
21-110: Problem Solving in Recreational Mathematics
Homework assignment 3 solutions

Problem 1. (“A Swimmer and a Hat,” from The Moscow Puzzles by Boris A. Kordemsky, edited
by Martin Gardner.) A boat is being carried away by a current. A man jumps out and swims against
the current for a while, then turns around and catches up with the boat. Did he spend more time
swimming against the current or catching up with the boat? (We assume his muscular efforts never
change in strength.)

The answer is: Both times were the same. The current carries man and boat downstream at
the same speed. It does not affect the distance between the swimmer and the boat.

Now imagine that a sportsman jumps off a bridge and begins to swim against the current. The
same moment a hat blows off a man’s head on the bridge and begins to float downstream. After
10 minutes the swimmer turns back, reaches the bridge, and is asked to swim on until he catches up
with the hat. He does, under a second bridge 1,000 yards from the first.

The swimmer does not vary his effort. What is the speed of the current?

Solution. The current carries the swimmer and the hat downstream at the same rate and does
not itself change the distance between them. The swimmer and the hat begin together at the same
point (the first bridge) and end at the same point (the second bridge). Since the sportsman swam
away from the hat for 10 minutes, he must have swum toward the hat for 10 minutes to meet it
again. (This is just like the situation with the swimmer and the boat.)

In this span of 20 minutes, the current has carried the hat 1,000 yards, from the first bridge to
the second. Therefore the speed of the current is

1,000 yards
20 minutes

= 50 yards per minute.

Problem 2. International paper sizes, standardized in ISO 216, are used in nearly every country
in the world except the United States and Canada. The largest size in the so-called “A series” is
called A0, and has an area of one square meter. The next size is called A1 and is formed by cutting
a sheet of A0 paper in half. Then A2 paper is formed by cutting a sheet of A1 paper in half, and
so on. This continues through the smallest size, A10. Additionally, the various sizes are defined so
that all of the paper sizes are similar (that is, they have the same shape, but different sizes). This
makes it easy to scale documents from one size of paper to another. What size of paper corresponds
most closely to the “letter” size paper common in the United States (8 1

2 inches by 11 inches)? What
are its dimensions, rounded to the nearest millimeter? [There are 25.4 millimeters in one inch, and
1000 millimeters in one meter.]

Solution. The dimensions of letter size paper in millimeters are

(8.5 in.)
(

25.4 mm
1 in.

)
= 215.9 mm by (11 in.)

(
25.4 mm

1 in.

)
= 279.4 mm,

so the area of one sheet of letter size paper is

(215.9 mm)(279.4 mm) = 60,322.46 mm2.

The area of one sheet of A0 paper is

(1 m2)
(

1000 mm
1 m

)2

= 1,000,000 mm2.

So A1 paper has half this area, A2 paper has 1/4 this area, A3 paper has 1/8 this area, A4 paper
has 1/16 this area, and so on. It turns out that the area of one sheet of A4 paper is

1,000,000 mm2

16
= 62,500 mm2,

which is very close to the area of letter size paper. So A4 paper is the size that corresponds most
closely to letter size paper.
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Now we need to determine its dimensions. We are told that each size of paper in the A series can
be obtained by cutting the next larger size in half, and that all of the sizes are similar. This means
that they have the same proportions, that is, the ratio between the long side and the short side is
the same. Let’s draw a picture of a sheet of A4 paper and introduce some variables to represent
lengths of sides:

x

y

x/2

The two halves of this sheet of A4 paper are sheets of A5 paper, and they must have the same
proportions as the sheet of A4 paper. So we have the equation

x

y
=

y

x/2
.

Cross-multiplying, we get
x2

2
= y2.

Now we multiply both sides by 2 to get
x2 = 2y2.

We can take the square root of both sides of this equation to solve for x. (Since x and y represent
lengths, they cannot be negative, so we do not need to consider negative square roots.) We get

x =
√

2y2 = y
√

2.

This gives us an expression for x in terms of y. Now we can use the fact that the area of one sheet
of A4 paper should be 62,500 mm2 to write the equation

xy = 62,500.

Plugging in x = y
√

2, we obtain
y2
√

2 = 62,500,

so

y2 =
62,500√

2
.

Therefore

y =

√
62,500√

2
≈ 210.2,

which means
x ≈ (210.2)

√
2 ≈ 297.3.

Thus, rounded to the nearest millimeter, a sheet of A4 paper is 210 mm by 297 mm.
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Problem 3. (Exercise 3.27 from Problem Solving Through Recreational Mathematics.) When Erica
was two years old, Leroy was four times as old as Miriam. When Miriam was twice as old as Erica,
Leroy was three times as old as Miriam. How old was Erica when Leroy was twice as old as Miriam?

Solution. There are three points in time in this problem. At one point in time, Erica is two years
old, and Leroy is four times as old as Miriam. At a second point in time, Miriam is twice as old as
Erica, and Leroy is three times as old as Miriam. At the third point in time, Leroy is twice as old
as Miriam. We want to find how old Erica is at this third point in time.

When I worked on this problem, I became stuck almost immediately. I couldn’t figure out how
to represent this information in a coherent way. After I saw that the problem refers to three points
in time, I decided to draw a timeline with three marked points, and then I tried to write down
what was true at each of these points in time. Using E, L, and M for the ages of Erica, Leroy, and
Miriam, respectively, I drew the following picture.

E = 2
L = 4M

M = 2E

L = 3M

E = ?
L = 2M

time

The problem with this picture is that the variables E, L, and M do not consistently represent
the same numbers, because they represent the ages of Erica, Leroy, and Miriam at three different
points in time.

To fix this problem, I needed to define more carefully what I wanted the variables E, L, and M
to mean. I decided that they should represent the ages (in years) of Erica, Leroy, and Miriam,
respectively, at the third point in time. (The unknown value we are trying to find is Erica’s age at
the third point in time, so it seemed sensible to make the variables represent these ages.)

Now, if E, L, and M represent the ages at the third point in time, how should we refer to the
ages at the second point in time? If we knew that, say, 2 years had elapsed between the second and
third points, we could use E−2, L−2, and M −2 to represent the ages at the second point in time.
But we don’t know this elapsed time. So I decided to introduce another variable, which I called t,
to represent the elapsed time (in years) between the second and third points; then the ages at the
second point in time are E − t, L− t, and M − t.

Similarly, I introduced a variable s to represent the elapsed time (in years) between the first
and second points. Then I could write E − t− s, L− t− s, and M − t− s for the three ages at the
first point in time. In picture form:

Erica’s age: E − t− s

Leroy’s age: L− t− s

Miriam’s age: M − t− s

Erica’s age: E − t

Leroy’s age: L− t

Miriam’s age: M − t

Erica’s age: E

Leroy’s age: L

Miriam’s age: M
time

s t

Using these expressions for the ages at the various points in time, we can write the information
given in the problem as shown below.

E − t− s = 2
L− t− s = 4(M − t− s)

M − t = 2(E − t)
L− t = 3(M − t)

E = ?
L = 2M

time
s t

Now we have five equations (in the five unknowns E, L, M , s, and t), and each of these variables
has a consistent meaning throughout all five equations. Therefore we have the following system of
equations:

E − t− s = 2,

L− t− s = 4(M − t− s),
M − t = 2(E − t),
L− t = 3(M − t),

L = 2M. (1)
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All that we have to do now is to solve it. (Actually, we don’t have to solve it completely; the question
asks only for the value of E.)

There are several ways to solve this system of equations. One strategy, which I will follow here,
is to systematically substitute or eliminate each variable one at a time until only one is left. (In our
case, we will aim to have E be the last variable left, since that is the one we are trying to solve for.)

Equation (1), the last of the five equations above, gives us an expression for L in terms of the
variable M . So we can substitute 2M for L in the other equations. This reduces the system to one
of four equations in four unknowns.

E − t− s = 2,

2M − t− s = 4(M − t− s),
M − t = 2(E − t),

2M − t = 3(M − t).

Let’s multiply out the right-hand sides of these equations to get rid of the parentheses.

E − t− s = 2,

2M − t− s = 4M − 4t− 4s,

M − t = 2E − 2t,

2M − t = 3M − 3t.

And now let’s move all of the variables to the left-hand sides and combine like terms.

E − t− s = 2,

−2M + 3t + 3s = 0,

−2E + M + t = 0,

−M + 2t = 0. (2)

If we solve equation (2), the last equation above, for the variable M , we get M = 2t. This gives
us another substitution to make, so that we can get rid of another variable. After the substition of 2t
for M in the first three equations, we are left with a system of three equations in three unknowns.

E − t− s = 2,

−2(2t) + 3t + 3s = 0,

−2E + 2t + t = 0.

We can combine like terms to get the following.

E − t− s = 2,

−t + 3s = 0, (3)
−2E + 3t = 0.

Now equation (3), the middle equation above, looks promising. We can solve it for t to get
t = 3s. Substituting this into the other two equations, we get a system of two equations in two
unknowns.

E − 3s− s = 2,

−2E + 3(3s) = 0.

Again we combine like terms.

E − 4s = 2, (4)
−2E + 9s = 0. (5)
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We are down to just two variables, E and s. We would like to eliminate s, because E is
the variable we’re trying to solve for. To accomplish this, we can multiply equation (4) by 9 and
equation (5) by 4, and then add them together:

9E − 36s = 18
−8E + 36s = 0

E = 18.

We got lucky—all we were trying to do was to eliminate s, but it so happened that we also
solved for the value of E in the process. So we see that Erica is 18 years old at the third point in
time, that is, Erica was 18 years old when Leroy was twice as old as Miriam.

Even though we have the answer to the question, let’s go back and solve for the other variables,
just to make sure we didn’t make a mistake in our algebra somewhere. We can retrace our steps in
reverse order, substituting the values of the variables we know. From equation (4), using E = 18, we
have 18− 4s = 2, so 4s = 16, which means s = 4. Using this in equation (3), we have −t + 3(4) = 0,
so t = 12. Now equation (2) becomes −M +2(12) = 0, so M = 24; and so equation (1) is L = 2(24),
so L = 48. This information allows us to fill out the timeline with actual ages and elapsed times:

Erica: 2
Leroy: 32

Miriam: 8

Erica: 6
Leroy: 36

Miriam: 12

Erica: 18
Leroy: 48

Miriam: 24
time4 years 12 years

Everything here matches up with the information given in the original problem, so our solution
checks out.

Problem 4. (Exercise 3.19 from Problem Solving Through Recreational Mathematics.) The silver
currency of the Kingdom of Bonoria consists of glomeks, nindars, and morms. Four glomeks are
equal in value to seven nindars; and one glomek and one nindar together are worth thirty-three
morms.

On my last visit to Bonoria, I entered a bank, handed the teller some glomeks and nindars, and
asked him to change them into morms.

“Do you think that I am a magician?” he replied. (Bonorians are noted for their warped sense
of humor.) “Well, let’s see,” he continued. “If you had twice as many glomeks, I could give you
120 morms; and if you had twice as many nindars I could give you 114 morms.”

How many morms did he give me?

Solution. This problem can be confusing because there are three different units of currency in use.
We should choose one unit of currency and do all of our calculations in terms of that unit. Let’s
choose to do everything in terms of morms.

I found it helpful to first figure out how many morms a glomek is worth, and how many morms
a nindar is worth. Let’s use g to represent the number of morms in one glomek, and n to represent
the number of morms in one nindar. We are told that four glomeks are equal to seven nindars. In
other words, the number of morms in four glomeks (that is, 4g) is equal to the number of morms in
seven nindars (that is, 7n); so

4g = 7n.

If we solve this equation for n, we get
n = 4

7g.

We are also told that one glomek and one nindar together are worth thirty-three morms, so

g + n = 33.
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(We are working in morms; both sides of this equation are numbers that count morms. The 33
on the right-hand side means 33 morms. There is no need to multiply this 33 by a variable m.)
Substituting n = 4

7g, we have
g + 4

7g = 33.

We add like terms on the left-hand side to get

11
7 g = 33.

Now we multiply both sides by 7 to obtain

11g = 231;

so, dividing both sides of this by 11, we see that

g = 21,

and thus
n = 4

7 (21) = 12.

So a glomek is worth 21 morms, and a nindar is worth 12 morms.
Now that we understand the currency system, let’s figure out how much money the narrator of

the story had. We’ll use G and N to represent the number of glomeks and nindars she had. (Note
that these do not mean the same thing that g and n did previously, which is why we’re using capital
letters now.) We will continue to do all our money calculations in terms of morms. The amount of
money the narrator had (in morms) was 21G + 12N , because each glomek is worth 21 morms and
each nindar is worth 12 morms. This is the value we are trying to find.

We are told that if the narrator had had twice as many glomeks, she would have had 120 morms,
so

21(2G) + 12N = 120.

Also, if the narrator had had twice as many nindars, she would have had 114 morms, so

21G + 12(2N) = 114.

So we have a system of two equations in two unknowns:

42G + 12N = 120, (6)
21G + 24N = 114. (7)

We can eliminate G by multiplying equation (7) by −2 and adding it to equation (6):

42G + 12N = 120
−42G− 48N = −228

−36N = −108.

Therefore N = 3. Substituting this value of N into equation (6), we get 42G + 12(3) = 120, so
42G = 84, which means G = 2. Hence the narrator had three nindars and two glomeks. This means
that the number of morms the teller gave the narrator was

21(2) + 12(3) = 42 + 36 = 78.
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Problem 5. (Exercise 3.63 from Problem Solving Through Recreational Mathematics; originally
from the Greek Anthology, compiled about A.D. 500 by Metrodorus.) I am a brazen lion, a fountain;
my spouts are my two eyes, my mouth, and the flat of my right foot. My right eye fills a jar in two
days [1 day = 12 hours], my left eye in three, and my foot in four; my mouth is capable of filling it
in six hours. Tell me how long all four together will take to fill it.

Solution. This problem is similar to Sample Problem 3.5 on page 72 of Problem Solving Through
Recreational Mathematics, the solution of which is presented on pages 81–83.

The idea is to work with the rate of flow of the four spouts (measured in, say, “jars per hour”)
rather than the times required for each of the spouts to fill a jar. The reason this idea works is that
the rates of flow from the four spouts can be added together to give a total rate of flow from the
fountain, whereas it does not make sense to add the four times together (it should take less time for
a jar to be filled by all four spouts together than by one spout alone, not more time).

We must decide on the units to use to measure the flow rates. “Jars per hour” seems to be a
sensible choice, so let’s go with that. (“Jars per day” would also have been reasonable.)

The right eye fills a jar in two days. A day was divided into 12 hours in the ancient world (as is
explained in the problem), so the flow of the right eye is one jar every 24 hours, or 1

24 jar per hour.
The left eye requires three days, or 36 hours, to fill a jar, so its flow rate is 1

36 jar per hour. The
foot can fill a jar in four days, or 48 hours, so its flow rate is 1

48 jar per hour. Finally, the mouth
can fill a jar in just six hours, so it has a flow of 1

6 jar per hour.
The total flow of the fountain, then, is the sum of these four individual flows. To add these

fractions, we need a common denominator; the least common denominator of 24, 36, 48, and 16
is 144, so we have

1
24

+
1
36

+
1
48

+
1
6

=
6

144
+

4
144

+
3

144
+

24
144

=
37
144

.

Therefore, the total flow of the fountain is 37
144 jar per hour.

We have a description of the flow of the fountain in jars per hour, but we would like a description
in hours per jar (because we are interested in knowing how long it will take to fill one jar). Hours per
jar is simply the reciprocal of jars per hour; so an equivalent description of the flow of the fountain
is that it can fill jars at the rate of 144

37 hours per jar. In other words, all four spouts together can
fill one jar in 144

37 = 3 33
37 ≈ 3.89 hours, or about 3 hours 54 minutes (assuming that an hour in the

ancient world was divided into 60 minutes).

Problem 6. There is a unique real number x that can be expressed in the following form:

x = 1 +
1

1 +
1

1 +
1

1 + · · · ,

where the dots “ · · · ” mean “and so on, forever.” What is this number x? (This strange-looking
kind of infinite fraction is called a “continued fraction.”)

Solution. It is difficult to see where to begin in this problem; the algebraic expression appears to
make no sense. For example, if we attempt to evaluate the expression, what operation should we do
first? It seems as though every step of the evaluation has infinitely many steps that must be done
before it.

Let’s take on faith that this expression has a meaning (the first sentence tells us that there is
a real number that can be expressed this way) and attempt to determine what that meaning must
be. Suppose we look at the value of 1 + 1/x:

1 +
1
x

= 1 +
1

1 +
1

1 +
1

1 + · · ·

= x.
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Since the expression for x is infinite, adding one more “layer” like this does not change it! So
we have the equation

1 +
1
x

= x.

Multiplying this equation by x to get rid of the fraction, we have

x + 1 = x2.

We can move everything to the right-hand side to get

0 = x2 − x− 1,

which is a quadratic equation of the form ax2 + bx + c = 0 (with a = 1, b = −1, and c = −1). We
can use the quadratic formula to solve this equation for x:

x =
−b±

√
b2 − 4ac

2a
=
−(−1)±

√
(−1)2 − 4(1)(−1)
2(1)

=
1±
√

5
2

.

This gives us two solutions for x, one positive and one negative (since
√

5 > 1). From the expression
given for x in the original problem, we see that x must be positive, because all of the numbers being
added are positive. So we reject the negative solution and conclude that

x =
1 +
√

5
2

.

[ This number, which is approximately equal to 1.618, is often called the golden ratio because of its
surprising occurrence in many places in nature, the aesthetically pleasing form of rectangles whose
side lengths are in this ratio, and its many beautiful mathematical properties (such as this one). ]

Problem 7. In the figures below, there are n points on the circumference of a circle, and a chord
is drawn between every pair of points. This divides the circle into a number of regions. The points
are chosen in such a way that no three of the chords intersect in a single point, so that the number
of regions is maximized. How many regions would be formed if 20 points were chosen around the
circumference in this way? (Be careful—the “obvious” pattern in the number of regions in the
examples below does not hold in general! You will need to count the number of regions for n = 6,
and probably n = 7, in order to find the general pattern.)

n = 1 n = 2 n = 3 n = 4 n = 5
1 region 2 regions 4 regions 8 regions 16 regions

Solution. Let’s use r(n) to denote the number of regions into which the circle is divided when we
draw lines between n points on the circumference as in this problem. For example, r(4) = 8.

From the first five examples shown above, it appears that the number of regions doubles each
time we add another point, meaning that the sequence of the numbers of regions is the sequence of
powers of 2. This suggests the formula r(n) = 2n−1 [the exponent is n − 1 rather than n because
r(1) should be 1, not 2]. But this is a red herring! This pattern does not continue past n = 5.
(This shows the importance of proving that a conjecture must always be true rather than relying on
evidence gathered from a few examples.)
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If we draw the pictures for n = 6 and n = 7, being careful to arrange the points around the
circumference so that no three chords intersect in a single point, we discover the following.

n = 6 n = 7
31 regions 57 regions

This gives us the following table.

n 1 2 3 4 5 6 7

r(n) 1 2 4 8 16 31 57

Let’s try the technique described in class to guess a polynomial formula for this sequence of
numbers. We will take differences between successive numbers of the sequence, and then differences
between the differences, and so on, until we reach a constant row. We write the successive differences
of one row as a new row below it and make the following table.

n 1 2 3 4 5 6 7

r(n) 1 2 4 8 16 31 57
1 2 4 8 15 26

1 2 4 7 11
1 2 3 4

1 1 1

We seem to have reached a constant row, after taking differences four times. This suggests that
the formula for r(n) is a quartic polynomial, that is, a polynomial of degree 4. The general form of
a quartic polynomial (in the variable n) is

r(n) = an4 + bn3 + cn2 + dn + e, (8)

where a, b, c, d, and e are constants. We can find the values of these constants by plugging into
equation (8) some values of n and r(n) that we know. For example, we know that when n = 1 the
value of r(n) is 1. Using these values in equation (8) gives us

1 = a · 14 + b · 13 + c · 12 + d · 1 + e,

which is to say
a + b + c + d + e = 1.

Since we have five unknowns, we are going to need to get five equations, so we will do this with four
more pairs of values for n and r(n). Using n = 2 and r(n) = 2, we get

2 = a · 24 + b · 23 + c · 22 + d · 2 + e,
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so
16a + 8b + 4c + 2d + e = 2.

Using n = 3 and r(n) = 4, we have

4 = a · 34 + b · 33 + c · 32 + d · 3 + e,

or
81a + 27b + 9c + 3d + e = 4.

Similarly, with n = 4 and r(n) = 8 we obtain

256a + 64b + 16c + 4d + e = 8,

and with n = 5 and r(n) = 16 we find

625a + 125b + 25c + 5d + e = 16.

Together, this gives us a system of five linear equations in five unknowns:

a + b + c + d + e = 1, (9)
16a + 8b + 4c + 2d + e = 2,

81a + 27b + 9c + 3d + e = 4,

256a + 64b + 16c + 4d + e = 8,

625a + 125b + 25c + 5d + e = 16.

We shall solve this system by substitution. (Other methods can be used too.)
We begin by solving equation (9), the first equation above, for the variable e, and we get

e = 1− a− b− c− d. (10)

We substitute this expression for e in each of the other four equations:

16a + 8b + 4c + 2d + (1− a− b− c− d) = 2,

81a + 27b + 9c + 3d + (1− a− b− c− d) = 4,

256a + 64b + 16c + 4d + (1− a− b− c− d) = 8,

625a + 125b + 25c + 5d + (1− a− b− c− d) = 16.

We should now combine like terms on the left-hand sides and move the constants to the right-hand
sides to obtain the following system of four equations in four unknowns.

15a + 7b + 3c + d = 1, (11)
80a + 26b + 8c + 2d = 3,

255a + 63b + 15c + 3d = 7,

624a + 124b + 24c + 4d = 15.

Now we can solve equation (11), the first equation above, for the variable d; we get

d = 1− 15a− 7b− 3c. (12)

Substituting this expression for d in each of the other three equations, we have

80a + 26b + 8c + 2(1− 15a− 7b− 3c) = 3,

255a + 63b + 15c + 3(1− 15a− 7b− 3c) = 7,

624a + 124b + 24c + 4d = 15.
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We multiply out the left-hand sides to remove the parentheses and then combine like terms on the
left-hand sides and move the constants to the right-hand sides. This gives us a system of three
equations in three unknowns.

50a + 12b + 2c = 1, (13)
210a + 42b + 6c = 4,

564a + 96b + 12c = 11.

Next we solve equation (13), the first equation above, for the variable c. We have

2c = 1− 50a− 12b,

which means
c = 1

2 − 25a− 6b. (14)

If we substitute this expression for c in the other two equations, we get

210a + 42b + 6( 1
2 − 25a− 6b) = 4,

564a + 96b + 12( 1
2 − 25a− 6b) = 11.

Again multiplying out the left-hand sides, combining like terms, and moving the constants to the
right-hand sides, we obtain

60a + 6b = 1, (15)
264a + 24b = 5. (16)

Continuing in this pattern, we solve equation (15) for b. We find

6b = 1− 60a,

so
b = 1

6 − 10a. (17)

We substitute this into equation (16) to get

264a + 24( 1
6 − 10a) = 5,

which, after simplification, becomes 24a = 1. Therefore we have a = 1
24 .

Now we can begin the process of back-substituting known values of variables into previous
equations in order to determine the values of the other variables. We begin by substituting a = 1

24
into equation (17), which gives us

b = 1
6 − 10( 1

24 ) = − 1
4 .

We can substitute the known values of a and b into equation (14) to get

c = 1
2 − 25( 1

24 )− 6(− 1
4 ) = 23

24 ,

which we can then use in equation (12) to find

d = 1− 15( 1
24 )− 7(− 1

4 )− 3( 23
24 ) = − 3

4 .

Finally, using the known values of a, b, c, and d in equation (10), we see that

e = 1− 1
24 − (− 1

4 )− 23
24 − (− 3

4 ) = 1.

So we have found the values of the coefficients a, b, c, d, and e. We substitute these values into the
quartic polynomial function (8) to get a guess for a formula for r(n):

r(n) = 1
24n4 − 1

4n3 + 23
24n2 − 3

4n + 1.
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We can check our algebra by plugging in some values for n (say, n = 5) and making sure that
our formula gives us the correct known value of r(n). In class I gave the value r(10) = 256 as a hint;
let’s verify that this is the value predicted by our formula. We have

r(10) = 1
24 (104)− 1

4 (103) + 23
24 (102)− 3

4 (10) + 1 = 256,

so the formula seems to check out.
Thus, based on this formula, we can predict that if 20 points are placed around the circumference

of a circle and chords are drawn as described in the problem, the number of regions produced will
be

r(20) = 1
24 (204)− 1

4 (203) + 23
24 (202)− 3

4 (20) + 1 = 5,036.

[ In the first paragraph of this solution I pointed out the importance of proving mathematical con-
jectures rather than relying on evidence based on a few examples. Strictly speaking, we have not
proved that our formula for r(n) is correct, so we must regard our answer as merely a conjecture,
though it is certainly a well-reasoned, educated guess based on substantial evidence. In fact, this
formula is correct, though the proof of this fact requires some concepts we have not seen yet. A
more interesting way to write the formula for r(n) is

r(n) =
(

n− 1
4

)
+
(

n− 1
3

)
+
(

n− 1
2

)
+
(

n− 1
1

)
+
(

n− 1
0

)
.

These symbols are binomial coefficients, which we will discuss at some point in this course. ]

Problem 8. (From Challenging Problems in Algebra by Alfred S. Posamentier and Charles T.
Salkind.) A shopkeeper orders 19 large and 3 small packets of marbles, all alike. When they arrive
at the shop, he finds the packets broken open with all the marbles loose in the container. Can
you help the shopkeeper make new packets with the proper number of marbles in each, if the total
number of marbles is 224?

Solution. Let’s introduce the variables L and S to represent the number of marbles in one large
packet and one small packet, respectively. Since there are 19 large and 3 small packets of marbles,
the total number of marbles is 19L + 3S. We are told that this number is 224, so we have the
equation

19L + 3S = 224.

Since the number of marbles in a packet should be a whole number, and hence the values of L
and S must be integers, we see that this is a (linear) Diophantine equation. Furthermore, the values
of L and S should be positive integers.

The most straightforward method of solving this problem, without the use of special techniques
for solving linear Diophantine equations, is probably simply to guess. In order to put some bounds
on the values we should guess, let’s consider how many marbles might be in a large packet. Certainly
there should be at least one, so L ≥ 1. On the other hand, 224 ÷ 19 ≈ 11.789, so there cannot be
more than 11 marbles in a large packet (if there were 12, then the total number of marbles in the
large packets alone would be 19× 12 = 228). Therefore we can restrict our search to values of L in
the range 1 ≤ L ≤ 11.

In addition, since the number of marbles in a large packet should be more than the number of
marbles in a small packet, we should have L > S. Since L ≤ 11, we must have S ≤ 10. So the total
number of marbles in the 3 small packets can be no more than 30.

If there are L marbles in one large packet, then the total number of marbles in the large packets
is 19L, so the small packets must contain a total of 224 − 19L marbles. Since there are 3 small
packets, the value 224 − 19L should be divisible by 3 (and it should be no more than 30, as noted
above). Let’s make a table of the possible values of L and the corresponding values of 224− 19L.

L 1 2 3 4 5 6 7 8 9 10 11

224− 19L 205 186 167 148 129 110 91 72 53 34 15
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Out of the values in the bottom row, the only ones which are divisible by 3 are 186, 129, 72,
and 15, corresponding to L = 2, L = 5, L = 8, and L = 11, respectively. But three of these values
are greater than 30, so the only possibility is L = 11, which means that S = (224− 19× 11)/3 = 5.
So a large packet contains 11 marbles and a small packet contains 5 marbles.

[ The solution given by Posamentier and Salkind is somewhat more clever than this, although it uses
essentially the same ideas. I have quoted it below. ]

Represent the number of marbles in a large packet by L and the number in a small packet
by S. Then 19L + 3S = 224, S = 74 − 6L + 2−L

3 . Since S and L are positive integers,
2−L

3 must be an integer. If L = 2, not a likely value, 2−L
3 = 0; otherwise 2−L

3 is negative.
Let us put 2−L

3 = −k so that L = 2 + 3k. Since 74− 6L + 2−L
3 > 0, 74 > 6(2 + 3k) + k so

that k ≤ 3. Also, S = 74 − 6(2 + 3k) − k = 62 − 19k. Since L > S, 2 + 3k > 62 − 19k so
that k > 2. Since 2 < k ≤ 3, k = 3. Therefore, L = 2 + 3k = 11 and S = 62− 19k = 5.

The values L = 11, S = 5 satisfy the conditions of the problem uniquely.

Problem 9. (From a short story, “Coconuts,” by Ben Ames Williams.) . . . So at last Wadlin told
him. “Well,” he explained, “according to the way the thing was given to me, five men and a monkey
were shipwrecked on a desert island, and they spent the first day gathering coconuts for food. Piled
them all up together and then went to sleep for the night.

“But when they were all asleep one man woke up, and he thought there might be a row about
dividing the coconuts in the morning, so he decided to take his share. So he divided the coconuts
into five piles. He had one coconut left over, and he gave that to the monkey, and he hid his pile
and put the rest all back together.”

He looked at Marr; the man was listening attentively.
“So by and by the next man woke up and did the same thing,” Wadlin continued. “And he had

one left over, and he gave it to the monkey. And all five of the men did the same thing, one after
the other, each one taking a fifth of the coconuts in the pile when he woke up, and each one having
one left over for the monkey. And in the morning they divided what coconuts were left, and they
came out in five equal shares.”

He added morosely, “Of course each one must have known there were coconuts missing; but
each one was guilty as the others, so they didn’t say anything.”

Marr asked sharply, “But what’s the question?”
“How many coconuts were there in the beginning?” Wadlin meekly explained.

Solution. This is a hard puzzle. In Mr. Williams’ tale, Wadlin is an accountant who works for a
building contractor named Dean Story, whose competitor is Marr. Both Story and Marr intend to
place bids on a building contract. The night before the bids are due, Wadlin, knowing Marr’s love
of puzzles, gives this problem to him. Marr stays up till dawn trying to solve it and thus misses the
deadline, allowing Story to win the bid at a comfortable profit.

Williams’ story was first published in The Saturday Evening Post in 1926. The answer to the
puzzle was not given in the story. In the first week after it was published the Post received over
2,000 letters from readers asking for the answer or offering solutions. The editor-in-chief, George
Horace Lorimer, sent a desperate telegram to Williams that read, “FOR THE LOVE OF MIKE, HOW

MANY COCONUTS? HELL POPPING AROUND HERE.”
It is tempting to begin to write equations, so let’s do that. Suppose we let n represent the

number of coconuts in the beginning, a through e represent the numbers of coconuts that the first
man through the fifth man hid in the middle of the night, and f represent the number of coconuts
taken by each man in the morning. Note that these variables all represent positive integers, so the
equations that we write will be Diophantine equations.

We are told that the first man divided the n coconuts into five piles (each of size a) and found
there was one left over. So n is one more than a multiple of 5; in particular, n = 5a + 1. The first
man gave one coconut to the monkey, hid one of the five piles, and put the other four piles back
together. So when the second man woke up there were 4a coconuts left.
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Now the second man did the same thing, so 4a = 5b + 1. Similarly, we have 4b = 5c + 1,
4c = 5d + 1, and 4d = 5e + 1. The fifth man put the remaining 4e coconuts back together in a pile,
and these were split evenly among the five men in the morning, so 4e = 5f . So we have the following
system of six linear Diophantine equations in seven unknowns:

n = 5a + 1, (18)
4a = 5b + 1, (19)
4b = 5c + 1, (20)
4c = 5d + 1, (21)
4d = 5e + 1, (22)
4e = 5f. (23)

One reason this is a challenging puzzle is that there are more unknowns than there are equations,
so standard algebraic techniques cannot be used to solve it. Let’s attempt to reduce the number of
variables by substitution. We can solve equations (19) through (23) for the variables a through e by
dividing by 4, giving us

a = 5
4b + 1

4 ,

b = 5
4c + 1

4 ,

c = 5
4d + 1

4 ,

d = 5
4e + 1

4 ,

e = 5
4f.

Repeatedly substituting variables into equation (18), and then simplifying, we get

n = 5a + 1
= 5( 5

4b + 1
4 ) + 1

= 5[ 54 ( 5
4c + 1

4 ) + 1
4 ] + 1

= 5
(

5
4 [ 54 ( 5

4d + 1
4 ) + 1

4 ] + 1
4

)
+ 1

= 5
[
5
4

(
5
4 [ 54 ( 5

4e + 1
4 ) + 1

4 ] + 1
4

)
+ 1

4

]
+ 1

= 5
(

5
4

[
5
4

(
5
4 [ 54 ( 5

4f) + 1
4 ] + 1

4

)
+ 1

4

]
+ 1

4

)
+ 1

= 15,625
1,024 f + 2,101

256 .

We multiply both sides of this equation by 1,024 to clear the fractions and get the linear Diophantine
equation

1,024n = 15,625f + 8,404. (24)

This equation tells us a few things. Observe that if n increases by 1 the left-hand side will
increase by 1,024, and in general two possible values of the left-hand side (corresponding to two
possible values of n) must differ by a multiple of 1,024. Likewise, if f increases by 1 the right-hand
side will increase by 15,625, and in general two possible values of the right-hand side must differ by
a multiple of 15,625. Since 1,024 = 210 and 15,625 = 56, these two numbers are relatively prime, so
lcm(1,024, 15,625) = 1,024×15,625; this is the smallest amount by which both sides of the equation
can increase while remaining in balance.

Hence, if we have some numbers n and f that are a solution to equation (24), we can add
15,625 to n (and 1,024 to f) to obtain another solution. Of course, this means that we could add
any multiple of 15,625 to n to get another solution. We could also subtract any multiple of 15,625
from n for the same reason. So, if there are any solutions at all to the Diophantine equation (24),
there are infinitely many of them, and we can go from one of them to any other by increasing or
decreasing n by a multiple of 15,625.

Page 14



This equation can be solved by standard methods for solving linear Diophantine equations,
but this is rather tedious. There is an extraordinarily brilliant and creative solution that uses blue
coconuts, which was first given by Norman Anning in 1912 (though the problem he considered used
apples instead of coconuts). The key insight that led to this solution is that the monkey is the
complicating element in the puzzle—if the division into five parts came out even every time, the
puzzle would be much simpler.

Let’s imagine that, in addition to the pile of coconuts, there are four imaginary blue coconuts.
Since the original pile of coconuts gave a remainder of 1 when it was divided into five parts, these
four blue coconuts will allow the pile to be divided into five parts evenly. When the first man wakes
up and divides the pile, four of the smaller piles will have a blue coconut on top, while the fifth
pile will contain only regular coconuts (and so it has one more regular coconut than the other piles
do—this is the coconut that was originally given to the monkey). Let’s say the man hides this fifth
pile, and puts all the rest of the coconuts, including the four blue coconuts, back together. Then
the first man takes away the same number of coconuts as he did in the original puzzle; the “extra”
coconut is in his own hoard this time, instead of having been given to the monkey. So, when the
first man goes to sleep, the pile of coconuts looks just as it did at this point in the original puzzle,
except that it also contains the four imaginary blue coconuts.

In turn, the other men each wake up and do the same thing. The big pile of coconuts is always
divided into five parts with no remainder, because of the four blue coconuts. Each man removes
from the pile the same number of coconuts as he did in the original puzzle, but instead of giving the
“extra” coconut to the monkey he keeps it for himself. The four blue coconuts remain in the big
pile.

Every time one of the men wakes up and takes his share, the number of coconuts in the big
pile is reduced by one-fifth, that is, the number of coconuts is multiplied by 4

5 . So, after all five
men have taken their shares, the number of coconuts in the big pile is ( 4

5 )5, or 45

55 , of the original
number. This must be an integer, so the original number of coconuts (including the blue ones) must
be divisible by 55, which is 3,125.

This means that the smallest possible number of regular coconuts in the original pile is 3,121
(after taking out the four blue coconuts). So far we haven’t verified that this number will work,
because we haven’t checked to see whether the pile of coconuts that remains in the morning can be
divided evenly into five piles, but we can check that now:

There are 3,121 coconuts in the original pile. The first man wakes up, divides the pile into
five equal parts having 624 coconuts in each, and throws one coconut to the monkey. He hides
one pile and puts the other four back together, so there are now 624 × 4 = 2,496 coconuts in the
pile. The second man divides the pile into five equal parts having 499 coconuts in each, throws
one coconut to the monkey, hides one pile, and puts the remaining 499 × 4 = 1,996 coconuts
back together. The third man divides these into five parts of 399 coconuts each, throws a coconut
away, hides a pile, and puts the remaining 399 × 4 = 1,596 coconuts back together. The fourth
man makes five piles of 319 coconuts, throws a coconut to the monkey, hides a pile, and puts the
other 319 × 4 = 1,276 coconuts back together. Finally, the fifth man divides the pile into five
parts of 255 coconuts each, throws one last coconut to the monkey, hides his pile, and puts back
255× 4 = 1,020 coconuts. This is the number of coconuts that are divided in the morning, and it is
divisible by 5, so this solution works.

Thus there were 3,121 coconuts in the original pile. As previously noted, we can add or subtract
any multiple of 15,625 to this number to get another solution. (Some of these solutions will have
“negative coconuts” in the original pile, which is meaningless in a physical sense; but thinking about
solutions using negative coconuts and then adjusting the answer at the end by adding 15,625 is
another creative approach to solving this puzzle. In fact, the blue coconuts used in the solution
presented here can be thought of as manifestations of negative coconuts.)

[ For more about this problem, including an explanation of the solution using negative coconuts, see
the chapter called “The Monkey and the Coconuts” in The Colossal Book of Mathematics by Martin
Gardner. ]
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