
Interfacing Dir3 with a Finite Element Code

Alexander P. Rand and Noel J. Walkington

November 3, 2009

1 Introduction

The mesh generator dir3 reads a .plc file1 representing a region Ω ⊂ R3 and
produces a .tplc file representing a tetrahedral decomposition of Ω. To assist
the development of applications codes which use such meshes we have provided
code to read .tplc files and iterate over the tetrahedra and boundary triangles
in the mesh. More functionality is available from a second code which inter-
faces directly with the dir3 libraries. Currently only a minimal subset of the
possible geometric predicates available from dir3 have been exported to this
interface. A simple finite element code to solve Poisson’s equation is provided
as a prototypical application.

2 Running the Finite Element Code

Within the SimpleFem directory typing make poisson will make the executable
file poisson. This is a basic finite element code that reads a .tplc file and
solves Poisson’s equation on the triangulated domain. Run the code by typ-
ing poisson Data/pyr.0.200. The file ./Data/pyr.0.200.tplc contains data
representing a triangulation of a pyramid. The output should be similar to that
in Figure 1.

The purpose of this code is to illustrate how the mesh generation capabilities of
dir3 may be integrated within an application code. The finite element technique
is very versatile, and we have provided a small suite of options to illustrate

1The .plc file extension denotes “piecewise linear complex” (plc) and the .tplc denotes a
“triangulated plc”.

1

bash-3.2$./poisson Data/pyr.0.200

Sample finite element code:

Example 0: Laplaces Equation

Solution of 3d Poisson equation

Initializing dir3Mesh(Data/pyr.0.200): (reads .tplc file)

Number of vertices read in = 452

Number of boundary triangles = 634

Number of tetrahedra = 1728

Initializing feMesh()

Number of degrees of freedom = 2948

Leaving constructor

Number of basis functions per element = 10

Number of unknowns = 2948

Half band width = 2723

Time to initialize mesh and matrix classes 0.296

Number of elements = 1728

Time to assemble element matricies 0.453

Number of boundary elements = 634

Time to assemble boundary element matrices 0.015

Time to solve linear equations 66.894

L-2 norm H-1 semi-norm H-1 norm

Exact Solution 3.902742e+00 1.662577e+01 1.707769e+01

F. E. Solution 3.903708e+00 1.662201e+01 1.707426e+01

Errors 1.219720e-02 5.371590e-01 5.372974e-01

Time to compute norms 0.203

Total CPU time 67.861

~bandMV() serial banded matrix class

bash-3.2$

Figure 1: Output from poisson Data/pyr.0.200

2

various levels of integration a user may wish to work with. Manipulating the
definitions at the top of poisson.h toggles the following options.

1. Different Solutions: Two solutions of Poisson’s equation, −∆u = f have
been coded.

u(x, y, z) = cos
(
πx/
√

2
)

exp
(
πy

)
sin

(
πz/
√

2
)
, with f(x, y, z) = 0,

is the default (zeroth) solution and explicitly selected with the second
command line argument, poisson Data/pyr.0.200 0. The other (first)
solution,

u(x, y, z) = x2 + 2y2 with f(x, y, z) = −6,

and is selected from the command line using poisson Data/pyr.0.200 1.

These functions are declared at the end of poisson.h and coded in examples3d.C;
additional solutions are easily added. The function u(x, y, z) is used to
specify Dirichlet boundary and the normal derivative required for Neu-
mann boundary data is computed using ∇u.n. Only boundary values are
required for the finite element solutions. In order to compute the L2(Ω)
and H1(Ω) errors u and its gradient, ∇u, are required everywhere.

2. dir3 Interface: The lines

#define TPLC

// #define PLC

determine the interface with the mesh generator. With the TPLC option
the finite element code reads a .tplc file to obtain the mesh using the
interface provided in ./Geometry/dir3TPLC.C.

The PLC option uses the library functions provided by dir3. In this case
a .plc and configuration file .cfg are read and dir3 generates the mesh.
This interface has the capability to access all of the features available
from dir3. Currently the only additional feature implemented is point
location. However, dir3 implements a full suite of iterators and geometric
and topological predicates, all of which would be easy to access through
the interface provided in ./Geometry/dir3TPLC.C.

Using the PLC requires the makefile is set up to find the correct directory
containing the dir3 library. The relevant lines of the makefile are given
below.

3

DIR3_INC =

DIR3_LIB =

#DIR3_DIR = $(HOME)/dir3-0.9

#DIR3_INC = -I$(DIR3_DIR)/inc

#DIR3_LIB = $(DIR3_DIR)/lib/dir3.a

The first two lines are appropriate for using the TPLC option while the final
three are needed for the PLC option. The DIR3_DIR variable should be set
link to the dir3 code in your environment.

3. Linear or Quadratic Elements: Classical linear or quadratic Lagrange
finite elements may be selected with the lines

//#define LinearElements

#define QuadraticElements

Running the code with linear elements will result in a less accurate solution.

4. Two or Three Dimensions: Aside from the basis functions, the struc-
ture of a finite element code is independent of dimension. To illustrate this,
an interface which reads the files produced by the two dimensional mesh
generation code triangle is provided in ./Geometry/triangleMesh.C.
The lines

#define NDIM 3

// #define NDIM 2

in poisson.h are used to select two or three dimensions. The default
solution in two dimensions is

u(x, y) = cos (πx) exp (πy) , with f(x, y) = 0.

The files ./Data/mesh6.1.* and ./Data/mesh6bl.1.* were produced by
triangle. Executing poisson Data/mesh6.1 will solve the corresponding
Poisson’s problem.

5. Linear Solver: The finite element methodology gives rise to a large sparse
system of linear equations and there are many specialized packages to
efficiently solve this class of problems. The linear solver provided is a

4

banded Gauss elimination routine. This is simple, robust, but slow. Also,
the mesh generation routines do not order the vertices to minimize the band
width of the linear system so bandwidth (and hence memory required) is
unnecessarily large. (All efficient direct linear solvers internally reorder the
variables to minimize bandwidth and/or fill.)

Interfaces to the PETSC iterative and Spooles direct solvers are provided.
These are selected from poisson.h with the lines

#define BandMatrix

//#define SpoolesMatrix

//#define PetscMatrix

Aside from having these packages installed on your system, to use these
solvers it is necessary to modify the makefile to point to their location.

(a) PETSC Interface: PETSC is a package of iterative solvers which will
run on serial and parallel machines. The PETSC installation process
should set the following environment variables:

noelw@noelwpc:~> export | grep PETSC

declare -x PETSC_ARCH="linux-gnu-opt"

declare -x PETSC_DIR="/usr/local/petsc-2.3.3-p4"

The following lines in the makefile then access the serial version of
the PETSC package.

#PETSC 2.3

include ${PETSC_DIR}/bmake/common/base

#PETSC 3.0

#include ${PETSC_DIR}/conf/base

and

poisson: $(femFiles)

banded matrix

g++ $(CFLAGS) -o poisson poisson.C $(BOOST_INC) $(DIR3_INC) $(DIR3_LIB) -lpthread

spooles

g++ $(CFLAGS) -o poisson poisson.C $(BOOST_INC) $(DIR3_INC) $(DIR3_LIB) $(SPOOLES_I) $(SPOOLES_A) -lpthread

#PETSC 2.3

$(CLINKER) ${PETSC_INCLUDE} -o poisson poisson.C $(BOOST_INC) $(DIR3_INC) $(DIR3_LIB) ${PETSC_KSP_LIB} -lpthread

#PETSC 3.0

5

g++ -O ${PETSC_INCLUDE} $(BOOST_INC) $(DIR3_INC) -o poisson poisson.C $(DIR3_LIB) ${PETSC_KSP_LIB} -lpthread

The code in ./LinearAlgebra/petscMatrix.C solves the linear sys-
tem using an ILU preconditioned Krylov subspace iterative solver.
This package can easily solve the Poisson problem with a million
variables on a modest laptop.

(b) Spooles Interface: The Spooles package is a sparse direct solver
which uses nested dissection. While it was designed to be compiled in
C, it can be compiled with the g++ compiler by following the directions
documented at the beginning of the file in ./LinearAlgebra/spoolesMatrix.C.
Granted this, the following lines in the makefile will access this
solver.

SPOOLES_DIR=$(HOME)/Spooles

SPOOLES_I = -I$(SPOOLES_DIR)/LinSol

SPOOLES_A = $(SPOOLES_DIR)/LinSol/srcMT/BridgeMT.a $(SPOOLES_DIR)/LinSol/srcST/Bridge.a $(SPOOLES_DIR)/MT/src/spoolesMT.a $(SPOOLES_DIR)/spooles.a

where the first line must point to the directory where Spooles is
installed. Then the line to build poisson with this solver is

poisson: $(femFiles)

banded matrix

g++ $(CFLAGS) -o poisson poisson.C $(BOOST_INC) $(DIR3_INC) $(DIR3_LIB) -lpthread

spooles

g++ $(CFLAGS) -o poisson poisson.C $(BOOST_INC) $(DIR3_INC) $(DIR3_LIB) $(SPOOLES_I) $(SPOOLES_A) -lpthread

#PETSC 2.3

$(CLINKER) ${PETSC_INCLUDE} -o poisson poisson.C $(BOOST_INC) $(DIR3_INC) $(DIR3_LIB) ${PETSC_KSP_LIB} -lpthread

#PETSC 3.0

g++ -O ${PETSC_INCLUDE} $(BOOST_INC) $(DIR3_INC) -o poisson poisson.C $(DIR3_LIB) ${PETSC_KSP_LIB} -lpthread

6

