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Introduction

Most financial market models considered in Mathematical Finance assume perfect elas-

ticity for the supply and demand of traded assets so that orders of arbitrary size do not

affect asset prices. This assumption is justified as long as one considers ‘small’ investors

whose trading volume is easily covered by market liquidity. However, if there is a ‘large’

investor in the market, whose orders involve a significant part of the available shares,

market prices will no longer evolve independently of the trading strategies chosen by

this ‘big player’. It then becomes an issue how the large investor should account for this

feedback effect when he chooses his portfolio strategy.

A number of suggestions on how to formalize this problem in a mathematical model

have been made. Jarrow (1992, 1994) proposes a discrete–time framework where prices

depend on the large trader’s activities via a reaction function of his instantaneous hold-

ings. Frey and Stremme (1997) develop a continuous time analogue of this framework

which essentially forms also the basis of Platen and Schweizer (1998) and Papanicolaou

and Sircar (1998). Kyle (1985) and Back (1992) use an equilibrium approach to obtain

similar asset price dynamics in the presence of an insider. In contrast to these contri-

butions in which prices directly depend on the large investor’s holdings via a reaction

function, Cuoco and Cvitanic (1998) and Cvitanic and Ma (1996) study a diffusion

model for the price dynamics where feedback is rather indirect as only the drift and

volatility coefficients depend on the large investor’s trading strategy. In the present

paper, we assume that there is a family of semimartingales P ϑ (ϑ ∈ R) which specify

the dynamics of the illiquid asset when the large investor’s position is kept constant at

a certain level ϑ. This yields a time–varying reaction function ϑ 7→ P ϑ which allows

us to define the asset price dynamics in the same manner as in the reaction diffusion

setting of Frey and Stremme (1997). This model is similar to an approach developed by

Çetin, Jarrow, and Protter (2002) and Çetin, Jarrow, Protter, and Warachka (2002). A

conceptually and methodologically crucial difference between their approach and ours,

however, is that in their model the price effect of an order is limited to the very moment

when the order is placed in the market, while in our reaction function model the effect

of an order will persist until the next order makes asset prices follow a possibly different

dynamics.

The feedback between asset prices and the large investor’s trading strategy entails

two competing aspects. On the one hand, the large investor might be able to (ab)use

his market power in order to manipulate market prices in his favor. On the other hand,

illiquidity causes transaction costs since the large investor’s orders are only exercised



Financial Markets with a Large Trader 2

after prices have adversely adjusted to them so that the large investor always has to

trade on the ‘bad’ side. It is therefore interesting to investigate if there are any arbitrage

opportunities for the large investor. In a mathematically rigorous manner, this question

was first addressed in the discrete–time account of Jarrow (1992) who proved absence of

arbitrage for the large investor under the assumption of absence of arbitrage for small

investors in periods where the large investor does not trade. Using an approximation

argument, this result was subsequently extended by Bierbaum (1997) to (essentially)

the continuous–time reaction function setting of Frey and Stremme (1997). Instead of

building on Jarrow’s discrete–time result, we give a more direct martingale theoretic

proof for absence of arbitrage under essentially the same condition. Our approach

is based on the Itô–Wentzell formula for parameter dependent semimartingales which

allows us to give an explicit decomposition of the real wealth dynamics into the profits

and losses which are due to exogenous random shocks and into transaction costs caused

by illiquidity.

The real wealth dynamics reveals that in order to avoid transaction costs, the large

investor should use continuous trading strategies of bounded variation. Thus, it is

interesting to determine which payoff profiles can be approximately attained by such

strategies. We answer this question by showing how to uniformly approximate an ar-

bitrary stochastic integral by other stochastic integrals with continuous integrands of

bounded variation. This supplements an approximation result for stochastic integrals

obtained in Levental and Skorohod (1997). The economic implication of this result is

that our large investor model inherits many properties of its underlying primal small

investor models. Indeed, it turns out that under some natural assumptions attainable

claims in a suitable small investor model become approximately attainable in our large

investor setting. Similarly, one can reduce the computation of superreplication prices

from the large investor’s view point to the computation of superreplication prices in a

small investor model. As a consequence, we obtain that the large investor can obtain

the same utility as a small investor in an associated model.

An outline of the present paper is as follows. Section 1 introduces a general semi-

martingale model for the price fluctuations of an illiquid financial asset. Section 2

provides the dynamics of the real wealth process and proves absence of arbitrage for

the large investor. Section 3 contains our approximation result for stochastic integrals

and characterizes approximately attainable claims; it furthermore discusses the large

investor’s utility maximization problem. Section 4 shows how to compute superrepli-

cation prices for manipulable derivatives. Section 5 concludes. Some more technical

arguments are relegated to the appendix.
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1 Price dynamics in the presence of a large investor

We consider a financial market containing a risky stock and a riskless bond paying

interest at some rate r. There is one large investor in the market whose trades may

affect the price process of the risky asset, but not the riskless interest rate. Hence, by

passing to discounted prices, we may assume without loss of generality that the interest

rate is fixed at r ≡ 0. To specify our model for the price evolution of the imperfectly

elastic risky asset, let us fix a filtered probability space (Ω,F ,P,F) with a filtration

F = (Ft)0≤t≤T satisfying the usual conditions of right continuity and completeness; F0

is trivial modulo P. As a primitive for our model, we assume to be given a family of

continuous semimartingales P ϑ = (P ϑ
t )0≤t≤T (ϑ ∈ R). The process P ϑ is interpreted as

a model for the price fluctuations of the risky asset given that the large investor holds

a constant stake of ϑ shares in this asset. If the large investor chooses a time–varying

strategy θ = (θt)0≤t≤T , the resulting asset price evolution can then be modelled as

(1) P θ
t = P (θt, t)

∆
=P θt

t (0 ≤ t ≤ T ) .

Examples 1.1 Let us give two important examples which are covered by this setting:

(i) A simple example is a classical Black–Scholes model with a Brownian motion B

and parameter dependent drift and volatility:

(2) dP ϑ
t = P ϑ

t (µϑ
t dt+ σϑ

t dBt) (ϑ ∈ R) .

Note that even though this dynamics very much resembles the setting of Cvitanic

and Ma (1996) and Cuoco and Cvitanic (1998) there is a crucial difference between

our model and their diffusion model: whereas in the latter model only the drift

and volatility parameter will change immediately when the large investor changes

his position, in our model also the asset price itself will change in general. For

instance, when the large investor liquidates a position of θT shares, at time T say,

this does not affect the asset price immediately at time T in the model of Cvitanic

et al.; in contrast, in our model the price will immediately move from P θT
T before

liquidation to P 0
T after liquidation.

(ii) Also the reaction diffusion setting of, e.g., Frey and Stremme (1997) is included

in this setting since in such a framework we may choose

(3) P ϑ
t = ψ(t, Bt, ϑ) (ϑ ∈ R)

for some smooth function ψ : [0, T ]× R× R → R.
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Plainly, without additional assumptions, asset price fluctuations driven by (1) may

be unreasonably strong unless we restrict the class of strategies θ at the large investors

disposal. A convenient restriction is that the large investor is confined to use strate-

gies which are semimartingales with respect to (P,F). Indeed, in conjunction with a

smoothness assumption on ϑ 7→ P ϑ this will ensure that, as usual, asset prices follow a

general semimartingale dynamics; see Corollary 1.5.

Definition 1.2 A family of semimartingales Sϑ (ϑ ∈ R) is called smooth if it satisfies

the following conditions:

(i) Every Sϑ (ϑ ∈ R) is a continuous semimartingale with Doob–Meyer decomposition

Sϑ = Mϑ + Aϑ.

(ii) The covariation processes
[
Mϑ,Mϑ′

]
(ϑ, ϑ′ ∈ R) and compensators Aϑ (ϑ ∈ R)

can be chosen so that for every (ω, t) ∈ Ω× [0, T ] we have

•
[
Mϑ,Mϑ′

]
t
(ω) is twice continuously differentiable in (ϑ, ϑ′), and the respec-

tive second derivatives are locally Hölder–continuous for some index δ > 0,

• Aϑ
t (ω) is once continuously differentiable in ϑ ∈ R.

(iii) There exists an adapted process A with increasing and continuous paths such that

each covariation process
[
Mϑ,Mϑ′

]
(ϑ, ϑ′ ∈ R) and every compensator Aϑ (ϑ ∈ R)

is absolutely continuous with respect to A.

As shown in Kunita (1990), Chapter 3.1, we can modify the martingales occurring in

the Doob–Meyer decompositions Sϑ = Mϑ + Aϑ (ϑ ∈ R) associated with a smooth

semimartingale family S so that Mϑ
t (ω) becomes twice continuously differentiable in

ϑ ∈ R for any (ω, t) ∈ Ω × [0, T ]. Thus, whenever in the sequel we consider a smooth

family of semimartingales we may and will work with such a nice version.

Proposition 1.3 (Itô–Wentzell formula) Let Sϑ (ϑ ∈ R) be a smooth family of

semimartingales. Then, for any RCLL semimartingale θ, the process S(θt, t)
∆
=Sθt

t (0 ≤
t ≤ T ) is again a semimartingale and its dynamics is described by

S(θt, t)− S(θ0−, 0) =∫ t

0

S(θs−, ds) +

∫ t

0

S ′(θs−, s) dθs +

[∫ .

0

S ′(θs−, ds), θ

]
t

+
1

2

∫ t

0

S ′′(θs−, s) d [θ]cs +
∑

0≤s≤t

{∆S(θs, s)− S ′(θs−, s)∆θs}
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where
∫ .

0
S(θs−, ds) denotes the stochastic integral of θ− with respect to the semimartin-

gale kernel S(ϑ, ds) and where all derivatives are taken with respect to ϑ.

Proof : For continuous θ this follows from Theorem 3.3.1 in Kunita (1990). For θ

with jumps the proof is a straightforward extension of the argument in Kunita (1990),

e.g., using the techniques of Protter (1990) to prove the general Itô–formula with jumps.

2

Remark 1.4 Kunita (1990), Chapter 3.2, gives a detailed account of how to construct

stochastic integrals with respect to a semimartingale kernel S(ϑ, ds) by starting from the

elementary definition∫ t

0

S(θs, ds)
∆
=

∑
i

{S(θsi∧t, si+1 ∧ t)− S(θsi∧t, si ∧ t)} (0 ≤ t ≤ T )

for simple integrands of the form θ =
∑

i θi1(si,si+1] with 0 ≤ s0 < . . . ≤ sn ≤ T and

θi ∈ L0(Fsi
). The quadratic variation of

∫ .

0
S(θs, ds) is given by[∫ .

0

S(θs, ds)

]
t

=

∫ t

0

a(θs, θs, s) dAs (0 ≤ t ≤ T )

where A is the dominating increasing process of Definition 1.2 (iii) and a = a(ϑ, ϑ′, ω, s)

denotes a (ϑ, ϑ′)–continuous choice of the densities d[Mϑ,Mϑ′ ]s/dAs (ϑ, ϑ′ ∈ R).

An immediate consequence of the preceding proposition is

Corollary 1.5 If the primal semimartingales P ϑ (ϑ ∈ R) define a smooth semimartin-

gale family, then the asset price process (1) follows a semimartingale dynamics for any

semimartingale strategy θ of the large investor.

To ensure reasonable price fluctuations, we therefore introduce the following standing

assumption:

Assumption 1 The family of semimartingales P ϑ (ϑ ∈ R) is smooth in the sense of

Definition 1.2.

2 Wealth dynamics and no arbitrage

A crucial viability question in every financial market model is whether it allows for

profits without risk, i.e., for arbitrage. For models with small investors this question
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has been solved in great generality by the celebrated fundamental theorem of asset

pricing; see Delbaen and Schachermayer (1998) and the references therein. Rather few

investigations, however, deal with this question from the perspective of a large investor

whose orders directly influence stock prices. In a discrete time framework, Jarrow (1992)

proves absence of arbitrage for large investors under the assumption that small investors

cannot produce riskless profits in periods where the large investor does not trade. Using

an approximation argument, Bierbaum (1997) extends this result (essentially) to the

reaction diffusion model of Frey and Stremme (1997).

In order to investigate the question of existence of arbitrage opportunities in our

more general model, we first want to clarify the wealth dynamics that are generated

by selffinancing portfolio strategies. To this end, consider a semimartingale strategy

θ = (θt)0≤t≤T for the large investor which describes the number of shares held by the

investor at each point in time. His (discounted) holdings in the bank account βθ will

then evolve according to the dynamics

βθ
t = β0− −

∫ t

0

P (θs−, s) dθs − [P (θ, .), θ]t (0 ≤ t ≤ T ) .

Here, the quadratic variation term implies that asset prices are affected by the large

investor’s orders before these are actually exercised. Indeed, assume, for instance, the

order is of size ∆θt > 0. Then the large investor’s bank account will be charged

∆βθ
t = −P (θt−, t)∆θt −∆P (θt, t)∆θt = −P (θt, t)∆θt ,

and so he has to pay P (θt, t) for each of his ∆θt ordered shares. This price will be no

less than the pre–order price P (θt−, t) if we impose the following natural condition.

Assumption 2 Asset prices are non–decreasing with respect to the large investor’s po-

sition: P ϑ ≤ P ϑ′ for ϑ ≤ ϑ′.

This assumption is crucial for our model to exclude trivial arbitrage opportunities.

In fact, suppose that at some point in time t we have P (ϑ, t) > P (ϑ′, t) for some

ϑ < ϑ′. Then a large investor could increase his number of shares from ϑ to ϑ′ at costs

P (ϑ′, t){ϑ′−ϑ}. Having done so, he very shortly afterwards could reduce his number of

shares to the original amount ϑ receiving about P (ϑ, t){ϑ′ − ϑ}. The overall proceeds

from such an in–and–out strategy would be {P (ϑ, t) − P (ϑ′, t)}{ϑ′ − ϑ} > 0, i.e., the

large investor could make a profit without taking risk.

Let us now describe the wealth dynamics induced by a large investor strategy. As-

sume that at some time t the large investor has βθ
t in the bank account and a stock
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position of θt shares. The book or paper value of his portfolio is then

W θ
t

∆
= βθ

t + P (θt, t)θt .

However, if the investor was forced to liquidate his stock position immediately by a

single block trade, he would not be able to trade his shares at price P (θt, t) but only at

P (0, t) and, thus, the block liquidation value of his position would be

Ṽ θ
t

∆
= βθ

t + P (0, t)θt .

Clearly, selling a huge position of shares en bloc can be very disadvantageous as prices

will fall before such large sell orders are exercised. Hence, the difference between book

value and block liquidation value W θ
t − Ṽ θ

t = (P (θt, t) − P (0, 1))θt ≥ 0 can be quite

substantial. In such a situation, it would be more convenient to split the order into

smaller packages which are then sold one after the other over a small time period. In

our model, it is not difficult to see that in the limit as the packages become ever smaller

and as the duration for liquidation tends to 0 the proceeds from such a fast liquidation

strategy become

(4) L(ϑ, t)
∆
=

∫ ϑ

0

P (x, t) dx

where ϑ = θt denotes the large investor’s number of shares before liquidation.

Remark 2.1 The above asymptotic description of liquidation proceeds also occurs in

Back (1992) and Schönbucher and Wilmott (2000). Note that here and in the sequel we

follow the usual sign–convention
∫ b

a
. . .

∆
= −

∫ a

b
. . . in case b < a.

Note that under Assumption 2 the asymptotic liquidation proceeds L(ϑ, t) from a posi-

tion of ϑ shares always lies in between the position’s book value P (ϑ, t)ϑ and its block

liquidation value P (0, t)ϑ. This leads us to define the asymptotically realizable or real

wealth achieved by a trading strategy θ until time t as

V θ
t

∆
= βθ

t + L(θt, t) .

Plainly, book value, block liquidation value and real wealth coincide whenever θt = 0.

It turns out that in contrast to the dynamics of the book value, the dynamics of the

realizable wealth is quite tractable and transparent. The explicit dynamics we obtain for

the realizable wealth in the following lemma will be used extensively in the remainder

of the text when dealing with the problems of hedging and portfolio optimization from

the perspective of a large investor.
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Lemma 2.2 For any selffinancing semimartingale strategy θ, the dynamics of the real

wealth process V θ is given by

V θ
t − V θ

0− =

∫ t

0

L(θs−, ds)−
1

2

∫ t

0

P ′(θs−, s) d [θ]cs

−
∑

0≤s≤t

∫ θs

θs−

{P (θs, s)− P (x, s)} dx .
(5)

Proof : By assumption on P , the family of semimartingales Lϑ (ϑ ∈ R) defined

by (4) is smooth. Hence, the Itô–Wentzell formula of Proposition 1.3 yields that L(θt, t)

is a semimartingale with dynamics

L(θt, t) =L(θ0−, 0) +

∫ t

0

L(θs−, ds) +

∫ t

0

P (θs−, s) dθs

+

[∫ .

0

P (θs−, ds), θ

]
t

+
1

2

∫ t

0

P ′(θs−, s) d [θ]cs

+
∑

0≤s≤t

{∫ θs

θs−

P (x, s) ds− P (θs−, s)∆θs

}
.

An application of the Itô–Wentzell formula to P θ = (P (θt, t))0≤t≤T allows us to compute[
P θ, θ

]
, and we find

βθ
t =β0− −

∫ t

0

P (θt−, t) dθt −
[∫ .

0

P (θs−, ds), θ

]
t

−
∫ t

0

P ′(θs−, s) d [θ]cs −
∑

0≤s≤t

∆P (θs, s)∆θs .

When adding the preceding two equations, several terms cancel out and we obtain the

claimed formula for V θ
t = βθ

t + L(θt, t). 2

As shown by the preceding lemma, the real wealth dynamics V θ can be decomposed

into three parts. The first part,
∫ t

0
L(θs−, ds), accounts for profits or losses from stock

price fluctuations which are due to exogenous random shocks. The second and third part

can be viewed as transaction costs due to limited liquidity. Indeed, by Assumption 2,

the large investor always has to trade on the ‘bad’ side since his orders always adversely

affect the stock price before being exercised. The induced transaction costs become

particularly obvious in the case of block orders whose transaction costs are reflected in

the jump term
∑

0≤s≤t

∫ θs

θs−
{P (θs, s) − P (x, s)} dx ≥ 0. Additionally, it turns out that

trading in a fluctuating manner also produces transaction costs; these costs are described

by the quadratic variation term 1
2

∫ t

0
P ′(θs−, s) d [θ]cs ≥ 0. Finally, it is interesting to
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see that ‘tame’ trading strategies whose trajectories (θt)0≤t≤T are continuous and of

bounded variation do not produce transaction costs in this sense — an observation

which is important in Back’s (1992) analysis of insider trading and which will also be

crucial in the sequel when we are going to discuss the large investor’s hedging problem.

As a consequence, the large investor can deliberately move market prices only at

certain costs, and it becomes an interesting question under which conditions these costs

actually suffice to rule out any market manipulation strategy which would allow the

large investor to produce riskless profits, i.e., to have an arbitrage opportunity due

to his market power. In order to discuss this issue properly, we first have to exclude

any doubling strategies from our considerations by introducing a suitable notion of

admissible strategies — just like in the standard small investor framework. For our

framework, the real wealth dynamics (5) suggests to call a selffinancing semimartingale

strategy θ admissible if the induced profits or losses from exogenous shocks
∫ .

0
L(θs−, ds)

are bounded from below by some real constant. Indeed, for the special case where the

large investor is in fact an ‘ordinary’ small investor in the sense that P ϑ
t does not depend

on ϑ, this reduces to the usual notion of admissibility.

In the standard small investor setting, absence of arbitrage is (essentially) equiva-

lent to the existence of an equivalent local martingale measure. For our purposes, the

following assumption will be convenient.

Assumption 3 There exists a measure P∗ ≈ P which simultaneously is a local martin-

gale measure for all our primal processes P ϑ (ϑ ∈ R).

By the fundamental theorem of asset pricing, this assumption implies that small in-

vestors cannot make any riskless profits in periods where the large investor does not

trade. More precisely, the fundamental theorem shows that no arbitrage for small in-

vestors in this sense is essentially equivalent to the existence of an equivalent local

martingale measure Pϑ for any primal process P ϑ (ϑ ∈ R). Thus, Assumption 3 is

slightly stronger than the assumption of no arbitrage for small investors since it implies

that we can choose Pϑ = P∗ independently of ϑ ∈ R. In our diffusion example 1.1(i),

this corresponds to the condition that the market price of risk (µϑ
t − r)/σϑ

t associated

with the exogenous risk factor dBt does not depend on the large investor’s position ϑ.

Interestingly, in conjunction with our previous monotonicity assumption, Assump-

tion 3 also suffices to rule out riskless profits for the large investor.

Theorem 2.3 Under Assumptions 1–3, there exists no arbitrage opportunity for the

large investor in the class of admissible strategies, i.e., there is no admissible strategy θ



Financial Markets with a Large Trader 10

such that

P[V θ
T ≥ V θ

0−] = 1 and P[V θ
T > V θ

0−] > 0 .

Proof : As P (ϑ, t) is increasing in ϑ by assumption, the transaction cost terms in

our real wealth dynamics are non–negative. Hence, for any selffinancing large investor

strategy θ, the real wealth process V θ is bounded from above by V θ
0− +

∫ .

0
L(θs−, ds).

The preceding stochastic integral is a local martingale under P∗, and, provided θ is

admissible, it is also bounded from below and thus a P∗–supermartingale. It follows

that, for admissible θ, we have E∗V θ
T ≤ V θ

0−. As P∗ ≈ P, this proves that θ cannot be

an arbitrage opportunity for the large investor. 2

3 Approximation of stochastic integrals and approx-

imate attainability

An interesting consequence of the real wealth dynamics (5) is the observation that

continuous strategies of bounded variation do not incur transaction costs for the large

investor. It is therefore important to determine which final payoffs the investor can attain

by following such ‘tame’ strategies. To answer this question, it is useful to introduce

the following concepts:

Definition 3.1 A contingent claim H ∈ L0(FT ) is called attainable modulo trans-

action costs for initial capital v if H = v +
∫ T

0
L(θs, ds) almost surely for some

L–integrable predictable process θ for which
∫ .

0
L(θs, ds) is uniformly bounded from below.

A contingent claim H ∈ L0(FT ) is called approximately attainable for initial

capital v if for any ε > 0 there exists an admissible large investor strategy θε such that

V θε
with V θε

0− = v satisfies

|H − V θε

T | ≤ ε P–a.s. .

Thus, any claim which is approximately attainable for some initial capital can be su-

perreplicated in the usual sense when starting with only a little more capital.

Remark 3.2 The preceding definition only refers to contingent claims H whose payoff is

completely determined by the exogenous risk factors and which can thus be represented by

a real–valued contingent claim H ∈ L0(FT ). Many real claims, though, explicitly depend

on the evolution of the underlying asset, and their payoff can therefore be directly affected

by the large investor. These more general claims will be discussed in Section 4 below.
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With this terminology we can state the main result of this section as follows.

Theorem 3.3 Under Assumption 1, any contingent claim H ∈ L0(FT ) which is attain-

able modulo transaction costs is approximately attainable with the same initial capital.

The proof of this theorem follows immediately from the following strong approximation

result for stochastic integrals which may be of independent mathematical interest.

Theorem 3.4 Assume Lϑ (ϑ ∈ R) is a smooth family of semimartingales. Let θ be an

L–integrable, predictable process and fix ϑ0 ∈ L0(F0), ϑT ∈ L0(FT−). Then, for any

ε > 0, there exists a predictable process θε with continuous paths of bounded variation

such that θε
0 = ϑ0, θ

ε
T = ϑT and

sup
0≤t≤T

∣∣∣∣∫ t

0

L(θs, ds)−
∫ t

0

L(θε
s, ds)

∣∣∣∣ ≤ ε P–a.s.

Remark 3.5 The preceding theorem can be viewed as a supplement to a result in Leven-

tal and Skorohod (1997). These authors construct piecewise constant RCLL–strategies

which uniformly approximate a given stochastic integral in the special case where the

integrator is given by a continuous semimartingale L, i.e., L(ϑ, ds) = ϑ dLs.

We will prove Theorem 3.4 by a Borel–Cantelli argument which is based on the

following lemma whose proof is given in the appendix.

Lemma 3.6 Let θ be as in Theorem 3.4, fix a stopping time τ ≤ T and consider a

random variable ϑτ ∈ L0(Fτ ) with ϑτ = ϑT on {τ = T}. For any ε > 0, there exists

a predictable process θε,τ,ϑτ whose paths are continuous and of bounded variation over

[τ, T ] such that θε,τ,ϑτ
τ = ϑτ , θ

ε,τ,ϑτ

T = ϑT and

P
[

sup
τ≤t≤T

∣∣∣∣∫ t

τ

L(θs, ds)−
∫ t

τ

L(θε,τ,ϑτ
s , ds)

∣∣∣∣ ≥ ε

]
≤ ε .

Let us now give the

Proof of Theorem 3.4 Let εn
∆
= ε/2n (n = 0, 1, . . .), put τ0

∆
= 0 and define θε

0
∆
=ϑ0.

We are going to extend the definition of θε inductively. So assume that for some n ∈
{0, 1, . . .} we already have constructed θε on the random interval [0, τn] where τn is a

suitably constructed stopping time. Take the strategy θn+1 ∆
= θεn+1,τn,θε

τn provided by

Lemma 3.6 and put

τn+1
∆
= inf

{
t ≥ τn :

∣∣∣∣∫ t

τn

L(θs, ds)−
∫ t

τn

L(θn+1
s , ds)

∣∣∣∣ > εn+1

}
∧ T .
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This allows us to continuously extend the definition of θε from [0, τn] to [0, τn+1] by

letting θε ∆
= θn+1 on (τn, τn+1], and we can proceed with the next step of our inductive

definition.

Since by definition of τn+1 and θn+1 we have

P[τn+1 < T ] = P
[

sup
τn≤t≤T

∣∣∣∣∫ t

τn

L(θs, ds)−
∫ t

τn

L(θn+1
s , ds)

∣∣∣∣ > εn+1

]
≤ εn+1 = ε/2n+1 ,

the Borel–Cantelli Lemma implies that for P–a.e. ω we have to carry out only a finite

number of the above induction steps in order to define θε(ω, .) on the whole interval

[0, T ]. This entails, in particular, that the above procedure yields an adapted process

θε with continuous paths of bounded variation and θε
T = ϑT . Moreover, we know by

construction that

sup
0≤t≤T

∣∣∣∣∫ t

0

L(θs, ds)−
∫ t

0

L(θε
s, ds)

∣∣∣∣
≤

+∞∑
n=0

sup
τn≤t≤τn+1

∣∣∣∣∫ t

τn

L(θs, ds)−
∫ t

τn

L(θn+1
s , ds)

∣∣∣∣ ,
and by definition of τn+1 the above sum is less than or equal to

∑+∞
n=0 εn+1 = ε. This

completes the proof of our assertion. 2

Remark 3.7 Note that for the preceding theorem to hold true our continuity assumption

for the paths of any primal process P ϑ, ϑ ∈ R, is essential.

As a first application of the preceding approximation results, let us characterize

more explicitly which final payoffs are attainable for the large investor. This task will

be carried out under the following assumption.

Assumption 4 One of the primal models, P 0 say, dominates all the others in the sense

that each model P ϑ, ϑ ∈ R, admits a representation

P ϑ
t = P ϑ

0 +

∫ t

0

pϑ
s dP

0
s (0 ≤ t ≤ T )

for some predictable P 0–integrable process pϑ.

This assumption is clearly satisfied if the primal model P 0 is complete and Assumption 3

is satisfied. It means essentially that all primal models refer to the same exogenous

shock. An important consequence of this assumption is that the set P∗ of P–equivalent

probability measures under which all our primal models P ϑ (ϑ ∈ R) become local

martingales coincides with the set P0 of local martingale measures for the model P 0.
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Proposition 3.8 Under Assumption 1, each density

pϑ
s (ω) =

d
[
P ϑ, P 0

]
d [P 0]

(ω, s)

occurring in Assumption 4 can be chosen continuous in ϑ for any fixed (ω, s) ∈ Ω×[0, T ].

The induced predictable process p = (ps)0≤s≤T with values in C(R) allows us to write the

dynamics of L(ϑ, .) =
∫ ϑ

0
P (x, .) dx, ϑ ∈ R, in the form

L(ϑ, t) =

∫ ϑ

0

P (x, 0) dx+

∫ t

0

{∫ ϑ

0

px
s dx

}
dP 0

s (0 ≤ t ≤ T ) .

In particular, a predictable process θ = (θt)0≤t≤T is L–integrable provided∫ T

0

{∫ θs

0

px
s dx

}2

d
[
P 0

]
s
< +∞ P–a.s.

and in this case we have

(6)

∫ T

0

L(θs, ds) =

∫ T

0

{∫ θs

0

px
s dx

}
dP 0

s .

Proof : That pϑ
t (ω) can be chosen continuous in ϑ follows from Kunita (1990), Chap-

ter 3.1. The claimed dynamics of L(ϑ, t) will follow by Fubini’s theorem for stochastic

integrals (cf. Protter (1990), Theorem IV.46) once we know that ((
∫ ϑ

0
(px

s)
2 dx)1/2)0≤s≤T

is P 0–integrable. To prove this, note that by the standard Fubini–theorem∫ T

0

{∫ ϑ

0

(px
s)

2 dx

}
d

[
P 0

]
s
=

∫ ϑ

0

{∫ T

0

(px
s)

2 d
[
P 0

]
s

}
dx

By definition of p, the last {. . .}–term is almost surely equal to [P x]T . By Assumption 1,

this quantity continuously depends on x and is therefore locally integrable with respect

to dx. Hence, the last quantity in the above equation is finite almost surely.

Having established the dynamics of L(ϑ, .) it is now easy to see that [L(ϑ, .), L(ϑ′, .)]

is absolutely continuous with respect to AL ∆
= [P 0] with density given by aL(ϑ, ϑ′, s) =∫ ϑ

0
px

s dx
∫ ϑ′

0
py

s dy. This yields the claimed L–integrability criterion. 2

Identity (6) shows that with any large investor strategy θ we can associate a small

investor strategy ξs =
∫ θs

0
px

s dx which in the model P 0 induces the same wealth dynamics

as θ in our large investor model if we neglect transaction costs. We will see that the

converse holds true under

Assumption 5 For P⊗ dP 0–a.e. (ω, s) ∈ Ω× [0, T ], the mapping ϑ 7→
∫ ϑ

0
px

s(ω) dx is

surjective from R onto R.
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The preceding assumption is satisfied, if px is strictly positive and does not tend to 0

‘too fast’ as |x| → ∞, i.e., if price fluctuations are not damped ‘too severely’ when the

large trader takes extreme positions.

Theorem 3.9 Under Assumptions 1–5, any claim H ∈ L0(FT ) which is attainable in

the small investor model P 0 is approximately attainable for the same initial capital in

our large investor model (1).

Proof : Let ξ be an admissible small investor strategy in the model P 0 which

starting with initial capital v attains some terminal payoff H = v +
∫ T

0
ξs dP

0
s . Due

to Assumption 5, we can use a measurable selection result, e.g., Théorème 82 in the

appendix to Chapter III of Dellacherie and Meyer (1975), to find a predictable process

θ = (θs)0≤s≤T such that ∫ θs

0

px
s dx = ξs P⊗ d[P 0]s–a.e.

By Proposition 3.8, P 0–integrability of ξ carries over to L–integrability of θ and∫ T

0

L(θs, ds) =

∫ T

0

ξs dP
0
s = H − v .

Hence, for the large investor, H is attainable modulo transaction costs with initial capital

v and thus approximately attainable for the same initial capital by Theorem 3.3. 2

Let us close this section with an easy consequence for the large investor’s utility maxi-

mization problem:

Corollary 3.10 In the situation of Theorem 3.3, the large investor’s optimal utility

coincides with the maximal utility of a small investor who may invest the same initial

capital in a financial market modelled by P 0. More precisely, we have

(7) sup
θ admissible , V θ

0−=w

E
[
U

(
V θ

T

)]
= sup

ξ admissible
E

[
U

(
w +

∫ T

0

ξs dP
0
s

)]
for any concave and increasing utility function U , provided the right side is finite for

any initial capital w > 0

Proof : Denote by l = l(w) and r = r(w) the R̄–valued functions of initial capital

w > 0 defined by the left and right side of (7), respectively. As pointed out earlier,

identity (6) ensures that with any large investor strategy θ we can associate a strategy ξ

for the small investor whose value process coincides with w+
∫ .

0
L(θs, ds). In particular,
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ξ is admissible if θ is, and we have w +
∫ T

0
ξs dP

0
s ≥ V θ

T . This proves l(w) ≤ r(w).

Conversely, by Theorem 3.3, any terminal portfolio value for the small investor trading in

model P 0 is approximately attainable for the large investor. Thus, we have l(w) ≥ r(w′)

for any w > w′ > 0. As both l and r are increasing functions, the preceding arguments

already show l(w) = r(w) for any w where r does not jump. Since r is also concave this

is the case on the interior of its domain, i.e., on (0,+∞). 2

4 Superreplication of manipulable claims

This section discusses the pricing and hedging problem for general contingent claims

whose payoff may depend on the large investor’s strategy, e.g., via the price of the

illiquid asset at maturity.

Let us start by introducing a convenient notion of contingent claims in our present

large investor setting:

Definition 4.1 A contingent claim with maturity T is specified by an FT ⊗B(R)–

measurable mapping H which is bounded from below. It entitles the holder to a contingent

payment of H(ω, θT (ω)) at time T where θT denotes the large investor’s position at

maturity.

A prominent example for such a contingent claim is, of course, the European call option

(P θ
T − K)+ with strike K > 0 where H can be chosen as H(ω, ϑ) = (P ϑ

T (ω) − K)+.

Important examples not covered by the above notion are barrier options and lookback

options since in both cases the complete evolution of the large investor’s strategies can

influence the payoff, not only his position at time T . It might seem more natural to define

a contingent claim in an illiquid financial market as a two dimensional random variable,

the two dimensions reflecting the cash and the physically settled components of a real

world financial contract respectively. It is easy to see, though, that the economics of such

a generalized contingent claim are equal to those of the contingent claim that is defined

as the realizable portfolio value of the generalized contingent claim; see Baum (2001) for

details. Finally, note that the contingent claims discussed in Section 3 are incorporated

in the present setting since we can identify any random variable H ∈ L0(FT ) with a

contingent claim that does not depend on the risky asset position of the large investor.

Definition 4.2 The superreplication price of a contingent claim H is the infimum of

all initial capitals v for which there exists an admissible strategy θ such that at time T
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we have V θ
T ≥ H(θT ) almost surely:

Π(H)
∆
= inf{v : ∃θ admissible with V θ

T ≥ H(θT ) P–a.s., V θ
0− = v} .

Similarly, one could give a definition of superreplication prices in terms of book value

instead of real value. It is not clear, however, that the liquidation proceeds from a

superreplicating portfolio with respect to the book value would cover the payment obli-

gations resulting from the claim. It therefore seems to be more appropriate to focus on

superreplication with respect to realizable wealth.

The following theorem shows that essentially when the large investor seeks to de-

termine the superreplication price for a manipulable derivative, he can first determine

the terminal position ϑ∗T in the illiquid asset which (almost) minimizes the payoff and

compute then the small investor superreplication price of the induced claim H(ϑ∗T ).

Theorem 4.3 Under Assumptions 1–5, the superreplication price of a contingent

claim H satisfies

(8) inf
ϑT∈L0(FT )

sup
P∗∈P∗

E∗[H(ϑT )] ≤ Π(H) ≤ inf
ϑT∈L0(FT−)

sup
P∗∈P∗

E∗[H(ϑT )]

where P∗ 6= ∅ is the set of P–equivalent probability measures under which any primal

model P ϑ (ϑ ∈ R) becomes a local martingale.

If H is FT−⊗R–measurable with infϑ∈RH(ϑ) ∈ L0(FT−), the superreplication price

is given by

Π(H) = sup
P∗∈P∗

E∗
[
inf
ϑ∈R

H(ϑ)

]
.

Proof : To prove the first ‘≤’–assertion, consider an initial capital v and an admissible

large investor strategy θ such that V θ
0− = v and V θ

T ≥ H(θT ) almost surely. The

dynamics of V θ and our monotonicity Assumption 2 entail that V θ
T ≤ v +

∫ T

0
L(θs, ds).

By definition,
∫ .

0
L(θs, ds) is a local martingale under each measure P∗ ∈ P∗ and by

admissibility of θ it is bounded from below by some constant. Hence, it is a P∗–

supermartingale and we can conclude that

v ≥ v + sup
P∗∈P∗

E∗
∫ T

0

L(θs, ds) ≥ sup
P∗∈P∗

E∗V (θT ) ≥ sup
P∗∈P∗

E∗H(θT ) .

For the second ‘≤’–relation, take any ϑT ∈ L0(FT−) and note that, since P∗ = P0 by

Assumption 4, v
∆
= supP∗∈P∗ E∗H(ϑT ) is the superreplication price of the claim H(ϑT )

for a small investor trading in a market where the asset price follows the dynamics

given by P 0; see, e.g., Kramkov (1996). Hence, there exists an admissible small investor
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strategy ξ such that H(ϑT ) ≤ v +
∫ T

0
ξs dP

0
s almost surely. From Theorem 3.3 we infer

that v +
∫ T

0
ξs dP

0
s is approximately attainable for the large investor. Indeed, it follows

from Theorem 3.4 that we can choose the large investor strategies θε, ε > 0, whose real

wealth process uniformly approximate v+
∫ .

0
ξs dP

0
s so that at time T they take the value

θε
T = ϑT . This ensures, that the amount H(θT ) to be payed by the large investor at

maturity coincides with the payoff of the ‘exogenously’ determined claim H(ϑT ) which

is superreplicated by the above strategies. Hence, the large investor can superhedge

against H using initial capital v + ε. As ε > 0 was arbitrary, this proves Π(H) ≤ v as

claimed.

Now assume that I
∆
= infϑ∈RH(ϑ) is FT−–measurable and let us deduce the claimed

equation for Π(H). Let L and R denote the left and the right term in (8), respectively.

We already know that R ≥ Π(H) ≥ L ≥ supP∗∈P∗ E∗[I]. As I is FT−–measurable,

we may use a measurable selection theorem, e.g., Théorème 82 in the appendix to

Chapter III of Dellacherie and Meyer (1975), to find for any ε > 0 a random variable

ϑε
T ∈ L0(FT−) such that infϑ∈RH(ϑ) ≥ H(ϑε

T )− ε almost surely. Hence, we have

L ≥ Π(H) ≥ R ≥ sup
P∗∈P∗

E∗[I] ≥ sup
P∗∈P∗

E∗[H(ϑε
T )]− ε ≥ L− ε

As ε > 0 is arbitrary, this proves L = Π(H) = R = supP∗∈P∗ E∗[I] as claimed. 2

Remark 4.4 Note that the preceding argument reveals in particular that superreplica-

tion prices do not depend on the large investor’s initial position θ0−.

A first consequence of the preceding theorem is that in the large investor framework

exact replication of a contingent claim can be more expensive than superreplication, a

phenomenon which also occurs in the literature on transaction costs; see Bensaid, Lense,

Pages, and Scheinkman (1992), Soner, Shreve, and Cvitanić (1995) and Levental and

Skorohod (1997). To see this, apply the reasoning of the above proof to a claim H of

the form H = V θ
T where θ is an admissible large investor strategy with non–vanishing

transaction costs 1
2

∫ t

0
P ′(θs−, s) d [θ]cs +

∑
0≤s≤t

∫ θs

θs−
{P (θs, s)− P (x, s)} dx 6= 0.

Moreover, at first sight, the above result seems to be at odds with the PDE–

characterizations of hedging prices for large investors obtained by Frey (1998) or

Schönbucher and Wilmott (2000). Note, however, that in these accounts, the trading

strategies at the large investor’s disposal are severely restricted: the agent is confined

to use strategies which are obtained as a smooth deterministic function of the stock

price. By contrast, in our setting, the large investor can use the complete information

available in the market to dynamically choose his positions. In addition, Frey (1998)
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and Schönbucher and Wilmott (2000) provide hedging strategies with respect to the

book value rather than the real value. As pointed out in Baum (2001), the relation

W θ
T = V θ

T − L(θT , T ) + P (θT , T )θT

between the large investor’s paper value and his real value allows one to use the above

techniques in order to provide analogues of our preceding results which also focus on

paper value instead of real value.

5 Conclusion

The present paper gives a detailed analysis of general financial market models in con-

tinuous time with limited liquidity due to finite depth in the sense of Kyle (1985). It is

shown that in these markets many features of the primal small investor markets carry

over to the considered large investor market. In particular, absence of arbitrage for a

large investor is proven to be essentially a consequence of absence of arbitrage for small

investors. Moreover, attainable claims for the small investor are approximately attain-

able for the large investor, and similarly the computation of superreplication prices and

optimal utilities carries over.

All of these results heavily rely on the assumption that trading strategies affect asset

prices only via their instantaneous value. It would be desirable, though, to be able to

deal also with dynamic aspects of illiquidity. Indeed, from a market microstructure

perspective, every trade in the past will have a lasting effect on the trade possibilities

and prices in the future, with the impact being the bigger the more recent the trade

has taken place. Moreover, in the real world illiquidity can show up as bid–offer spreads

or as times when only a limited amount of an asset can be traded. Finally, it would

be interesting to include also the game theoretic aspects resulting from the presence of

several strategically interacting large investors.

It is certainly a challenge to come up with a mathematically tractable model that

covers all the features of real illiquid financial markets. Recent turmoil periods like the

financial crisis in 1987, the Asian and LTCM crisis in 1998 and the boom and bust period

of the internet bubble were all exacerbated if not caused by illiquidity of involved assets.

Therefore, the importance of taking up this challenge can hardly be overestimated.

A Appendix

The following lemma was needed for the proof of Theorem 3.4.
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Lemma A.1 Let θ and ϑT be as in Theorem 3.4, fix a stopping time τ ≤ T and consider

a random variable ϑτ ∈ L0(Fτ ) with ϑτ = ϑT on {τ = T}. For any ε > 0, there exists

a predictable process θε,τ,ϑτ whose paths are continuous and of bounded variation over

[τ, T ] such that θε,τ,ϑτ
τ = ϑτ , θ

ε,τ,ϑτ

T = ϑT and

P
[

sup
τ≤t≤T

∣∣∣∣∫ t

τ

L(θs, ds)−
∫ t

τ

L(θε,τ,ϑτ
s , ds)

∣∣∣∣ ≥ ε

]
≤ ε .

Proof : By construction of the stochastic integral
∫ .

τ
L(θs, ds), there exists a sequence

of simple processes

θn
t =

kn∑
i=0

θn
i 1(tni ,tni+1](t) (t ≥ 0)

with 0 = tn0 < . . . < tnkn+1 = T and θn
i ∈ L0(Ftni

) such that
∫ .

τ
L(θn

s , ds) converges

uniformly in probability to
∫ .

τ
L(θs, ds). In particular, there exists a simple integrand θ̃

such that

P
[

sup
τ≤t≤T

∣∣∣∣∫ t

τ

L(θs, ds)−
∫ t

τ

L(θ̃s, ds)

∣∣∣∣ ≥ ε/2

]
≤ ε/2 .

Now, granted our assertion holds true for simple processes such as θ̃, we can find a

predictable, continuous process θε with paths of bounded variation such that θε
τ = ϑτ ,

θε
T = ϑT and

P
[

sup
τ≤t≤T

∣∣∣∣∫ t

τ

L(θ̃s, ds)−
∫ t

τ

L(θε
s, ds)

∣∣∣∣ ≥ ε/2

]
≤ ε/2 .

Combining the preceding two probability estimates, shows that it suffices to prove the

lemma for simple processes θ of the form

θt =
n∑

i=0

θi1(ti,ti+1](t) (t ≥ 0)

with 0 = t0 < . . . < tn+1 = T and θi ∈ L0(Fti). To this end, let us introduce

for ∆ ∈ (0,mini{ti+1 − ti}/2) a piecewise linear interpolation process θ∆ as follows. On

[0, τ) let θ∆ ∆
= 0, and on [τ∆, T ] with τ∆ ∆

= inf{T −1/k > τ ∨(T −∆) : k = 1, 2, . . .} put

θ∆ ∆
= ϑ̄ where ϑ̄ denotes a piecewise linear, continuous and adapted process of bounded

variation with ϑ̄T = ϑT which changes its slope only in t ∈ {T −1/k : k = 1, 2, . . .}; see

Lemma A.2 below for a construction of such a process. In between τ and τ∆ define θ∆

as the continuous linear interpolation of the points in the random set of interpolation

points

{(τ, ϑτ ), (τ
∆, ϑ̄τ∆)} ∪


{(ti, θi−1), (ti + ∆, θi) : i ≤ n, τ < ti} if τ < tn ,

{((τ + ∆) ∧ (T −∆), θn)} if tn ≤ τ < T −∆ ,

∅ if T −∆ ≤ τ .
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By construction θ∆ is an adapted process with continuous paths of bounded variation

on [τ, T ] which satisfies θ∆
τ = ϑτ and θ∆

T = ϑT . As ∆ ↓ 0, we furthermore have

θ∆
t (ω) → θt(ω) for any ω ∈ Ω and any point in time t ∈ (τ, T )\{t0, . . . , tn+1}. Moreover,

|θ∆
t (ω)| is bounded pathwise by maxi |θi(ω)| ∨ sup |ϑ̄(ω)| < +∞. Hence, we may use

dominated convergence to conclude that the quadratic variation[∫ .

τ

L(θs, ds)−
∫ .

τ

L(θ∆
s , ds)

]
T

=∫ T

τ

{a(θs, θs, s)− 2a(θs, θ
∆
s , s) + a(θ∆

s , θ
∆
s , s)} dAs

tends to 0 in probability as ∆ ↓ 0. Here, a(ϑ, ϑ′, ω, s) denotes a density of
[
Lϑ, Lϑ′

]
(ω)

with respect to the process A(ω) of Assumption 1; by Kunita (1990), Chapter 3.1, this

density can be chosen continuous in (ϑ, ϑ′) ∈ R×R for any (ω, s) ∈ Ω× [0, T ] and such

that for any compact set K ⊂ R×R, ‖a(., ., ω, s)‖∞:K is dAs(ω)–integrable for all ω ∈ Ω,

where ‖.‖∞:K denotes the sup–norm over K. It now follows from the Burkholer–Davis–

Gundy inequality that the martingale part of
∫ .

τ
L(θ∆

s , ds) converges to the martingale

part of
∫ .

τ
L(θs, ds) uniformly in probability as ∆ → 0. A similar argument also proves

uniform convergence in probability of the bounded variation parts. This completes our

proof. 2

The following lemma is needed for the construction of the process θ∆ occurring in

the preceding proof.

Lemma A.2 Any random variable ϑT ∈ L0(FT−) is the terminal value ϑ̄T = ϑT of

some continuous adapted process ϑ̄ with piecewise linear paths of bounded variation which

change slope only in t ∈ {T − 1/k : k = 1, 2, . . .}.

Proof : Let tk
∆
= (T − 1/k)+ (k = 1, 2, . . .), put f(x)

∆
=x/(1 + |x|) (x ∈ R) and

let g
∆
= f−1 denote its inverse. By the martingale convergence theorem, the bounded

martingale Mtk
∆
= E [f(ϑT ) |Ftk ] converges to E [f(ϑT ) |FT−] = f(ϑT ) almost surely

and in L1(P). Hence, by passing to a suitable subsequence t′k > 0, we may assume that

we even have fast L1–convergence in the sense that
∑

k E|Mt′k+1
−Mt′k

| < +∞.

Now, put ϑ̄0
∆
= 0, ϑ̄t′k+1

∆
= g(Mt′k

) (k = 0, 1, . . .) (where t′0
∆
= 0), and extend the defini-

tion of ϑ̄ to the whole interval [0, T ] by letting ϑ̄T
∆
= θT and linear interpolating on each

interval (t′k, t
′
k+1) between the given boundary values ϑ̄t′k

= g(Mt′k−1
), ϑ̄t′k+1

= g(Mt′k
).

This gives us an adapted process ϑ̄ with piecewise linear and continuous paths which
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change slope only in {tk : k = 1, 2, . . .}. The variation of ϑ̄ is given by

+∞∑
k=0

|ϑ̄t′k+1
− ϑ̄t′k

| ≤ |g(M0)|+ sup
|ϑ|≤supk |Mt′

k
|
|g′(ϑ)|

+∞∑
k=1

|Mt′k
−Mt′k−1

| .

As ϑT takes only finite values, supk |Mt′k
| is strictly less than one almost surely, and there-

fore the above supremum over |g′(ϑ)| yields a finite value a.s. By fast L1–convergence

of Mt′k
also the last sum is finite almost surely, and it thus follows that ϑ̄ has paths of

bounded variation. 2
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