Pricing of electricity forwards
– The risk premium –

Fred Espen Benth

In collaboration with Alvaro Cartea (London), Rüdiger Kiesel (Ulm) and Thilo Meyer-Brandis (Oslo/Munich)

Centre of Mathematics for Applications (CMA)
University of Oslo, Norway

Seminar, Carnegie Mellon University, February 23 2009
Introduction

- Problem: what is the connection between spot and forward prices in electricity?
- Electricity is a non-storable commodity
- How to explain the risk premium?
 - Empirical and economical evidence: Sign varies with time to delivery
- Propose two approaches:
 1. Information approach
 2. Equilibrium approach
- Purpose: try to explain the risk premium for electricity
Outline of talk

1. Example of an electricity market: NordPool
2. The “classical” spot-forward relation
3. The information approach
4. The equilibrium approach
5. Conclusions
Example of an electricity market: NordPool
• The NordPool market organizes trade in
 • Hourly spot electricity, next-day delivery
 • Financial forward contracts
 • In reality mostly futures, but we make no distinction here
 • European options on forwards
• Difference from “classical” forwards:
 • Delivery over a period rather than at a fixed point in time
Elspot: the spot market

- A (non-mandatory) hourly market with physical delivery of electricity
- Participants hand in bids before noon *the day ahead*
 - Volume and price for each of the 24 hours next day
 - Maximum of 64 bids within technical volume and price limits
- NordPool creates demand and production curves for the next day before 1.30 pm
• The *system price* is the equilibrium
 • Reference price for the forward market
• Historical system price from the beginning in 1992
 • note the spikes....
The forward market

- Forward with delivery over a period
- Financial market
- Settlement with respect to system price in the delivery period
- Delivery periods
 - Next day, week or month
 - Quarterly (earlier seasons)
 - Yearly
- Overlapping settlement periods (!)
- Contracts also called *swaps*: Fixed for floating price
The option market

- European call and put options on electricity forwards
 - Quarterly and yearly electricity forwards
- Low activity on the exchange
- OTC market for electricity derivatives huge
 - Average-type (Asian) options, swing options
<table>
<thead>
<tr>
<th>Introduction</th>
<th>NordPool</th>
<th>The spot-forward relation</th>
<th>The information approach</th>
<th>The equilibrium approach</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>The spot-forward relation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The spot-forward relation
The spot-forward relation: some “classical” theory

• The no-arbitrage forward price (based on the buy-and-hold strategy)

\[F(t, T) = S(t)e^{r(T-t)} \]

• A risk-neutral expression of the price as

\[F(t, T) = \mathbb{E}_Q [S(T) | \mathcal{F}_t] \]

• The risk premium is defined as

\[R(t, T) = F(t, T) - \mathbb{E} [S(T) | \mathcal{F}_t] \]
• In the case of electricity:
 • Storage of spot is *not* possible (only indirectly in water reservoirs)
 • Buy-and-hold strategy fails
 • No foundation for the “classical” spot-forward relation
 • ...and hence no rule for what Q should be!

• Thus: What is the link between $F(t, T)$ and $S(t)$?
Economical “intuition” for electricity

- Short-term *positive* risk premium
 - Retailers (consumers) hedge “spike risk”
 - Spikes lead to expensive electricity
 - Accept to pay a premium for locking in prices in the short-term

- Long-term *negative* risk premium
 - Producers hedge their future production
 - Long-term contracts (quarters/years)

- The market may have a change in the sign of the risk premium
Empirical evidence for electricity

- Longstaff & Wang (2004), Geman & Vasicek: PJM market
 - Positive premium in the short-term market
- Diko, Lawford & Limpens (2006)
 - Study of EEX, PWN, APX, based on multi-factor models
 - Changing sign of the risk premium
- Kolos & Ronn (2008)
 - Market price of risk: expected risk-adjusted return
 - Multi-factor models
 - Negative on the short-term, positive on the long term
• Explore two possible approaches to price electricity futures
 1. The information approach based on market forecasts
 2. An equilibrium approach based on market power of the consumers and producers

• For simplicity we first restrict our attention to $F(t, T)$
 • Electricity forwards deliver over a time period
 • Creates technical difficulties for most spot models
 • Ignore this here
 • In the equilibrium approach we consider delivery periods
The information approach
The information approach: idea

- Idea is the following:
 - Electricity is non-storable
 - Future predictions about market will not affect current spot
 - However, it will affect forward prices

- Stylized example:
 - Planned outage of a power plant in one month
 - Will affect forwards delivering in one month
 - But *not* spot today

- Market example
 - In 2007 market knew that in 2008 CO2 emission costs will be introduced
 - No effect on spot prices in the EEX market in 2007
 - However, clear effect on the forward prices around New Year
Introduction
NordPool
The spot-forward relation
The information approach
The equilibrium approach
Conclusions
The information approach: definition

- Define the forward price as

\[F_G(t, T) = \mathbb{E}[S(T) | G_t] \]

- \(G_t \) includes spot information up to current time (\(F_t \)) and forward-looking information

- The information premium

\[l_G(t, T) = F_G(t, T) - \mathbb{E}[S(T) | F_t] \]
• Rewrite the information premium using double conditioning and $\mathcal{F}_t \subset \mathcal{G}_t$

$$l_G(t, T) = \mathbb{E} [S(T) | \mathcal{G}_t] - \mathbb{E} [\mathbb{E} [S(T) | \mathcal{G}_t] | \mathcal{F}_t]$$

• The information premium is the residual random variable after projecting $F_G(t, T)$ onto $L^2(\mathcal{F}_t, \mathbb{P})$
 - l_G measures how much more information is contained in \mathcal{G}_t compared to \mathcal{F}_t
• Note that

\[\mathbb{E} \left[l_G(t, T) \mid \mathcal{F}_t \right] = 0 \]

• \(l_G(t, T) \) is orthogonal to \(R(t, T) \)
 • The risk premium \(R(t, T) \) is \(\mathcal{F}_t \)-adapted

• Thus, impossible to obtain a given \(l_G(t, T) \) from an appropriate choice of \(Q \) in \(R(t, T) \)
 • Including future information creates new ways of explaining risk premia
Example: temperature predictions

- Temperature dynamics
 \[dY(t) = \gamma(\mu(t) - Y(t)) \, dt + \eta \, dB(t) \]

- Spot price dynamics
 \[dS(t) = \alpha(\lambda(t) - S(t)) \, dt + \sigma \rho \, dB(t) + \sigma \sqrt{1 - \rho^2} \, dW(t) \]

- \(\rho \) is the correlation between temperature and spot price
 - NordPool: \(\rho < 0 \), since high temperature implies low prices, and vice versa
• Suppose we have some temperature forecast at time T_1
 • Full, or at least some, knowledge of $Y(T_1)$
 $$\mathcal{F}_t \subset \mathcal{G}_t \subset \mathcal{H}_t \triangleq \mathcal{F}_t \lor \sigma(Y(T_1))$$

• We want to compute (for $T \leq T_1$)
 $$F_G(t, T) = \mathbb{E}[S(T) | \mathcal{G}_t]$$

• Program:
 1. Find a Brownian motion wrt \mathcal{G}_t
 2. Compute the conditional expectation
• From the theory of “enlargement of filtrations”:
 • There exists a \(G_t \)-adapted drift \(\theta_1 \) such that \(\tilde{B} \) is a \(G_t \)-Brownian motion,
 \[
 d\tilde{B}(t) = dB(t) - \theta_1(t) \, dt
 \]
 • The drift is expressed as
 \[
 \theta_1(t) = a_1(t) \left(e^{\gamma T_1} \mathbb{E}[Y(T_1) | G_t] - e^{\gamma t} Y(t) - \gamma \int_t^{T_1} \mu(u) e^{\gamma u} \, du \right)
 \]
 \[
 a_1(t) = \frac{2 \gamma e^{\gamma t}}{\eta (e^{2 \gamma T_1} - e^{2 \gamma t})}
 \]
Dynamics of S in terms of \tilde{B}:

$$dS(t) = \alpha \left(\rho \frac{\sigma}{\alpha} \theta_1(t) + \lambda(t) - S(t) \right) dt + \sigma \rho \, d\tilde{B}(t) + \sigma \sqrt{1 - \rho^2} \, dW(t)$$

Note that we have a mean-reversion level being \textit{stochastic}:

- Explicitly dependent on the temperature prediction and today's temperature

$\theta_1(t)$ is the \textit{market price of information, or information yield}
• Calculate the forward price

\[
F_G(t, u) = \mathbb{E}[S(u) \mid \mathcal{F}_t] + l_G(t, T)
\]

\[
= S(t)\exp(-\alpha(T-t)) + \alpha \int_t^T \lambda(s)e^{-\alpha(T-s)} \, ds + l_G(t, T)
\]

• The information premium is, by applying the definition

\[
l_G(t, T) = \rho \sigma \mathbb{E}\left[\int_t^T e^{-\alpha(T-s)} \, dB(s) \mid \mathcal{G}_t\right]
\]

• Use that \(\tilde{B} \) is a \(\mathcal{G}_t \)-Brownian motion
• Expression for the information premium

\[I_G(t, T) = \rho A(t, T) \left(e^{\gamma T_1} \mathbb{E}[Y(T_1)|G_t] - e^{\gamma t} Y(t) - \gamma \int_t^{T_1} \mu(s)e^{\gamma s} ds \right) \]

where

\[A(t, T) = \frac{2\gamma \sigma e^{\gamma T} (1 - e^{-(\alpha+\gamma)(T-t)})}{\eta(\alpha + \gamma)(e^{2\gamma T_1} - e^{2\gamma t})} \]

• Observe that \(A(t, T) \) is positive
• The sign of the information premium is determined by
 • The correlation \(\rho \)
 • The temperature prediction
Example with complete information

• Suppose we know the temperature at T_1
 • The information set is \mathcal{H}_t
 • Unlikely situation of perfect future knowledge....

• Assume we we expect a temperature drop

$$Y(T_1) < e^{-\gamma(T_1-t)} Y(t) + \gamma \int_t^{T_1} \mu(s)e^{-\gamma(T_1-s)} ds$$

• At NordPool, where $\rho < 0$:
 • The information premium is positive

• Drop in temperature will lead to increasing demand, and thus higher prices
The equilibrium approach
The equilibrium approach: idea

- Producers and consumers can trade in both spot and forward markets
 - No speculators in our set-up
- We suppose that the forwards deliver electricity over an agreed period
 - No fixed delivery time as in other commodity markets
 - Natural for electricity due to its nature
- Choice of an electricity producer
 - Sell production on spot market, or on the forward market
• Producer is indifferent when \((U_{pr} \text{ is the utility function})\)

\[
\mathbb{E} \left[U_{pr}\left(\int_{\tau_1}^{\tau_2} S(u) \, du \right) \right] = \mathbb{E} \left[U_{pr} \left((\tau_2 - \tau_1)F_{pr}(t, \tau_1, \tau_2) \right) \right]
\]

• The certainty equivalence principle
• \(F_{pr}\) is the lowest acceptable price for the producer can accept to be interested in entering a forward
 • Similarly, \(F_{c}\) is the highest acceptable price for the consumer, for a given utility function \(U_{c}\)
• We assume exponential utility \(U(x) = 1 - \exp(-\gamma x)\), with respective risk aversion for producer and consumer \(\gamma_{pr}\) and \(\gamma_{c}\)
• By Jensen’s inequality, the predicted average spot price is within the price bounds

\[
F_{pr}(t, \tau_1, \tau_2) \leq \mathbb{E} \left[\frac{1}{\tau_2 - \tau_1} \int_{\tau_1}^{\tau_2} S(u) \, du \mid \mathcal{F}_t \right] \leq F_c(t, \tau_1, \tau_2)
\]

• Hypothesis: The settlement price of the forward will depend on the market power \(p \in [0, 1] \) of the producer

\[
F^p(t, \tau_1, \tau_2) = pF_c(t, \tau_1, \tau_2) + (1 - p)F_{pr}(t, \tau_1, \tau_2)
\]
• Assume a simple two-factor spot model with jump component

\[S(t) = \Lambda(t) + X(t) + Y(t) \]

• \(\Lambda(t) \) seasonal function

\[dY(t) = -\lambda Y(t) dt + Z dN(t) \]

• Jumps (accounting for spikes)
 • \(Z \) jump size
 • \(N \) Poisson process

• Slowly varying base component

\[dX(t) = -\alpha X(t) dt + \sigma dB(t) \]
• Calculate prices for weekly contracts and compute the risk premium
 • The market power set to $p = 0.25$
 • Constant positive jumps at rate 2/year

• Note the **positive** risk premium in the short end
 • Caused by the jump risk
Empirical example: EEX (Metka, Ulm)

- Fit two-factor model to daily EEX spot prices (Jan 02 – Dec 05)
• Using observed prices for 18 monthly forward contracts and fitted spot model
 • Calculate the risk premium,
 • Difference between forward price and predicted spot
 • Observe a positive premium in the short end, and negative in the long end
• Based on all available forward prices in the study, risk aversion parameters were determined
 • \(\gamma_{pr} \geq 0.421 \) and \(\gamma_{c} \geq 0.701 \) are such that
 \[
 F_{pr}(t, \tau_1, \tau_2) \leq F(t, \tau_1, \tau_2) \leq F_{c}(t, \tau_1, \tau)
 \]

• Calculate the empirical market power

\[
p(t, \tau_1, \tau_2) = \frac{F(t, \tau_1, \tau_2) - F_{pr}(t, \tau_1, \tau_2)}{F_{c}(t, \tau_1, \tau_2) - F_{pr}(t, \tau_1, \tau_2)}
\]
• Observe that producer’s power is strong in the short end, while decreasing to be rather weak in the long end.
Conclusions

- Discussed two potential ways to understand the link between spot and forward prices in electricity markets
- Information approach:
 - Include future information in pricing
- Equilibrium approach:
 - Certainty equivalence principle for upper and lower bounds of prices
 - Use market power as an explanatory variable for price formation
Coordinates

- fredb@math.uio.no
- folk.uio.no/fredb
- www.cma.uio.no
References

Benth and Meyer-Brandis (2007). The information premium in electricity markets. E-print