Homework Assignment 2
Assigned Fri 1/23. Due Fri 1/30.

1. The conclusion of both subparts below will follow directly from a general theorem we will prove later. However it’s worth while doing them out explicitly by hand at least once!
 (a) Suppose \(u_1, u_2 \) are any two linearly independent vectors in \(\mathbb{R}^2 \), then show (by direct computation) that \(\text{span}\{u_1, u_2\} = \mathbb{R}^2 \).
 (b) Let \(V = \mathbb{R}^3 \), and \(U \subseteq \mathbb{R}^3 \) be the plane \(x_1 + x_2 + x_3 = 0 \). Show (by direct computation) that if \(u_1, u_2 \) are any two linearly independent vectors in \(U \), then \(U = \text{span}\{u_1, u_2\} \).

2. Let \(V \) be a vector space over a field \(F \).
 (a) Suppose \(U \) and \(W \) are two subspaces of \(V \). Is \(U \cup W \) always a vector space? If yes, prove it. If no, furnish a counter example.
 (b) Same question as in part (a) for \(U \cap W \).
 (c) Define \(U + W = \{u + w \mid u \in U, w \in W\} \). If \(U,W \) are subspaces of \(V \), then show that \(U + W \) is also a subspace of \(V \).
 (d) If \(V = \mathbb{R}^3 \), \(F = \mathbb{R} \), \(U = \{\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \mid x_1 + x_2 = 0\} \), and \(W = \{\left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) \mid x_1 + x_2 + x_3 = 0\} \), then compute \(U + W \).

3. Let \(V \) be a vector space over a field \(F \). Recall that a list of vectors \(u_1, \ldots, u_n \) in \(V \) is called a basis for \(V \) if every element \(u \) in \(V \) has a unique representation as a linear combination
 \[
 u = \alpha_1 u_1 + \ldots + \alpha_n u_n \quad \text{with} \quad (\alpha_1, \ldots, \alpha_n) \in F^n.
 \]
 Prove that \(u_1, \ldots, u_n \) is a basis if and only if it is a minimal generating list, meaning that it generates \(V \) but no smaller sublist generates \(V \).

4. Let \(F = \mathbb{Z}_2 \) and let \(V = F^2 \). How many elements are in \(V \)? How many subspaces? How many different bases does \(V \) have?

5. Let \(V \) and \(W \) be vector spaces over a field \(F \), and let \(Z \) be the set of all vector space homomorphisms \(T: W \to V \). Recall this means that for all \(a, b \in W \) and all \(\gamma \in F \),
 \[
 (i) \quad T(a + b) = T(a) + T(b) \quad \text{and} \quad (ii) \quad T(\gamma a) = \gamma T(a).
 \]
 With addition and scalar multiplication on \(Z \) defined as for arbitrary functions from \(W \) to \(V \), prove that \(Z \) is a vector space.