Math 259 Winter 2009

Handout 2: In-Class Review for Exam 1

The topics covered by Exam 1 in the course include the following:

¢ Parametric curves.

¢  Finding formulas for parametric curves.

* Drawing graphs of curves defined by parametric equations.

¢ Finding tangent lines to curves defined by parametric equations.

¢  Finding the area beneath (between the curve and the x-axis) a parametric curve.

¢ Finding the arc length of a parametric curve.

¢ Polar coordinates for the xy-plane.

¢ Identifying regions of the xy-plane described by polar coordinates.

* Converting Cartesian equations to polar equations.

¢ Converting polar equations to Cartesian equations.

*  Sketching curves in the xy-plane defined by polar equations.

*  Finding formulas for tangent lines to curves defined by polar equations.

* Finding areas enclosed by polar curves.

¢ Finding arc lengths of curves defined by polar equations.

*  Conic sections in Cartesian and polar coordinates.

*  Sketching conic sections defined by polar equations. Identifying eccentricity, directrix, etc. from a polar
equation. Classifying conic sections using eccentricity.

¢ Equations of lines, planes and spheres in 3D.

¢ Combining vectors. Magnitude of a vector. Unit vectors.

*  Applications of vectors in physics.

* Dot product of vectors. Angle between vectors. Orthogonality. Vector projections.

*  Cross product of vectors. Geometry of the cross product. Cross product and areas.

* Calculating volumes with the scalar triple product.

* Finding equations for lines and planes in 3D using the cross product.

¢ Distances from points to lines and planes, and from lines to planes.

*  Symmetric equations.

1. For each of the curves defined below:
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(a) Determine the eccentricity.

(b) Identify the type of curve.

(c) Sketch an accurate graph of the curve using the axes provided.
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Find parametric equations for each of the following lines described below.

(a) The line that passes through the point (-2, 2, 4) and is perpendicular to the plane 2x — y +
5z=12.

(b) The line that passes through the two points (4, -1, 2) and (1, 1, 5).



(c) The line that is formed by the intersection of the two planes x + y — z =1 and 2x — 3y + 4z
=35.



Find the length of each of the following curves.

(a) x(t) =3¢ and y(f) = 21 where 0 < < 2.

(b) r=%where T=<0<2m.

(c) r =sin’ (%) where O <O <.



In this problem you may assume that a is a positive constant. Find the coordinates (x and y) of
the points where the curve defined by:

x(1)=2a-cos(r) - a- cos(2t) and y(1)=2a"sin(t) - a- sin(2r)

has (a) horizontal, and (b) vertical tangent lines. Once you have identified these points, use the
axes provided (see next page) to sketch the curve.
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Each part of this problem describes a region of the xy-plane. Find the area of each region.

(a) The region lies within the curve r = 1 + 2-cos(6) and outside the circle r = 2.
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(b) The region lies inside both * = cos(26) and r* = sin(26).
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Find an equation for the plane that passes through the points (1, 0, —1) and (2, 1, 0) that is parallel
to the line of intersection of the planes x + y + z =5 and 3x - y = 4.



