Handout 2: In-Class Review for Exam 1

The topics covered by Exam 1 in the course include the following:

- · Parametric curves.
- Finding formulas for parametric curves.
- Drawing graphs of curves defined by parametric equations.
- Finding tangent lines to curves defined by parametric equations.
- Finding the area beneath (between the curve and the x-axis) a parametric curve.
- Finding the arc length of a parametric curve.
- Polar coordinates for the xy-plane.
- Identifying regions of the xy-plane described by polar coordinates.
- · Converting Cartesian equations to polar equations.
- Converting polar equations to Cartesian equations.
- Sketching curves in the xy-plane defined by polar equations.
- Finding formulas for tangent lines to curves defined by polar equations.
- Finding areas enclosed by polar curves.
- Finding arc lengths of curves defined by polar equations.
- · Conic sections in Cartesian and polar coordinates.
- Sketching conic sections defined by polar equations. Identifying eccentricity, directrix, etc. from a polar equation. Classifying conic sections using eccentricity.
- Equations of lines, planes and spheres in 3D.
- · Combining vectors. Magnitude of a vector. Unit vectors.
- Applications of vectors in physics.
- Dot product of vectors. Angle between vectors. Orthogonality. Vector projections.
- Cross product of vectors. Geometry of the cross product. Cross product and areas.
- Calculating volumes with the scalar triple product.
- Finding equations for lines and planes in 3D using the cross product.
- Distances from points to lines and planes, and from lines to planes.
- Symmetric equations.
- 1. For each of the curves defined below:

(i)
$$r = \frac{9}{6 + 2 \cdot \cos(\theta)}$$
 (ii)
$$r = \frac{9}{2 \cdot \cos(\theta)}$$

- (a) Determine the eccentricity.
- **(b)** Identify the type of curve.
- (c) Sketch an accurate graph of the curve using the axes provided.

(i)
$$r = \frac{3/2}{1 + \frac{1}{3} \cos(\theta)}$$

$$r \cdot \cos(\theta) = \frac{9}{2}$$

$$x = \frac{9}{2}$$

θ	
0	9/8
17/2	9/6
π	9/4
3π/ ₂	9/6

- 2. Find parametric equations for each of the following lines described below.
 - (a) The line that passes through the point (-2, 2, 4) and is perpendicular to the plane 2x y + 5z = 12.

The direction vector of the line is the normal vector to the plane, $\langle 2, -1, 5 \rangle$.

The vector equation of the line is:

$$\langle x, y, z \rangle = \langle -2, 2, 4 \rangle + t \cdot \langle 2, -1, 5 \rangle$$

The parametric equations are:

$$x = -2 + 2t$$

 $y = 2 - t$
 $z = 4 + 5t$

(b) The line that passes through the two points (4, -1, 2) and (1, 1, 5).

The parametric equations are:

$$x = (1-t) \cdot 4 + t \cdot 1 = 4 - 3t$$

$$y = (1-t)(-1) + t \cdot 1 = -1 + 2t$$

$$z = (1-t)(2) + t \cdot 5 = 2 + 3t$$

The line that is formed by the intersection of the two planes x + y - z = 1 and 2x - 3y + 4z = 5.

First we must find a point on the line.

Suppose Z = 0. Then:

$$x + y = 1$$

$$2x - 3y = 5$$

The solution is: $x = \frac{8}{5}$ $y = -\frac{3}{5}$.

The point is: (8/5, -3/5, 0).

The direction Vector of the line is the cross product of the two normal vectors.

Vector equation of line:

$$\langle x, Y, \Xi \rangle = \langle 8/5, -3/5, 0 \rangle + t \cdot \langle 1, -6, -5 \rangle$$

Parametric equations:

$$x = \frac{8}{5} + t$$
 $y = \frac{-3}{5} - 6t$
 $z = \frac{-5t}{5}$

3. Find the length of each of the following curves.

(a)
$$x(t) = 3t^2$$
 and $y(t) = 2t^3$ where $0 \le t \le 2$. $\frac{dx}{dt} = 6t$ $\frac{dy}{dt} = 6t^2$

Arc length =
$$\int_{0}^{2} \sqrt{(6t)^{2} + (6t^{2})^{2}} dt$$

= $\int_{0}^{2} 6t \cdot \sqrt{1 + t^{2}} dt$ $u = 1 + t^{2}$
= $\left[\frac{4}{3}u^{3/2}\right]_{1}^{5}$
= $4/3(5^{3/2} - 1)$

(b)
$$r = \frac{1}{\theta}$$
 where $\pi \le \theta \le 2\pi$. $f(\theta) = \frac{1}{\theta}$ $f'(\theta) = -\frac{1}{\theta^2}$

Arc length =
$$\int_{\pi}^{2\pi} \sqrt{(1/\theta)^2 + (-1/\theta^2)^2} d\theta$$
$$= \int_{\pi}^{2\pi} \frac{\sqrt{\theta^2 + 1}}{\theta^2} d\theta$$

$$= \left[\frac{-\sqrt{\theta^2+1}}{\theta} + \ln\left(\theta+\sqrt{\theta^2+1}\right)\right]_{\pi}^{2\pi}$$
 (Using Integration formula.)
$$= \frac{2\sqrt{\pi^2+1} - \sqrt{4\pi^2+1}}{2\pi} + \ln\left(\frac{2\pi+\sqrt{4\pi^2+1}}{\pi+\sqrt{\pi^2+1}}\right)$$

(c)
$$r = \sin^3(\frac{\theta}{3})$$
 where $0 \le \theta \le \pi$. $f(\theta) = \sin^3(\frac{\theta}{3})$

$$f'(\theta) = -3 \cdot \sin^2(\frac{\theta}{3}) \cdot \cos(\frac{\theta}{3}) \cdot \frac{1}{3}$$

Are length =
$$\int_{0}^{\pi} \sqrt{\sin^{6}(\frac{\theta}{3}) + \sin^{4}(\frac{\theta}{3}) \cdot \cos^{2}(\frac{\theta}{3})} d\theta$$

$$= \int_{0}^{\pi} \sin^{2}(\frac{\theta}{3}) d\theta$$

$$= \frac{1}{2} \int_{0}^{\pi} \left(1 - \cos(\frac{2\theta}{3})\right) d\theta$$

$$= \frac{1}{2} \left[\theta - \frac{3}{2} \sin(\frac{2\theta}{3})\right]_{0}^{\pi}$$

$$= \frac{\pi}{2} - \frac{3\sqrt{3}}{8}.$$

4. In this problem you may assume that a is a positive constant. Find the coordinates (x and y) of the points where the curve defined by:

$$x(t) = 2a \cdot \cos(t) - a \cdot \cos(2t) \qquad \text{and} \qquad y(t) = 2a \cdot \sin(t) - a \cdot \sin(2t)$$

has (a) horizontal, and (b) vertical tangent lines. Once you have identified these points, use the axes provided (see next page) to sketch the curve.

$$X'(t) = -2a \cdot sin(t) + 2a \cdot sin(2t)$$

 $Y'(t) = 2a \cdot cos(t) - 2a \cdot cos(2t)$

Solutions of x'(t) = 0:

$$sin(2t) - sin(t) = 0$$

$$sin(t) \cdot \begin{bmatrix} 2 \cdot cos(t) & -1 \end{bmatrix} = 0$$

$$t = n\pi$$
 and $t = \frac{\pi}{3} + 2n\pi$

$$n \in \mathbb{Z}.$$

solutions of y'(t) = 0:

$$cos(2t) - cos(t) = 0$$

$$2\cos^2(t) - \cos(t) - 1 = 0$$

$$\cos(t) = \frac{1 \pm \sqrt{1^2 - 4(2)(-1)}}{(2)(2)} = -\frac{1}{2}, 1.$$

$$t = (2n+1)\frac{\pi}{2} \quad \text{and} \quad t = \frac{2\pi}{3} + 2n\pi$$

$$t = \frac{4\pi}{3} + 2n\pi$$

Points where tangent line is vertical:

$$(-3a, 0), (\frac{3}{2}a, a), (\frac{3}{2}a, -a)$$

Points where tangent line is horizontal:

$$(-\frac{9}{2}, \frac{3\sqrt{3}}{2}.a), (-\frac{9}{2}, -\frac{3\sqrt{3}}{2}.a)$$

- 5. Each part of this problem describes a region of the xy-plane. Find the area of each region.
 - (a) The region lies within the curve $r = 1 + 2 \cdot \cos(\theta)$ and outside the circle r = 2.

To find the limits of integration, find the intersection points of the curve:

$$1 + 2 \cdot \cos(\theta) = 2$$

$$\cos(\theta) = \frac{1}{2}$$

$$\theta = \pm \frac{\pi}{3}$$

Area =
$$\frac{1}{2} \int_{-\pi/3}^{\pi/3} \left[(1 + 2\cos(\theta))^2 - 2^2 \right] d\theta$$

= $\int_{0}^{\pi/3} (4\cos(\theta) + 4\cos^2(\theta) - 3) d\theta$
= $\int_{0}^{\pi/3} (4\cos(\theta) + 2\cos(2\theta) - 1) d\theta$
= $\left[4\sin(\theta) + \sin(2\theta) - \theta \right]_{0}^{\pi/3}$
= $\frac{15\sqrt{3} - 2\pi}{6}$

(b) The region lies inside both $r^2 = \cos(2\theta)$ and $r^2 = \sin(2\theta)$.

To find the limits of integration, find the intersection point:

$$\sin(2\theta) = \cos(2\theta)$$

$$2\theta = \pi/4$$

$$\theta = \pi/8.$$

Next, solve the equation: $r^2 = \cos(2\theta) = 0$ $\theta = \pi/4$.

Area =
$$\int_{0}^{\pi/g} \sin(2\theta) d\theta + \int_{\pi/g}^{\pi/4} \cos(2\theta) d\theta$$

$$= \left[-\frac{1}{2} \cos(2\theta) \right]_{0}^{\pi/g} + \left[\frac{1}{2} \sin(2\theta) \right]_{\pi/g}^{\pi/4}$$

$$= \frac{1}{2} \left(2 - \sqrt{2} \right).$$

plane

6. Find an equation for the that passes through the points (1, 0, -1) and (2, 1, 0) that is parallel to the line of intersection of the planes x + y + z = 5 and 3x - y = 4.

The direction vector of the line is given by:

$$\langle 1, 1, 1 \rangle \times \langle 3, -1, 0 \rangle = 0$$
 $j = 0$ $j =$

$$= \langle 1, 3, -4 \rangle.$$

The vector <1,3,-4> lies in the plane.

A second vector is given by:

$$\langle 2-1, 1-0, 0--1 \rangle = \langle 1, 1, 1 \rangle.$$

The normal vector to the plane is:

$$\langle 1, 3, -4 \rangle \times \langle 1, 1, 1 \rangle = i j k i j$$

 $\begin{vmatrix} 1 & 3 & -4 & 1 & 3 \\ 1 & 1 & 1 & 1 & 1 \end{vmatrix}$
 $= \langle 7, -5, -2 \rangle$

The point (1,0,-1) lies in the plane. The equation of the plane is:

$$7(x-1) + -5(y-0) + -2(2--1) = 0$$