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Microtus Ochrogaster
————————————————————————

Prairie Vole

Order Rodentia (Nager): Family Muridae (echte Mäuse) : Microtus

Ochrogaster

Figure 1: Microtus Ochrogaster
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Description & habits:

• dark brownish or blackish mouse; total length 146 mm, tail 34 mm

on average

• inhabits Hardin County in southeastern Texas, and in the extreme

northern Panhandle.

• lives in tall-grass prairies in colonies, utilizing underground burrows

and surface runways under lodged vegetation for concealment

• food almost entirely vegetable including green parts of plants, seeds,

bulbs, and bark, much of which they store for winter use
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Microtus Californicus
————————————————————————

California Vole

Order Rodentia (Nager): Family Muridae (echte Mäuse): Microtus

Californicus

Figure 2: Microtus Californicus

Voles, volas, values

 

0.9 1.0 1.1

0.2

0.5

0.7

0.3

0.4

0.4

(0.8,0.0,0.3)
(1.2,0.0,0.3)

(0.8,1.0,0.3)
 

(0.8,0.0,0.4)
 

 
 

Moneyness

Maturity

Vola

http://www.enature.com/fieldguide/showSpeciesSH.asp?curGroupID=5&shapeID=1037&curPageNum=12&recnum=MA0076


5

Description & habits:

• grizzled brownish mouse, gray below; total length, 157-214 mm; tail,

39-68 mm

• known in Southwestern Oregon through much of California

• inhabits grassy meadows from sea level to mountains

• is a burrower, but it also forms surface runways

• food is almost entirely vegetable including green parts of plants,

seeds, bulbs, and bark
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Figure 3: Diagram of cranial measurements; L2 condylo-incisive length, B3: zygo-

matic width, H1: skull height. Taken from Airoldi and Flury (1988).
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Common Principle Components

Common principle components has been used for morphometric purposes

to estimate a joint eigenstructure for the cranial measurements of voles,

Airoldi and Flury (1988).

This data contains cranial measurements for four natural groups of the

animals: two sexes in two species. The measurements include the

condylo-incisive length (L2),the zygomatic width (B3) and the skull

height (H1) (Figure 3).
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Key Hypothesis of CPC

Impose

• a joint eigenstructure Γ on population covariance matrices Si,

• while in-group variances (= eigenvalues λi) are not restricted.

Voles, volas, values

 

0.9 1.0 1.1

0.2

0.5

0.7

0.3

0.4

0.4

(0.8,0.0,0.3)
(1.2,0.0,0.3)

(0.8,1.0,0.3)
 

(0.8,0.0,0.4)
 

 
 

Moneyness

Maturity

Vola



9

Simulated CPC Model
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Figure 4: Simulated CPC model as observable in vole data; compare Airoldi and Flury

(1988)
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Voles: What did we learn?

CPC

• allows for estimating a common eigenstructure in the presence of

different group variances.

• helps identify morphometric structures across different species and

sexes.

Using a simple PCA instead in grouped data may lead to biased

estimates.
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Overview

1. Voles: Zoological Motivation X

2. Volas: Implied Volatility Surface Dynamics

3. Principal Components Analysis

4. Common Principal Components Analysis

5. Estimation, Selection, Prediction

6. Values: Trading Strategies, Risk Management
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Implied Volatility Surface Dynamics

The Black-Scholes Model, Implied Volatilities
and the Smile

Based on the assumption that asset prices follow a geometric Brownian

motion, the Black and Scholes (BS) formula values European options:

CBSt = StΦ(d1)−Ke−rτΦ(d2)
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BS Formula

CBSt = StΦ(d1)−Ke−rτΦ(d2)

d1 = ln(St/K)+(r+ 1
2σ

2)τ

σ
√
τ

d2 = d1 − σ
√
τ

Φ CDF of the standard

normal distribution

r Interest rate

St Asset price τ = T − t Time to maturity

K Strike price σ Constant volatility

parameter
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BS Formula

Suppose St = 230, K = 210, r = 5%, τ = 0.5, and σ = 25%.

Then the call price is given by CBSt = 30.98 and the put price

PBSt = 5.92.

You can derive the PBSt also by the put-call-parity:

Ct − Pt = St −Ke−rτ

30.98− 5.92 = 230− 210e(−0.05·0.5)
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Implied Volatilities

However, σ is unknown! Hence define the volatility σ̂ implied by

observed market prices C̃t as

σ̂ : C̃t − CBSt (St,K, τ, r, σ̂) = 0

This solution may be found by using a Newton-Raphson or a bisection

algorithm. It is unique as the BS formula is globally concave in σ.
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Implied Volatilities

Empirical Findings

• Implied volatility is not constant across time t.

• Implied volatility is not flat across strikes.

• Implied volatility is not flat across time to maturity.

• Implied volatility became asymmetric since the 1987 stock market
crash.
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Volatility Smile
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Figure 5: Vola smile/smirk: 3 months to expiry, t = 990104, ODAX
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Volatility Surface
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Figure 6: Implied Volatility Surfaces: t1 = 990104 and t2 = 990201, ODAX

CPCdoubleSurf.xpl

Voles, volas, values

 

0.9 1.0 1.1

0.2

0.5

0.7

0.3

0.4

0.4

(0.8,0.0,0.3)
(1.2,0.0,0.3)

(0.8,1.0,0.3)
 

(0.8,0.0,0.4)
 

 
 

Moneyness

Maturity

Vola

http://apus.wiwi.hu-berlin.de/~fengler/codes/CPCVortrag/CPCdoubleSurf.html


19

Time Series
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Figure 7: Time series 1999 of implied volatilities across the smile: 3 months maturity

– κ = 1.10 up to κ = 0.85, ODAX
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Time Series

0 50 100 150 200 250

Time

Figure 8: Time series 1999 of log-returns of implied volatilities across the smile: 3

months maturity – κ = 1.10 up to κ = 0.85, ODAX
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Importance of Implied Volatilities

Practitioners’ point of view

• BS-formula serves as a convenient mapping from the spaces of
prices, maturities, interest rate, strikes to the real line

• Trading rules can be based on implied volatilities

• Volatility contracts (e.g. VDAX) are based on implied volatilities

Theoretical point of view

• Pricing of illiquid or exotic options by directly modeling implied
volatilies: Market Models of Volatility (Dupire, 1994, Derman and
Kani, 1989, Schönbucher, 1999)
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Purpose of the study

Understand the dynamics of implied volatilities:

• identify the number and shape of shocks driving the surface

• reduce the dimension of the surface vector time series

Plan

• Estimate nonparametrically the implied volatility surface
σ̂t(κ, τ) on a fixed grid of moneyness κi = K

Fτt
and

maturity τj (Fτt = Ste
rτ is the implied future price).

• Apply (Common) Principle Components Analysis to ∆ ln σ̂t

• Study common factors and their dynamics
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Nonparametric Smoothing

For a partition of explanatory variables (x1, x2)> = (κ, τ)>, i.e. of

moneyness and maturities, the two-dimensional Nadaraya-Watson kernel

estimator is given by

σ̂t(x1, x2) =

∑n
i=1K1(x1−x1i

h1
)K2(x2−x2i

h2
)σ̂ti∑n

i=1K1(x1−x1i
h1

)K2(x2−x2i
h2

)
,

where σ̂ti is the volatility implied by the observed option prices C̃ti(κ, τ)
or P̃ti(κ, τ) respectively, K1 and K2 are univariate kernel functions, and

h1 and h2 are bandwidths.
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Nonparametric Smoothing

Kernel choice

An order 2 quartic kernel:

K(u) =
15
16
(
1− u2

)2
I(|u| ≤ 1).

Bandwidth choice

A penalizing function technique yields asymptotically optimal

bandwidths h1 and h2 as a starting point.
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Principal Components Analysis

For illustration we pick two time series of implied volatility returns from

different parts of the smile (κ = 0.90 and κ = 1.10) at a fixed

one-month maturity:

Time Series

0 50 100 150 200 250
Time

Figure 9: 1 months maturity - moneyness is κ = 0.90 against κ = 1.10, ODAX
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Scatterplot: 1 month maturity
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Figure 10: 1 months maturity - moneyness is κ = 0.90 against κ = 1.10, ODAX
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Scatterplot: 1 month maturity
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Figure 11: 1 months maturity - moneyness is κ = 0.90 against κ = 1.10, ODAX
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Scatterplot: 1 month maturity
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Figure 12: 1 months maturity - moneyness is κ = 0.90 against κ = 1.10, ODAX
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Solution of this dimension reduction problem:

The spectral decomposition of the covariance matrix Ψ, i.e.

Ψ = ΓΛΓ>

• Γ = (γ1

...γ2

... · · ·
...γp) the matrix of eigenvectors. Eigenvectors are

principle axes of the hyper-ellipsoid.

• Λ = diag(λ1, λ2, ..., λp) are the eigenvalues. Eigenvalues are the

variances of principal components.

• Y = Γ>X are the principal components.
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Scatterplot: 1 month maturity
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Scatterplot: 3 months maturity.
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Figure 13: 1 and 3 months maturity - moneyness is κ = 0.90 against κ = 1.10,

separate PCA; ODAX

CPCpca.xpl
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Scatterplot under CPC: 1 month maturity
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Scatterplot under CPC: 3 months maturity.
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Figure 14: 1 and 3 months maturity - moneyness is κ = 0.90 against κ = 1.10,

common PCA, ODAX

CPCcpc.xpl
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Parallel Coordinate Plot: 1. Eigenvector

1 2 3 4 5 6

Index of moneyness

-0
.2

0
0.

2
0.

4
0.

6

Fa
ct

or
 lo

ad
in

g

Figure 15: 1st eigenvectors (sep. PCA) for 1, 2 and 3 months maturity – index 1 to

6 is κ ∈ {0.85, 0.90, 0.95, 1.00, 1.05, 1.10}
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Parallel Coordinate Plot: 2. Eigenvector
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Figure 16: 2nd eigenvectors (sep. PCA) for 1, 2 and 3 months maturity – index 1

to 6 is κ ∈ {0.85, 0.90, 0.95, 1.00, 1.05, 1.10}
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Parallel Coordinate Plot: 3. Eigenvector
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Figure 17: 3rd eigenvectors (sep. PCA) for 1, 2 and 3 months maturity – index 1 to

6 is κ ∈ {0.85, 0.90, 0.95, 1.00, 1.05, 1.10}
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Common Principle Components

Essential Idea

• As eigenvectors are quite similar across maturity groups, restrict

them to be equal.

• As eigenvalues differ between groups, allow them to vary.

• Therefore, estimate principal axes common to all maturity groups,

but allow for different variability of principal components.
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The CPC-Hypothesis

HCPC : Ψi = ΓΛiΓ>, i = 1, ..., k. (1)

Ψi are positive definite p× p population covariance matrices, Γ is an

orthogonal p× p matrix and Λi = diag(λi1, ..., λip).

Let Si be the (unbiased) sample covariance matrix of implied volatility

returns, which are assumed to stem from an underlying p-variate normal

distribution Np(µ,Ψi). Sample size is ni(> p). Then the distribution of

Si is a generalization of the chi-squared variate, the Wishart distribution

(Muirhead, 1982, p.86) with ni − 1 degrees of freedom, denoted by

niSi ∼ Wp(Ψi, ni − 1).
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For the k Wishart matrices Si the likelihood function is

L (Ψ1, ...,Ψk) = C

k∏
i=1

exp

{
tr

(
−1

2
(ni − 1)Ψ−1

i Si

)}
|Ψi|−

1
2 (ni−1) (2)

where C is a constant not depending on the parameters. The likelihood

function has to be maximized under the orthogonality conditions

γ>mγj =

0 m 6= j

1 m = j
.
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Maximizing the likelihood is equivalent to minimizing the function

g(Ψ1, ...,Ψk) = −2 logL+ 2 logC

=
k∑
i=1

(ni − 1)
{

ln |Ψi|+ tr(Ψ−1
i Si)

}
. (3)

Assuming that HCPC in equation (1) holds, yields

g(Γ,Λ1, ...,Λk) =
k∑
i=1

(ni − 1)
p∑
j=1

(
lnλij +

γ>j Siγj

λij

)
. (4)
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We impose the orthogonality constraints by the Lagrange method, where

µj denotes the Lagrange multiplyer of the p constraints γ>j γj = 1, and

µhj the Lagrange multiplyer for the p(p− 1)/2 constraints

γ>h γj = 0 (h 6= j). It follows that the function to be minimized is

given by

g∗(Γ,Λ1, ...,Λk) = g(·)−
p∑
j=1

µj(γ>j γj − 1)− 2
p∑
h<j

µhjγ
>
h γj . (5)

W. Härdle, L. Simar(2003): Applied Multivariate Statistical

Analysis
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Solution

By taking partial derivatives w.r.t. all λim and γm and some

manipulations, the solution of the CPC model can be written as the

generalized system of characteristic equations

γ>m

(
k∑
i=1

(ni − 1)
λim − λij
λimλij

Si

)
γj = 0, m, j = 1, ..., p, m 6= j,

(6)

which needs to be solved using

λim = γ>mSiγm, i = 1, ..., k, m = 1, ..., p
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and the constraints

γ>mγj =

0 m 6= j

1 m = j
.

Flury (1988) proves existence and uniqueness of the maximum of the

likelihood function, and Flury and Gautschi (1986) provide a numerical

algorithm, which has been implemented in XploRe,

http://www.i-xplore.de/.
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Partial Common Principle Components

The partial CPC-Hypothesis

For a partial CPC (pCPC) model of order q, the hypothesis is given by

HpCPC(q) : Ψi = Γ(i)ΛiΓ(i)>, i = 1, ..., k ,

where the Ψi are positive definite population covariance matrices, and

Λi = diag(λi1, ..., λip). Γ(i) = (Γc,Γ
(i)
s ) are orthogonal p× p matrices,

where Γc is p× q, q ≤ p− 2 and denotes the matrix of eigenvectors

common to all groups, and Γ(i)
s the p× (p− q) matrix of eigenvectors

that are specific.

Voles, volas, values

 

0.9 1.0 1.1

0.2

0.5

0.7

0.3

0.4

0.4

(0.8,0.0,0.3)
(1.2,0.0,0.3)

(0.8,1.0,0.3)
 

(0.8,0.0,0.4)
 

 
 

Moneyness

Maturity

Vola



43

A Hierarchy of Covariance Matrix Structures

Level 1: Equality Ψi = Ψ

Level 2: Proportionality Ψi = ρiΨ1

Level 3: CPC Ψi = ΓΛiΓ>

Level 4: partial CPC(q) Ψi = Γ(i)ΛiΓ(i)>

Level 5: Unrelatedness

Table 1: Possible hypotheses for all i = 1, ..., k groups
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Estimation, Selection, Prediction

Our Database
• German DAX Options 1999, daily settlement prices, European style

• Calculate implied volatilities by solving the Black Scholes formula for
σ̂ with observed market prices

• Replace all in-the-money call (put) options by their implicit
out-of-the-money put (call)

• Omit prices less than 1/10 Euro, and maturities less then 10 days

• Smooth the implied volatility surface 1999 nonparametrically (stored
in MD*base database containing the volatility surface from
1995-2001, http://www.mdtech.de )
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Akaike and Schwarz
Information Criteria (AIC, SIC)

The AIC is defined by

AIC = −2 (maximum of log-likelihood)

+ 2 (number of parameters estimated) .

Assume there are I hierarchically ordered models, with

r1 < ri < ... < rI (i = 1, ..., I) parameters in model i.

Define a modified AIC (Flury, 1988) as

AIC (i) = −2 (Li − LI) + 2 (ri − r1)

where Li is the maximum of the log-likelihood function of model i.
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We have

AIC (I) = 2 (rI − r1) and AIC (1) = −2 (L1 − LI)

such that

• AIC (I) is twice the difference of the number of parameters of the

two extreme models

• AIC (1) is equal to the chi-square test statistic for comparing these

two models.

Define a modified SIC as

SIC(i) = −2 (Li − LI) + 2 (ri − r1) ln(N),

where N =
∑k
i=1 ni (sum of all observations across k groups).
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Results: 1, 2, and 3 months maturity

Model

higher lower χ2 df p -val AIC SIC

Equality Proport. 237.0 2 0.00 352.0 352.0

Proport CPC 82.7 10 0.00 118.0 127.7

CPC pCPC(4) 7.1 2 0.03 55.7 111.3*

pCPC(4) pCPC(3) 0.2 4 1.00* 52.6* 117.4

pCPC(3) pCPC(2) 8.1 6 0.23 60.4 143.8

pCPC(2) pCPC(1) 4.5 8 0.81 64.4 175.2

pCPC(1) Unrelated 11.9 10 0.29 75.9 223.4

Unrelated 84.0 278.5

CPCFluryShort.xpl
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 CPC Coordinate Plot: First three Eigenvectors
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Figure 18: First three eigenvectors under CPC for 1, 2 and 3 months maturity –

index 1 to 6 is κ ∈ {0.85, 0.90, 0.95, 1.00, 1.05, 1.10}

CPCpcpCPC.xpl
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Interpretation of Factor Loadings

• Factor loadings of the first eigenvector have the same sign across

moneyness and have almost similar size for each moneyness.

⇒ Linear combination of volatility returns have almost equal weights

across moneyness. Hence, the biggest source of shocks are up and

down shocks of volatility returns

(Shift-Interpretation).
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Volatility Surface: 1st Factor Shock

Figure 19: Simulated Shift Shock: black original, blue after shift shock
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Interpretation of Factor Loadings

• Factor loadings of the second eigenvector have the opposite sign

across moneyness, while the weight of ATM options is near to zero.

⇒ Volatility returns enter linear combinations with opposite weights at

each end of the smile. Therefore, the second biggest source of

shocks affects the slope of volatility returns

((Z-)Slope-Interpretation).
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Volatility Surface: 2nd Factor Shock

Figure 20: Simulated Slope Shock: black original, green after slope shock
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Interpretation of Factor Loadings

• Factor loadings of the third eigenvector have the same sign at both

ends of the smile and an opposite sign for ATM options.

⇒ Volatility returns enter linear combinations with almost the same

weights at each end of the smile, and a large opposite one for ATM

options. Hence, the third biggest source of shocks affects the

curvature of volatility returns

(Twist-Interpretation).
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Volatility Surface: 3rd Factor Shock

Figure 21: Simulated Twist Shock: black original, red after twist shock
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Eigenvalues
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Figure 22: Eigenvalues and the variance explained as obtained in the CPC model, 1,

2 and 3 months maturity

CPCpcpCPC.xpl
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Results: 6, 9, 12 months maturity

Model

higher lower χ2 df p -val AIC SIC

Equality Proport. 250.8 2 0.00 486.0 486.0

Proport CPC 81.0 10 0.00 239.0 248.5

CPC pCPC(4) 5.3 2 0.07 178.0 233.8

pCPC(4) pCPC(3) 4.0 4 0.40 177.0 241.8

pCPC(3) pCPC(2) 109.5 6 0.00 182.0 264.3

pCPC(2) pCPC(1) 19.2 8 0.01 89.4 194.6*

pCPC(1) Unrelated 16.2 10 0.09 83.6* 228.4

Unrelated 84.0 278.5
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Interpretation of Factor Loadings

• Eigenvectors exhibit similar patterns as seen for short maturities,

hence interpretation stays the same. Only shift factor is common

across groups, while factor loadings for the other shocks may differ.

• Between the same principle components of different groups a scaling

property is visible.

• The expiry behavior is mostly captured by the third component:

observe the regular spikes in the black line of Figure 58.
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Time Series of PCs: 1 month

0 50 100 150 200 250

Time

Figure 23: 1st, 2nd and 3rd principal component of the 1 months maturity
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General Statistics of PCs (3 months)

Component Variance Standard Skewness Kurtosis Correlation

explained deviation with underlying

1 0.88 0.078 0.34 4.12 -0.48

2 0.06 0.020 0.30 6.54 0.08

3 0.03 0.015 0.22 7.30 -0.03

Table 2: Descriptive statistics of principal components (daily); ODAX.
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Summary: General Statistics of PCs

• skewness is close to zero for the three PCs

• evidence for excess kurtosis especially in the second and third PC

• evidence for ‘leverage effect’: correlation with the returns of

underlying is around -0.5 for the first component. When there is a

negative shock in the market value of the firm, (implied) volatility

rises, since the shock results into an increase of the debt-equity ratio

• negligible correlation with underlying in the second the third

component
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ACF 1. PC
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Figure 24: Autocorrelation function of the 1. PC.
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PACF 1. PC
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Figure 25: Partial autocorrelation function of the 1. PC.
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ACF 2. PC
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Figure 26: Autocorrelation function of the 2. PC.
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PACF 2. PC
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Figure 27: Partial autocorrelation function of the 2. PC.
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ACF 3. PC
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Figure 28: Autocorrelation function of the 3. PC.
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PACF 3. PC
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Figure 29: Partial autocorrelation function of the 3. PC.
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From the autocorrelation and partial autocorrelation function we propose

MA(q)-GARCH(r, s) models:

q = 0 r = 1, 2 s = 1, 2 for y1t (1. PC), and

q = 1 r = 1, 2 s = 1, 2 for y2t (2. PC) and y3t (3. PC)

yit = c+ a1zt + εit + b1εi,t−1, (7)

εit ∼ N (0, σ2
it),

σ2
it = ω +

k∑
j=1

αjσi,t−j +
s∑
j=1

βjε
2
i,t−j + γz2

t , (8)

where zt denotes log returns in the DAX index.
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We conduct AIC-SIC searches over a large variety of models:

• For y1t both AIC and SIC suggest an GARCH(1,2) specification.

• For y2t and y3t, a MA(1)-GARCH(1,1) is preferred.
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cond. mean Factor

y1t y2t y3t

c 0.001 1.9E−4 -3.8E−05

(0.407) (1.170) (-0.592)

a1 -2.920 0.086 0.005

(-24.46) (4.860) (0.457)

b1 -0.733 -0.733

(-35.50) (-35.50)

Table 3: Mean equation: estimation results of GARCH models for the

three principal components, t-statistics in parenthesis.
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cond. var. Factor

y1t y2t y3t

ω 1.4E−4 6.7E−5 1.7E−05

(3.945) (7.515) (8.687)

α1 0.803 0.425 0.686

(32.09) (6.774) (24.41)

β1 0.246 0.200 0.147

(7.112) (6.840) (8.027)

β2 -0.130

(-4.110)

γ 1.480

(4.991)

R̄2 0.23 0.22 0.33

Table 4: Variance equation: estimation results of GARCH models for the

three principal components, t-statistics in parenthesis.
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Summary: Model estimates of 1. PC

• mean equation: index returns have a highly significant impact on

1. PC

• sign of a1 in line with the ‘leverage effect’ hypothesis

• variance equation: β2 < 0 may be interpreted as an ‘over-reaction

correction’ in terms of variance: High two-period lagged returns

have a dampening impact on variance

• volatility increases also when volatility in the underlying is high

(γ > 0)

• adjusted R̄2 around 23% – however: this is due to index returns:

leaving zt out of the mean equations reduces R̄2 to around 0.2%,

only
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Summary: Model estimates of 2. and 3. PC

• mean equations of y2t and y3t: MA(1) components are negative and

significant

• index returns are only significant for y2t and positively influence the

slope structure in the surface.

• positive shocks in the underlying reduce implied volatility levels,

while at the same time the slope of the surface is intensified

Voles, volas, values

 

0.9 1.0 1.1

0.2

0.5

0.7

0.3

0.4

0.4

(0.8,0.0,0.3)
(1.2,0.0,0.3)

(0.8,1.0,0.3)
 

(0.8,0.0,0.4)
 

 
 

Moneyness

Maturity

Vola



73

Checking for model robustness

Model robustness is essential for trading strategies or risk computations.

Two directions of robustness analysis:

1. Choice of data: Settlement prices may be artificially quoted by the

exchange. Do we only recover the model of the EUREX?

2. Choice of time period: Is CPC a particular feature of the year 1999?

Perform a CPC analysis for data from 1995 to May 2001 separately in

each year, using tick data (= contract data) of puts, calls, and futures

observed on the EUREX.

Voles, volas, values

 

0.9 1.0 1.1

0.2

0.5

0.7

0.3

0.4

0.4

(0.8,0.0,0.3)
(1.2,0.0,0.3)

(0.8,1.0,0.3)
 

(0.8,0.0,0.4)
 

 
 

Moneyness

Maturity

Vola



74

Common Coordinate Plot: First three Eigenvectors
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Figure 30: First, second, and third CPC eigenvectors through the years 1995 to May

2001; increasing color intensity with more recent data, ODAX, EUREX.
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Results on robustness:

• CPC holds in each year from 1995 to 2001,

• settlement data inherits tick data characteristics,

• shift, slope and twist interpretations remain valid,

• shift component is subject to little time variability,

• slope and twist factors changes slowly over time, and not completely

in a non-systematic manner,

• time to maturity component is still captured in the third component.

Tests of time homogeneity of eigenvectors across different sub-samples

indicate that it can be necessary to re-estimate the model regularly.
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Volas: What did we learn?

• CPC is the preferred modeling strategy for implied volatility returns

• Factor loadings have a natural interpretation (shift, slope, twist)

• CPC yields the desired dimension reduction of the implied volatility

surface
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Trading Strategies, Risk Management

Values: CPC and State Price Density
Dynamics

To find the price Ht of an option take the discounted expected value of

the pay-off function with respect to a risk-neutral pricing measure

f∗(ST , St, τ):

Ht = e−rτE[ψ(ST ,K, τ)|Ft] = e−rτ
∫ ∞

0

ψ(ST ,K, τ)f∗dST ,

where ψ is the payoff function, e.g. ψ = max(ST −K, 0) in case of the

call.

f∗(ST , St, τ) is also called (implied) State Price Density (SPD).
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f∗(ST , St, τ) can be obtained by taking the second derivative of the

option price function H(St,K, r, τ) w.r.t. K:

f∗(ST , St, τ) = erτ
∂2Ht

∂K2 |K=ST
,

when time to maturity τ , the current underlying asset price St = S are

fixed, Breeden and Litzenberger (1987).

This derivative can be expressed in terms of moneyness M = S/K and

first and second derivative of the implied volatility surface

σ(M), σ
′
(M), σ

′′
(M) only, Rookley (1997).
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Adopt the following procedure:

1. Set up a q < p factor model for the smile at maturity τi

σ̂t(κ, τi) = σ̂0(κ, τi) +
q∑
j=1

yitγ
>
j ,

where PCs are modeled as a function in lagged values and

exogeneous variables Z as yit = F (yt−1, yt−2, . . . ;Z), e.g.

∆yit = β(ȳi − yit−1) + εt,

where ȳ is a long run mean.
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2. Other maturity groups are obtained by an appropriate scaling factor

c(τi)

3. From the smile estimate σ
′
(M), σ

′′
(M) by a local polynomial

method

4. Obtain f∗(ST , St, τ) = erτ ∂
2Ht
∂K2 |K=ST

5. Generate trading signals.
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An Example of SPD Estimates

SPDs and bootstrap CB on 19990201
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Stock price at expiration S(T)
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Figure 31: SPD estimates from ODAX 1999 data by Rookley’s method: τ = 1 month

and τ = 2 months; solid line: density, dashed lines: bootstrap confidence intervals
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Based on this procedure certain trading strategies in options are possible,

e.g. skewness and kurtosis trades Äıt-Sahalia et al. (2001), Blaskowitz

(2001), Härdle and Zheng (2001). They are based on the following idea:

From option data we can extract an implied SPD f∗, based on a cross

section of options. However, there is also the historical SPD g∗ given by

underlying asset’s time series data.
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Estimation of historical SPD

Suppose St follows the diffusion process

dSt = µ(St)dt+ σ(St)dWt

Consider now the conditional density g∗ generated by the dynamics

dS∗t = (rt,τ − δt,τ )S∗t dt+ σ(S∗t )dW ∗t .

The transformation from Wt to W ∗t , and St to S∗t is an application of

Girsanov’s Theorem. W ∗ is a Brownian Motion under the risk neutral

measure, r the interest rate and δ the dividend yield.

Idea: Compare g∗ and f∗.
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Estimation of the diffusion function

Florens–Zmirou’s (1993) nonparametric estimator for σ (time scale is

[0,1] for expository convenience):

σ̂FZ(S) =

∑N∗−1
i=1 KFZ

(
Si−S
hFZ

)
N∗{S(i+1)/N∗ − Si/N∗}2∑N∗

i=1KFZ

(
Si−S
hFZ

) ,

where KFZ is a kernel function, hFZ a bandwidth parameter, and N∗

the number of observed index values.

σ̂FZ is an unbiased estimator of σ and does not impose any restrictions

on the drift.
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Computation of historical SPD g∗

We use a Monte–Carlo simulation with a Milstein scheme given by

Si = Si−1 + rSi−1∆t+ σ(Si−1)∆Wi +
1
2
σ(Si−1)

∂σ

∂S
(Si−1){(∆Wi−1)2 −∆t},

where ∆Wi is the increment of a Wiener Process, ∆t time between two

grid points. The drift is set to r and ∂σ
∂S is approximated by ∆σ

∆S .
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SPD g∗ may be now obtained by means of a nonparametric kernel

density estimation

g∗(S) =
p̂t
∗{log(S/St)}

S

where

p̂∗t (u) =
1
Mh

M∑
m=1

K
(um − u

h

)
,

u = log(S/St) returns and M is the number of simulated Monte Carlo

paths.

g∗ is
√
N∗– consistent.
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Suppose one knew f∗ and g∗. Are there profitable trading strategies to

exploit differences in f∗ and g∗? Consider the following situation:

Skewness Trade 1

Sell Put Buy Call

Underlying

f*

g*

Figure 32: Skewness trade
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This may be exploited by the following strategies:

Skewness Trade 1 Skewness Trade 2

skew(f∗) < skew(g∗) skew(f∗) > skew(g∗)

Sell OTM Puts Buy OTM Puts

Buy OTM Calls Sell OTM Calls

Voles, volas, values

 

0.9 1.0 1.1

0.2

0.5

0.7

0.3

0.4

0.4

(0.8,0.0,0.3)
(1.2,0.0,0.3)

(0.8,1.0,0.3)
 

(0.8,0.0,0.4)
 

 
 

Moneyness

Maturity

Vola



89

Similarly, kurtosis trades depending on the discrepancies between the

two densities f∗ and g∗ can be developed.

Historical simulations show that positive net cash flows may be generated

by these kinds of strategies, Äıt-Sahalia et al. (2001), Blaskowitz (2001).

However, risk adjusted performance measurement needs to be done and

a fine tuning of trading signals remains to be developed.
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Values: CPC and Maximum Loss Analysis

The parsimony of the CPC model may also be exploited in the context

of Maximum Loss analysis of vega-sensitive, delta-gamma-neutral

portfolios (e.g. Fengler, Härdle, Schmidt, 2002).

Consider a Taylor series expansion of a portfolio Pt built out of N

options:

∆Pt ≈
N∑
i=1

(
∂Hit

∂σit
∆σit(κ, τ)

+
∂Hit

∂t
∆t+

∂Hit

∂rt
∆rt +

∂Hit

∂St
∆St +

1
2
∂2Hit

∂S2
t

(∆St)2

)
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If the portfolio is delta-gamma neutral and if rho and theta-risks can be

neglected due to their negligible size, the expression reduces to

∆Pt ≈
N∑
i=1

∂Hit

∂σit
∆σit(κ, τ)

The CPC model allows us to write the returns of the implied volatilities

σ̂t(κ, τ) as a linear combination of PCs. Thus, taking the respective

nearby fixed grid point of the volatility surface σ̂t(κi, τj) as a proxy for

σ̂it(κ, τ), one gets:

∆Pt ≈
N∑
i=1

∂Hit

∂σit

(∑
k

γjkykt

)
σ̂i,t−1(κ, τ)
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Definition of Maximum Loss

Maximum loss (ML) is defined as the maximum possible loss

• over a given risk factor space Aτ̃ , where Aτ̃ will be assumed a

closed set with confidence level P (y|y ∈ Aτ̃ ) = α

• for some holding period τ̃ .

In contrast to Value at Risk which requires the profit and loss

distribution to be known, ML is directly defined in the risk factor space,

Studer (1995).
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Constructing Aτ̃

Assuming multi-normally distributed PCs, i.e. the y obey the joint

density function

ϕ(y) =
1√

2π|Λi|
exp

(
−1

2
y>Λ−1

i y

)
,

where Λi is diagonal matrix of eigenvalues of group i, construction of

the trust region Aτ̃ is straightforward:
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y>Λ−1
i y is chi-square distributed with q degrees of freedom, where q is

the number of factors retained for modeling.

Trust region Aτ̃ is the ellipse given by

Aτ̃ = (y|y>Λ−1
i y ≤ cα),

where cα denotes the α-quantile of a chi-squared distribution with p

degrees of freedom.

Fengler, Härdle and Schmidt (2002) consider a simple straddle portfolio

over a horizon of one day, where an ATM straddle of short maturities is

sold and an ATM straddle of long maturities is bought.
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Critical Volatility Scenarios
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Figure 33: Critical volatility scenarios for an straddle portfolio on 29/03/96; black

circle current level, red circle ML scenario; two factors modeled at α = 99%.
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Changes of Portfolio Values and ML

Figure 34: Critical volatility scenarios for a straddle portfolio on 29/03/96 (blue)

portfolio changes (red, gains solid, losses dashed) and ML (red ball); two factors mod-

eled at α = 99%.

Voles, volas, values

 

0.9 1.0 1.1

0.2

0.5

0.7

0.3

0.4

0.4

(0.8,0.0,0.3)
(1.2,0.0,0.3)

(0.8,1.0,0.3)
 

(0.8,0.0,0.4)
 

 
 

Moneyness

Maturity

Vola



97

Fengler, Härdle and Schmidt (2002) argue that

• the procedure can be a convenient guideline tool for daily risk

management analysis at trading desks

• the procedure is capable to identify critical volatility scenarios for

the portfolio under consideration, even during the Asian crisis 1997

• although the true confidence level of the modelling approach

remains unknown, the procedure performs empirically better than is

suggested by the number of retained factors

• adaptive methods, notably in the context of Common Principle

Components Analysis need to be developed to enhance predictability

of the the model.
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Volas: What did we learn?

CPC

• faciliates a high dimensional modeling task by working in a low

dimensional manifold,

• factor loadings and common PC factors have natural interpretations

in Finance,

• due its generality it is widely applicable in other contexts.
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Voles, Volas, Values: What did we learn?

Biology and Finance are cross-pollinated by Statistics!
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[11] Fengler, M., Härdle, W. and C. Villa (2001), ”The Dynamics of

Implied Volatilities: A Common Principle Component Approach”,

Discussion Paper 38/2001, SfB 373, Humboldt-Universität zu

Berlin.
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