Quiz #2

1. (2.5 points) Find an equation for the tangent line to the curve:

$$x(t) = t^2 - 2t$$
 and $y(t) = t^2 + 2t$,

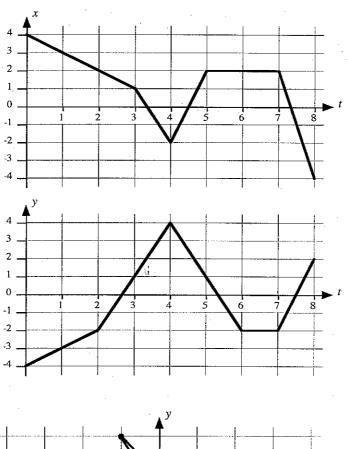
when t = 1. Show your work, write your final answer in the space provided below, and express your final answer in the form: $y = m \cdot x + b$.

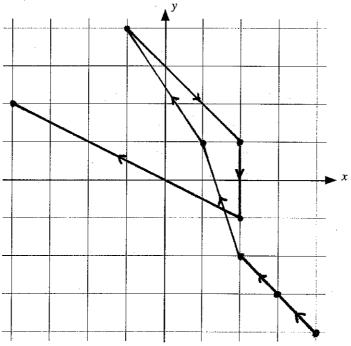
The coordinates of the point of tangency are: x(1) = 1 - 2 = -1 y(1) = 1 + 2 = 3

The slope of the tangent line, m, is calculated:

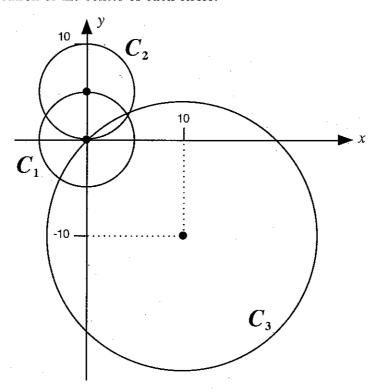
$$\frac{dx}{dt} = 2t - 2 \qquad \text{so} \qquad \frac{dx}{dt} \bigg|_{t=1} = 0$$

$$\frac{dy}{dt} = 2t + 2 \qquad \text{so} \qquad \frac{dy}{dt} = 4.$$


The derivative dy/dx is undefined at the point (-1,3) as dx/dt=0. This means that


the tangent line is vertical.

FINAL ANSWER:


$$\times = -1.$$

2. (3 points) The graphs shown below give the x- and y-coordinates of a point as functions of time t. Use the axes provided at the bottom of the page to draw an accurate sketch of the path that the particle follows in the x-y plane.

3. (4.5 points) The diagram shown below shows three circles, C_1 , C_2 and C_3 . The dots show the location of the center of each circle.

The parametric equations for each of the three circles can be written in the form:

$$x(t) = a + k \cdot \cos(t)$$
 and $y(t) = b + k \cdot \sin(t)$,

with $0 \le t \le 2\pi$ where a, b and k are all constants. Determine the values of a, b and k for each circle and record your values in the table given below. If you believe that there is insufficient information to determine the value of a particular constant for a particular circle, write "INS" in the corresponding part of the table.

	Circle C ₁	Circle C ₂	Circle C ₃
а	0	0	10
b	0	5	-10
k	5	5	10 12