Definitions!

- A binary operation on a set S is an operation that takes two elements of S as input and produces one element of S as output.
- A set S is closed under an operation if whenever the inputs to the operation come from S, the output of the operation is in S too.
- [Note that in order for an operation to qualify as a binary operation on a set under the first definition above, the set must be closed under the operation, because the definition of binary operation requires that the output of the operation be in the set. If the set isn't even closed under the operation, then the operation does not qualify as a binary operation on the set, and none of the following definitions apply.]
- A binary operation \star on a set S is commutative if $a \star b=b \star a$ for all elements a and b in S.
- A binary operation \star on a set S is associative if $(a \star b) \star c=a \star(b \star c)$ for all elements a, b, and c in S.
- Let S be a set with a binary operation \star. An element e in S is an identity element (or just an identity) if $e \star a=a$ and $a \star e=a$ for every element a in S.
- Let S be a set with a binary operation \star and an identity element e.
- Let a be an element in S. If there exists an element b in S such that $a \star b=e$ and $b \star a=e$, then the element a is invertible, and b is an inverse of a.
- If every element a in S is invertible, then the binary operation \star itself is called invertible.
- A binary operation \star on a set S is idempotent if $a \star a=a$ for every element a in S.
- A set with a binary operation is called a magma. [Note that the set must be closed under the operation-otherwise the operation wouldn't qualify as a binary operation on the set!]
- There are some special names for magmas that have additional properties.
- Semigroup: associativity.
- Monoid: associativity and identity.
- Group: associativity, identity, and invertibility.
- Abelian group: associativity, identity, invertibility, and commutativity.
- Semilattice: associativity, commutativity, and idempotence.
- Bounded semilattice: associativity, commutativity, idempotence, and identity.

1. The set of positive integers under the operation of addition.
\square closedcommutativeassociativeidentity: \qquadinvertible
\square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
2. The set of nonnegative integers under the operation of addition.
\square closed \square
\square commutative
\square associative $\quad \square$ identity: \qquadinvertibleidempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
3. The set of all integers under the operation of addition.
\square closed \square \qquad \square associative $\quad \square$ identity: $\qquad$$\square$ invertiblidempotent
\square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
4. The set of positive integers under the operation of subtraction.
\square closed $\quad \square$ commutative \square associative \square identity: \qquad invertible
idempotent
\square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
5. The set of all integers under the operation of subtraction.
\square closedcommutativeassociative
\square identity: \qquad \square invertible idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
6. The set of integers under the operation of multiplication.
\square closedcommutative \square associative
\square identity: \qquad \square invertible
\square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
7. The set of rational numbers under the operation of multiplication.
\square closedcommutative
associative $\quad \square$ identity: \qquad \square invertible
\square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
8. The set of integers under the operation of division.
\square closed \square commutative $\quad \square$ associative \square identity:__ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
9. The set of nonzero rational numbers under the operation of division.
\square closed \square commutative $\quad \square$ associative \square identity: __ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
10. The set of positive integers under the operation of integer division: division where the remainder is thrown away. For example, under integer division, $38 \div 5=7$, because the remainder of 3 is thrown away.
\square closed
\square commutative $\quad \square$
associative $\quad \square$ identity: \qquad \square invertible idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
11. The set of positive integers under the operation of exponentiation. \square closed \square commutative \square associative \square identity:__ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
12. The set of real numbers under the operation of exponentiation.
\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible $\quad \square$ idempotent
\square magma $\quad \square$ semigroup \square monoid \square group $\quad \square$ abelian group \square semilattice \square bounded semilattice
13. The set of rational numbers whose denominators are 1 or 2 , under the operation of addition.
\square closed \square commutative \square associative \square identity:_ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
14. The set of rational numbers whose denominators are 1,2 , or 3 , under the operation of addition.
\square closed $\quad \square$ commutative \square associative $\quad \square$ identity: \qquad \square invertible
\square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
15. The set of real numbers in the interval $[0,1]$, under the operation λ defined by $a \lambda b=\frac{a+b}{2}$. \square closed \square commutative \square associative \square identity:_ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
16. The set of all real numbers under the operation \curlywedge defined by $a<b=\frac{a+2 b}{3}$. \square closed \square commutative \square associative \square identity:_ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
17. The set of rational numbers under the operation \diamond defined by $a \diamond b=\frac{a b}{a+b}$.
\square closed \square commutative \square associative $\quad \square$ identity:__ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
18. The set of positive rational numbers under the operation \diamond defined above.
\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\square \square$ invertible \square idempotent
\square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
19. The set of rational numbers under the operation \boxplus defined by $a \boxplus b=a b+1$.
\square closed \square commutative $\quad \square$ associative $\quad \square$ identity:_ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
20. The set of positive integers under the operation \circledast defined by $a \circledast b=2^{a b}$.
\square closed \square
\square commutative
\square associative
\square identity: \qquad \square invertible
\square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
21. The set of real numbers under the operation \vee defined by $a \vee b=\max \{a, b\}$.
\square closed \square commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible \square idempotent
\square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
22. The set of real numbers under the operation \wedge defined by $a \wedge b=\min \{a, b\}$.
\square closed \square commutative \square associative $\quad \square$ identity:__ \square invertible \quad idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
23. The set of positive integers under the operation Δ defined by $a \Delta b=\operatorname{gcd}(a, b)$.
\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
24. The set of positive integers under the operation $\boldsymbol{\nabla}$ defined by $a \boldsymbol{\nabla} b=\operatorname{lcm}(a, b)$. \square closed $\quad \square$ commutative $\quad \square$ associative \square identity: $\quad \square$ invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
25. The set $\{0,1,2,3,4\}$ under the operation of addition modulo 5 , written \oplus_{5}. Addition modulo 5 is done by adding the two numbers together and then taking the remainder when the sum is divided by 5 . For example, $2 \oplus_{5} 4=1$, because $2+4=6$, and the remainder when 6 is divided by 5 is 1 .
\square closed \square commutative $\quad \square$ associative $\quad \square$ identity:__ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
26. The set $\{0,1,2,3,4\}$ under the operation of multiplication modulo 5 , written \otimes_{5}. Multiplication modulo 5 is done by multiplying the two numbers together and then taking the remainder when the product is divided by 5 . For example, $3 \otimes_{5} 4=2$, because $3 \times 4=12$, and the remainder when 12 is divided by 5 is 2 .
\square closed $\quad \square$ commutative \square associative $\quad \square$ identity:__ \square invertible $\quad \square$ idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
27. The set $\{1,2,3,4\}$ under the operation of multiplication modulo 5 .closed
\square commutative \square \square associativeidentity: \qquad \square invertible
\square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
28. The set $\{1,2,3,4,5\}$ under the operation of multiplication modulo 6 , written \otimes_{6}.
\square closed \square commutative
\square associativeidentity: \qquad \square invertible
\square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
29. The set of integers under the operation \triangleleft defined by $a \triangleleft b=a$.
\square closed \square commutative $\quad \square$ associative \square identity:_ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
30. The set of integers under the operation $\boldsymbol{<}$ defined by $a<b=-a$.
\square closed \square
\square commutative
\square associative
\square identity: \qquad invertible
idempotent
\square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
31. The set of real numbers under the operation $\mathbb{\|}$ defined by $a \| b=$ the least integer that is greater than $a+b$.
\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity:__ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
32. The set of states of the U.S., under the operation defined by $a \boldsymbol{\&} b=$ Kentucky.
\square closed \square commutative \square associative \square identity:_ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
33. The set of all sets of integers, under the operation of union. \square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible $\quad \square$ idempotent
\square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
34. The set of all sets of integers, under the operation of intersection.
\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity:

-

\square invertible
idempotent
\square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
35. The set of positive integers under the operation \ltimes defined by $a \ltimes b=$ the number you get by writing a down b times. For example, $1702 \ltimes 3=170217021702$.
\square closedcommutative $\quad \square$ associative \square identity: \qquad invertible idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
36. The set of nonnegative integers under the operation \curvearrowright defined by $a \curvearrowright b=$ the number you get by doing "move the first digit of a to the end" b times. For example, $12345 \curvearrowright 1=23451,67890 \curvearrowright 2=89067$, $203 \curvearrowright 1=32$ (why?), and $149283317 \curvearrowright 57=283317149$.
\square closed \square commutative \square associative \square identity:_ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
37. The set of Boolean truth values (T and F , "true" and "false") under the operation \wedge defined by $\mathrm{T} \wedge \mathrm{T}=\mathrm{T}$, $\mathrm{T} \wedge \mathrm{F}=\mathrm{F}, \mathrm{F} \wedge \mathrm{T}=\mathrm{F}$, and $\mathrm{F} \wedge \mathrm{F}=\mathrm{F}$. (This is the Boolean "AND" operation.)
\square closed \square commutative \square associative \square identity: $\quad \square$ invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
38. The set of Boolean truth values under the operation \vee defined by $T \vee T=T, T \vee F=T, F \vee T=T$, and $\mathrm{F} \vee \mathrm{F}=\mathrm{F}$. (This is the Boolean "OR" operation.)
\square closed \square commutative \square associative \square identity: $\quad \square$ invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
39. The set of Boolean truth values under the operation \oplus defined by $\mathrm{T} \oplus \mathrm{T}=\mathrm{F}, \mathrm{T} \oplus \mathrm{F}=\mathrm{T}, \mathrm{F} \oplus \mathrm{T}=\mathrm{T}$, and $\mathrm{F} \oplus \mathrm{F}=\mathrm{F}$. (This is the Boolean "XOR" operation.)
\square closed
\square commutative
\square associative
\square identity: \qquad \square invertible
\square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
40. Rock Paper Scissors: The set $\{r, p, s\}$ under the operation • defined by $r \bullet p=p$ and $p \bullet r=p$ ("paper beats rock"), $p \bullet s=s$ and $s \bullet p=s$ ("scissors beat paper"), $r \bullet s=r$ and $s \bullet r=r$ ("rock beats scissors"), $r \bullet r=r$ ("rock ties with rock"), $p \bullet p=p$ ("paper ties with paper"), and $s \bullet s=s$ ("scissors tie with scissors").
\square closed
\square commutative
\square associativeidentity: \qquad \square invertible
idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
41. The set of 2×2 matrices of real numbers, under the operation of matrix addition.
\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible $\quad \square$ idempotent
\square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
42. The set of 2×2 matrices of real numbers, under the operation of matrix multiplication.
\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible \square idempotent
\square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
43. The set of all finite strings formed from the letters $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z}$, under the operation of string concatenation. (For example, the string "ABC" concatenated with the string "WXYZ" yields the string "ABCWXYZ".)
\square closed \square commutative \square associative \square identity: \qquad \square invertible
\square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
44. The set of polynomial functions in x with integer coefficients, under the operation of function composition, written with the symbol \circ, and defined as follows: if f and g are two functions, then $f \circ g$ is the function defined by $f(g(x))$. For example, if f is the function defined by $f(x)=7 x^{3}+5 x-12$ and g is the function defined by $g(x)=4 x-1$, then $f \circ g$ is the function defined by $f(g(x))$, which is $7(4 x-1)^{3}+5(4 x-1)-12=448 x^{3}-336 x^{2}+104 x-24$.
\square closed \square commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
45. The set of all ordered pairs $\left(x_{1}, x_{2}\right)$ where x_{1} is an integer and x_{2} is a real number, under the operation \ddagger defined by $\left(a_{1}, a_{2}\right) \ddagger\left(b_{1}, b_{2}\right)=\left(a_{1}+b_{1}, a_{2} \cdot b_{2}\right)$.
\square closedcommutative associativeidentity: \qquad \square invertibleidempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
46. The set of permutations of a set of five elements under the operation of composition. Such a permutation can be written as five numbers, like " 35142 ," in which every number from 1 to 5 appears exactly once. The permutation 35142 means that the first element in the output is the third element in the input (that's the 3), and the second element in the output is the fifth element in the input (that's the 5), and the third element in the output is the first element in the input (that's the 1), and so on. For example, applying the permutation 35142 to the input ABCDE gives the output CEADB, and applying the same permutation 35142 to the input BDACE gives the output AEBCD. [Note that a permutation is an action-it's a "verb," not a "noun."] The operation of composition means doing one permutation and then another. Composition is written with the symbol o, and it is done from right to left; so $43125 \circ 35142$ means, "First do the permutation 35142, and then do the permutation 43125 on that output." Applying the composition of permutations $43125 \circ 35142$ to the input ABCDE gives the output DACEB, which is the same output as if you had applied the single permutation 41352 ; so $43125 \circ 35142=41352$.
\square closed \square commutative \square associative \square identity:__ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice

More problems!

47. The set of even integers under the operation of addition.
\square closedcommutativeassociative $\quad \square$ identity: \qquadinvertible
\square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
48. The set of odd integers under the operation of addition.
\square closedcommutativeassociativeidentity: \qquadinvertibleidempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
49. The set of even integers under the operation of subtraction.
\square closed
\square commutativeassociativeidentity: \qquadinvertible idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
50. The set of odd integers under the operation of subtraction.
\square closedcommutativeassociative \square identity: \qquadinvertibleidempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
51. The set of even integers under the operation of multiplication.
\square closed
\square commutative
\square associativeidentity: \qquadinvertible
\square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
52. The set of odd integers under the operation of multiplication.
\square closedcommutative \square associative \square identity: \qquad \square invertible
\square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
53. The set of positive even integers under the operation of exponentiation.
\square closed \square
\square commutative \square associative \square identity: \qquad \square invertible idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
54. The set of positive odd integers under the operation of exponentiation. \square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible $\quad \square$ idempotent
\square magma \square semigroup \square monoid $\quad \square$ group \square abelian group \square semilattice \square bounded semilattice
55. The set of all rational numbers whose denominators are powers of 2 , under the operation of addition. \square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible $\quad \square$ idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
56. The set of all nonzero rational numbers whose denominators are powers of 2 , under the operation of multiplication.
\square closed \square commutative \square associative $\quad \square$ identity:__ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
57. The set of real numbers under the operation \odot defined by $a \odot b=7 a b$.
\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity:__ \square invertible $\quad \square$ idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
58. The set $\{1,5,7,11\}$ under the operation \otimes_{12}, multiplication modulo 12 . (Remember, multiplication modulo 12 is done by multiplying the two numbers together and then taking the remainder when the product is divided by 12.)
\square closed \square commutative \square associative $\quad \square$ identity:__ \square invertible \quad idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
59. The set $\{0\}$ under the operation of multiplication.
\square closed \square
\square commutativeassociativeidentity: \qquad \square invertible
\square idempotent \square magma \square semigroup \square monoi\square grou \square abelian group \square semilattice \qquad bounded semilattice
60. The set of all real numbers under the operation Θ defined by $a \pm b=\sqrt{a^{2}+b^{2}}$.
\square closed \square commutative
\square associativeidentity: \qquadinvertible
idempotent
\square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
61. The set of all nonnegative real numbers under the operation Δ defined above.
\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible \square idempotent
\square magma $\quad \square$ semigroup \square monoid \square group $\quad \square$ abelian group \square semilattice \square bounded semilattice
62. The set of all real numbers under the operation \AA^{3} defined by $a \AA^{3} b=\sqrt[3]{a^{3}+b^{3}}$.
\square closedcommutative
\square associative
\square identity: \qquad \square invertibleidempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
63. The set $\mathbb{Z} \cup\{\infty\}$ (that is, the set of integers together with ∞) under the operation \vee defined by $a \vee b=\max \{a, b\}$. Note that $\max \{a, \infty\}=\infty$ for all a in this set, and $\max \{\infty, b\}=\infty$ for all b in this set.
\square closecommutativeassociativeidentity: \qquad \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
64. The set $\mathbb{Z} \cup\{-\infty, \infty\}$ (that is, the set of integers together with $-\infty$ and ∞) under the operation \oplus defined by

$$
a \oplus b= \begin{cases}0, & \text { if } a=\infty \text { and } b=-\infty, \text { or } a=-\infty \text { and } b=\infty ; \\ \infty, & \text { if } a=\infty \text { and } b \neq-\infty, \text { or } b=\infty \text { and } a \neq-\infty ; \\ -\infty, & \text { if } a=-\infty \text { and } b \neq \infty, \text { or } b=-\infty \text { and } a \neq \infty ; \\ a+b, & \text { if } a \neq \pm \infty \text { and } b \neq \pm \infty\end{cases}
$$

For example, $2 \oplus 5=7,3 \oplus \infty=\infty, 7412 \oplus-\infty=-\infty,-\infty \oplus-\infty=-\infty, \infty \oplus \infty=\infty$, and $-\infty \oplus \infty=0$.
\square closedcommutativeassociative \square identity: \qquad \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
65. The set of positive integers under the operation \S defined by $a \S b=a^{b}+b^{a}$.
\square closedcommutativeassociativeidentity: \qquad
\square \square invertibleidempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
66. The set of all nonnegative integers that can be expressed as the sum of two perfect squares (i.e., the set $\{0,1,2,4,5,8,9,10,13,16,17,18,20,25, \ldots\}$, because, for example, $0=0^{2}+0^{2}, 5=1^{2}+2^{2}, 20=2^{2}+4^{2}$, and $25=0^{2}+5^{2}=3^{2}+4^{2}$), under the operation of multiplication.
\square closed $\quad \square$ \square commutative $\quad \square$ associative \square identity: \qquadinvertible idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
67. The set of nonnegative real numbers under the operation θ defined by $a \ominus b=\pi a^{2} b$.
\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible $\quad \square$ idempotent
\square magma \square semigroup \square monoid \square group $\quad \square$ abelian group \square semilattice \square bounded semilattice
68. The set of all positive integers under the operation of tetration, written $\uparrow \uparrow$ and defined by

$$
a \uparrow \uparrow b=\underbrace{a^{a \cdot{ }^{a}}}_{b \text { copies of } a}
$$

Note that this "power tower" is evaluated top-down: for example, $7 \uparrow \uparrow 3=7^{7^{7}}=7^{\left(7^{7}\right)}$, not $\left(7^{7}\right)^{7}$.
\square closedcommutativeassociativ\square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice \square identity: \qquadinvertibleidempotent
69. The set of perfect squares, $\{0,1,4,9,16,25, \ldots\}$, under the operation of multiplication.
\square closedcommutativeassociativeidentity: \qquadinvertible
\square idempotentmagma \square
\square \square semigroup \square monoid \square groupabelian group \square semilatticebounded semilattice
70. The set of Fibonacci numbers under the operation $\boldsymbol{\nabla}$ defined by $a \boldsymbol{\nabla}=\operatorname{lcm}(a, b)$.
\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible $\quad \square$ idempotent
\square magma \square semigroup \square monoid \square group $\quad \square$ abelian group \square semilattice \square bounded semilattice
71. The set of Fibonacci numbers under the operation $\boldsymbol{\Delta}$ defined by $a \Delta b=\operatorname{gcd}(a, b)$.
\square closedcommutative
\square associativeidentity: \qquadinvertible \square idempotentmagmasemigroup \square monoidgroup\square abelian group \square semilatticebounded semilattice
72. The set of real numbers of the form $a+b \sqrt{5}$ where a and b are integers, under the operation of multiplication.
\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ magma $\quad \square$ semigroup \square monoid \square group $\quad \square$ abelian group \square semilattice \square bounded semilattice
73. The set of integers under the operation ?: defined by

$$
a ?: b= \begin{cases}a, & \text { if } a \neq 0 \\ b, & \text { if } a=0\end{cases}
$$

\square closedcommutative \square associativeidentity: \qquadinvertible idempotent \square magma \square \qquad semigroup \square monoidgroupabelian groupsemilatticebounded semilattice
74. The set $\{a, b, c\}$ under the operation $*$ defined by the table below.

$*$	a	b	c
a	a	b	c
b	b	c	a
c	c	a	b

\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible $\quad \square$ idempotent
\square magma $\quad \square$ semigroup \square monoid $\quad \square$ group $\quad \square$ abelian group \square semilattice \square bounded semilattice
75. The set $\left\{0, \frac{1}{2}, 1\right\}$ under the operation \rightarrow defined by the table below.

\rightarrow	0	$\frac{1}{2}$	1
0	1	1	1
$\frac{1}{2}$	0	1	1
1	0	$\frac{1}{2}$	1

\square closedcommutative \square associativeidentity: $\qquad$$\square$ invertibleidempotent
\square magma \squaresemigroup \square monoid \qquad \square groupabelian group \square semilattice \qquad bounded semilattice
76. The set $\{x, y, z\}$ under the operation \leftrightarrow defined by the table below.

\leftrightarrow	x	y	z
x	x	z	y
y	z	y	x
z	y	x	z

\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible $\quad \square$ idempotent
\square magma \square semigroup \square monoid \square group $\quad \square$ abelian group \square semilattice \square bounded semilattice
77. The set $\{\alpha, \beta, \gamma, \delta\}$ under the operation © defined by the table below.

\odot	α	β	γ	δ
α	δ	γ	β	α
β	β	β	β	β
γ	γ	γ	γ	γ
δ	α	β	γ	δ

\square closed \square commutative \square associative \square identity \qquad invertible
idempotent
\square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
78. The subset $\{1,-1, i,-i\}$ of the complex numbers under the operation \times defined by the table below.

\times	1	-1	i	$-i$
1	1	-1	i	$-i$
-1	-1	1	$-i$	i
i	i	$-i$	-1	1
$-i$	$-i$	i	1	-1

\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible $\quad \square$ idempotent
\square magma \square semigroup \square monoid \square group $\quad \square$ abelian group \square semilattice \square bounded semilattice
79. The set of complex numbers under the operation of complex addition, defined by $(a+b i)+(c+d i)=$ $(a+c)+(b+d) i$.
\square closed \square commutative \square associative \square identity:_ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
80. The set of complex numbers under the operation of complex multiplication, defined by $(a+b i) \cdot(c+d i)=$ $(a c-b d)+(b c+a d) i$. [Hint: There is another operation on complex numbers, a unary operation, that takes the complex number $a+b i$ as input and produces the complex number $\frac{a}{a^{2}+b^{2}}+\left(\frac{-b}{a^{2}+b^{2}}\right) i$ as output.] \square closed \square commutative \square associative \square identity:__ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
81. The set of nonzero complex numbers under the operation of complex multiplication.
\square closed \square commutative \square associative \square identity:__ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
82. The set of complex numbers $a+b i$ such that $a^{2}+b^{2}=1$, under the operation of complex multiplication. \square closed \square commutative \square associative \square identity:__ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
83. The set of all points inside the unit circle [that is, the set of all points (x, y) whose distance from the origin $(0,0)$ is less than 1] under the operation \rightarrow defined by $a \rightarrow b=$ the midpoint of the line segment joining a and b.
\square closed $\quad \square$ commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible $\quad \square$ idempotent
\square magma $\quad \square$ semigroup \square monoid \square group $\quad \square$ abelian group \square semilattice \square bounded semilattice
84. The set of all points outside the unit circle under the operation \rightarrow defined above.
\square closed \square commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
85. The set of all nonempty, closed, bounded intervals on the real number line (i.e., intervals of the form $[a, b]$ with $a \leq b$), under the operation \sqcup defined by $[a, b] \sqcup[c, d]=[\min \{a, c\}, \max \{b, d\}]$. For example, $[-2.8,1] \sqcup[\pi, 7]=[-2.8,7]$.
\square closed \square commutative $\quad \square$ associative $\quad \square$ identity: $\quad \square$ invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
86. The set of polynomial functions in x with integer coefficients, whose coefficients add up to 0 , under the operation of multiplication. For example, $f=3 x^{5}-4 x^{2}+1$ is in this set, because $3-4+1=0$, and $g=-17 x^{3}+20 x^{2}-5 x+2$ is in this set, because $-17+20-5+2=0$; and $f \cdot g=\left(3 x^{5}-4 x^{2}+1\right) \times$ $\left(-17 x^{3}+20 x^{2}-5 x+2\right)=-51 x^{8}+60 x^{7}-15 x^{6}+74 x^{5}-80 x^{4}+3 x^{3}+12 x^{2}-5 x+2$. [Hint: Think about evaluating one of these polynomials at $x=1$.]
\square closed
\square commutative
\square associative
identity: \qquad \square invertible
idempotent
\square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
87. The set of all sets of integers under the operation of set difference, written \backslash and defined by $A \backslash B=$ the set of all elements of A that are not elements of B. For example, $\{-5,-2,3,17,21\} \backslash\{-2,0,14,17\}=$ $\{-5,3,21\}$.
\square closed \square commutative $\quad \square$ associative $\quad \square$ identity:__ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
88. The set of all sets of integers under the operation of symmetric difference, written \triangle and defined by $A \triangle B=(A \backslash B) \cup(B \backslash A)$, where \backslash is the operation of set difference defined above. In other words, $A \triangle B$ is the set of all elements of A that are not elements of B, together with all elements of B that are not elements of A. Equivalently, $A \triangle B=(A \cup B) \backslash(A \cap B)$. For example, $\{-5,-2,3,17,21\} \triangle$ $\{-2,0,14,17\}=\{-5,0,3,14,21\}$.
\square closed \square commutative \square associative \square identity:_ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
89. The set of all sets of integers under the operation of Minkowski addition, written + and defined by $A+B=$ the set of all numbers that you can get by adding one number in A and one number in B. For example, $\{-8,1,3\}+\{0,2,7\}=\{-8,-6,-1,1,3,5,8,10\}$.
\square closed \square commutative \square associative \square identity:__ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
90. The set of all finite strings formed from the letters A, B, C, \ldots, Z, under the operation \dashv defined by $a \dashv b=$ the longest string of letters that appears at the beginning of both a and b. For example, CATFISH \dashv CATAMARAN $=$ CAT and FARMHOUSE \dashv FIREHOUSE $=\mathrm{F}$.
\square closed \square commutative \square associative \square identity:__ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
91. The set of 2×2 matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $a d-b c=1$, under the operation of matrix multiplication. \square closed $\quad \square$ commutative \square associative $\quad \square$ identity: $\quad \square$ invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
92. The set of 2×2 matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $a+b=1$ and $c+d=1$, under the operation of matrix multiplication.
\square closed $\quad \square$ commutative \square associative $\quad \square$ identity: $\quad \square$ invertible $\quad \square$ idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
93. The set of all 8 -digit strings of digits $0,1,2, \ldots, 9$ (with leading zeroes allowed) under the operation + defined just like ordinary addition, except that leading zeroes are kept in the sum, and if the sum would be a 9 -digit number then only the last 8 digits are kept. For example, $02814019+03152944=05966963$ and $51043819+72010038=23053857$.
\square closed \square commutative \square associative $\quad \square$ identity: $\quad \square$ invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
94. The set of all strings, made of the digits $0,1,2, \ldots, 9$, that are one-way infinite to the left, under the operation + defined just like ordinary addition, starting at the rightmost digit and proceeding leftwards, with carries. Of course, this process of adding digits (and carrying digits to the left) will require infinitely many steps. For example, $\ldots 31439+\ldots 52486=\ldots 83925$.
\square closed \square commutative \square associative \square identity:_ \square invertible \square idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice
95. The set of ordered pairs of integers under the operation \triangleleft defined by $\left(x_{1}, y_{1}\right) \triangleleft\left(x_{2}, y_{2}\right)=\left(x_{1}, y_{2}\right)$.closedcommutativeassociativeidentity: \qquad \square invertibleidempotent \square magma \square semigroup \square monoidgroup\square abelian group \square semilatticebounded semilattice
96. The set of ordered pairs of integers under the operation \bowtie defined by $\left(x_{1}, y_{1}\right) \bowtie\left(x_{2}, y_{2}\right)=\left(y_{1}, x_{2}\right)$.$\square$ closed $\quad \square$ commutativeassociativeidentity: \qquad \square invertible\square idempotent \square magma \square \square semigroup \square \square monoid \square group\square abelian group \square \square semilatticebounded semilattice
97. The set $\{1,2,3,4,5,6,7,8,9,10\}$ under the operation \circlearrowright defined by $a \circlearrowright b=$ the number you get to by starting at a in the picture below and following the arrows for b steps.
closedcommutative \square associativeidentity: \qquadinvertible \square idempotent \square magma \square semigroup \square
\square monoid \square \square group \square \square abelian group \square \square semilattice \square bounded semilattice
98. The set of nonnegative integers under the operation $\dot{+}$ defined by $a \dot{+} b=$ the number that you get by writing a and b in binary and performing binary addition without carries, and then converting back to base ten. For example, 12 in binary is 1100 , and 42 in binary is 101010 ; adding those numbers in binary without carries, we get

$$
1100
$$

$$
\begin{array}{r}
+101010 \\
\hline 100110
\end{array}
$$

and 100110 in binary is 38 ; so $12 \dot{+} 42=38$.
\square closedcommutative \square associativeidentity: \qquad \square invertible \square idempotent \square magma \square \square semigroup \square \square monoid \qquad \square group \square \square abelian group \square semilatticebounded semilattice
99. The set of positive integers under the operation (!) defined by the following process: Let $a_{\text {first }}$ be the first digit of a, and let $a_{\text {last }}$ be the last digit of a. Let $b_{\text {first }}$ be the first digit of b, and let $b_{\text {last }}$ be the last digit of b. Let a^{\prime} be the number that you get from a by replacing every occurrence of the digit $b_{\text {last }}$ with the digit $b_{\text {first }}$, and let b^{\prime} be the number that you get from b by replacing every occurrence of the digit $a_{\text {last }}$ with the digit $a_{\text {first }}$. Then $a!b=a^{\prime}+b^{\prime}$. For example, 1234 (!) $812443=1284+812113=813397$.
\square closedcommutative \square associativeidentity: \qquad \square invertibleidempotent \square magma \square \square semigroup \square monoid \square group\square abelian groupsemilatticebounded semilattice
100. Quaternions: The set $\{1,-1, i,-i, j,-j, k,-k\}$ under the operation \times defined by the table below.

\times	1	-1	i	$-i$	j	$-j$	k	$-k$
1	1	-1	i	$-i$	j	$-j$	k	$-k$
-1	-1	1	$-i$	i	$-j$	j	$-k$	k
i	i	$-i$	-1	1	k	$-k$	$-j$	j
$-i$	$-i$	i	1	-1	$-k$	k	j	$-j$
j	j	$-j$	$-k$	k	-1	1	i	$-i$
$-j$	$-j$	j	k	$-k$	1	-1	$-i$	i
k	k	$-k$	j	$-j$	$-i$	i	-1	1
$-k$	$-k$	k	$-j$	j	i	$-i$	1	-1

For example:

$$
\begin{array}{rlrl}
i \times i & =-1, & & i \times j=k, \\
j \times j & =-1, & j \times k=i, & \\
j \times j \times j=-i, \\
k \times k & =-1, & k \times i=j, & i \times k=-j,
\end{array}
$$

\square closed \square commutative \square associative $\quad \square$ identity:__ \square invertible \quad idempotent \square magma \square semigroup \square monoid \square group \square abelian group \square semilattice \square bounded semilattice

