-\lambda \) if necessary). For any \(\varepsilon > 0 \), we will say that \(A \in \mathcal{F} \) is \(\varepsilon \)-positive if

\[
\inf_{B \subseteq A} \lambda(B) \geq -\varepsilon.
\]

(9)

Sublemma Let \(E \in \mathcal{F} \) with \(\lambda(E) > 0 \) and let \(\varepsilon > 0 \). Then \(E \) contains some \(A \in \mathcal{F} \) with \(\lambda(A) \geq \lambda(E) \) such that \(A \) is \(\varepsilon \)-positive.

Proof. Fix \(E \) and \(\varepsilon \), and suppose the stated conclusion is false, meaning every \(\mathcal{F} \)-measurable \(A \subset E \) with \(\lambda(A) \geq \lambda(E) \) is not \(\varepsilon \)-positive. Then recursively, taking \(B_0 = \emptyset \), we can find \(B_k \subset A_k := E \setminus (B_0 \cup \ldots \cup B_{k-1}) \) with \(\lambda(B_k) < -\varepsilon \) for all \(k \in \mathbb{N} \). The \(B_k \) are disjoint, hence \(B = \bigcup_{k=1}^{\infty} B_k \) satisfies \(\lambda(B) = -\infty \). But then \(\infty > \lambda(E \setminus B) = +\infty \), a contradiction. QED

Lemma Let \(E \in \mathcal{F} \) with \(\lambda(E) > 0 \). Then \(E \) contains some \(Q \in \mathcal{F} \) with \(\lambda(Q) \geq \lambda(E) \) such that \(Q \) is positive.

Proof. Using the sublemma, recursively we can construct \((E_n)\) in \(E \) such that for all \(n \in \mathbb{N} \),

\[
E_{n+1} \subset E_n \subset E, \quad \lambda(E_{n+1}) \geq \lambda(E_n) \geq \lambda(E) > 0, \quad \text{and} \quad \inf_{B \subseteq E_n} \lambda(B) \geq -\frac{1}{n}.
\]

Let \(Q = \cap_{n=1}^{\infty} E_n \). Then \(\infty > \lambda(Q) = \lim \lambda(E_n) \geq \lambda(E) \) and \(\inf_{B \subseteq Q} \lambda(B) \geq -\frac{1}{n} \) for all \(n \). Hence \(Q \) is positive. QED

Proof of the Hahn decomposition theorem. Let \(M = \sup \{ \lambda(P) : P \in \mathcal{F} \text{ is positive} \} \). Then \(M \geq \lambda(\emptyset) = 0 \), and there is a sequence \((P_n)\) of positive sets with \(\lambda(P_n) \to M \). The set \(P = \bigcup_{n=1}^{\infty} P_n \) is then positive, so \(\lambda(P) \geq \lambda(P_n) \) for all \(n \), hence \(\lambda(P) = M < \infty \).

Now let \(N = X \setminus P \). Then \(N \) is negative. For if not, then \(N \) contains some \(E \in \mathcal{F} \) with \(\lambda(E) > 0 \). By the lemma, \(E \) contains some positive \(Q \) with \(\lambda(Q) \geq \lambda(E) \). But then \(P \cup Q \) is positive, and because \(P \cap Q = \emptyset \) we find \(\lambda(P \cup Q) > M \). Contradiction. QED

R. Pego