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Abstract

The preferential attachment graph Gm(n) is a random graph formed by adding a
new vertex at each time step, with m edges which point to vertices selected at random
with probability proportional to their degree. Thus at time n there are n vertices and
mn edges. This process yields a graph which has been proposed as a simple model of
the world wide web [2]. In this paper we show that if m ≥ 2 then whp the cover time
of a simple random walk on Gm(n) is asymptotic to 2m

m−1n log n.

1 Introduction

Let G = (V,E) be a connected graph. A random walk Wu, u ∈ V on the undirected graph
G = (V,E) is a Markov chain X0 = u,X1, . . . , Xt, . . . ∈ V associated to a particle that moves
from vertex to vertex according to the following rule: the probability of a transition from
vertex i, of degree d(i), to vertex j is 1/d(i) if {i, j} ∈ E, and 0 otherwise. For u ∈ V let Cu

be the expected time taken for Wu to visit every vertex of G. The cover time CG of G is defined
as CG = maxu∈V Cu. The cover time of connected graphs has been extensively studied. It is
a classic result of Aleliunas, Karp, Lipton, Lovász and Rackoff [1] that CG ≤ 2|E|(|V | − 1).
It was shown by Feige [8], [9], that for any connected graph G with |V | = n,

(1 − o(1))n log n ≤ CG ≤ (1 + o(1))
4

27
n3.

The lower bound is achieved by (for example) the complete graph Kn, whose cover time is
determined by the Coupon Collector problem.
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In a previous paper [6] we studied the cover time of random graphs Gn,p when np = c log n
where c = O(1) and (c − 1) log n → ∞. This extended a result of Jonasson, who proved in
[12] that when the expected average degree (n − 1)p grows faster than log n, whp a random
graph has the same cover time (asymptoticaly) as the complete graph Kn, whereas, when
np = Ω(log n) this is not the case.

Theorem 1. [6] Suppose that np = c log n = log n + ω where ω = (c − 1) log n → ∞ and
c ≥ 1. If G ∈ Gn,p, then whp1

CG ∼ c log

(
c

c − 1

)
n log n.

The notation An ∼ Bn means that limn→∞ An/Bn = 1.

In another paper [7] we used a different technique to study the cover time of random regular
graphs. We proved the following:

Theorem 2. Let r ≥ 3 be constant. Let Gr denote the set of r-regular graphs with vertex set
V = {1, 2, . . . , n}. If G is chosen randomly from Gr, then whp

CG ∼ r − 1

r − 2
n log n.

In this paper we turn our attention to the preferential attachment graph Gm(n) introduced
by Barabási and Albert [2] as a simplified model of the WWW. The preferential attachment
graph Gm(n) is a random graph formed by adding a new vertex at each time step, with m
edges which point to vertices selected at random with probability proportional to their degree.
Thus at time n there are n vertices and mn edges. We use the generative model of [3] (see
also [4]) and build a graph sequentially as follows:

• At each time step t, we add a vertex vt, and we add an edge from vt to some vertex u,
where u is chosen at random according to the distribution:

Pr(u = vi) =

{
dt−1(vi)

2t−1
, if vi 6= vt;

1
2t−1

, if vi = vt;
(1)

where dt−1(v) denotes the degree of vertex v at the end of time step t − 1.

• For some constant m, every m steps we contract the most recently added m vertices
vm(k−1)+1, ..., vmk to form a single vertex k = 1, 2, ... .

Let Gm(n) denote the random graph at time step mn after n contractions of size m. Thus
Gm(n) has n vertices and mn edges and may be a multi-graph. It should be noted that
without the vertex contractions, we generate G1(mn).

1A sequence of events En occurs with high probability whp if limn→∞ Pr(En) = 1.
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We will assume for the purposes of this paper that m ≥ 2 is a constant.

This is a very nice clean model, but we warn the reader that it allows loops and multiple
edges, although whp there will be relatively few of them.

We prove

Theorem 3. If m ≥ 2 then whp the preferential attachment graph G = Gm(n) satisfies

CG ∼ 2m

m − 1
n log n.

2 The first visit time lemma.

2.1 Convergence of the random walk

In this section G denotes a fixed connected graph with n vertices. Let u be some arbitrary
vertex from which a walk Wu is started. Let Wu(t) be the vertex reached at step t, let P

be the matrix of transition probabilities of the walk and let P
(t)
u (v) = Pr(Wu(t) = v). We

assume the random walk Wu on G is ergodic with steady state distribution π and note that
πv = d(v)

2mn
.

2.2 Generating function formulation

Fix two distinct vertices u, v. Let ht be the probability Pr(Wu(t) = v) = P
(t)
u (v), that the

walk Wu visits v at step t. Let H(s) generate ht.

Similarly, considering the walk Wv, starting at v, let rt be the probability that this walk
returns to v at step t = 0, 1, .... Let R(s) generate rt. We note that r0 = 1.

Let ft(u→v) be the probability that the first visit of the walk Wu to v occurs at step t. Thus
f0(u→v) = 0. Let F (s) generate ft(u→v). Thus

H(s) = F (s)R(s). (2)

Let T be the smallest positive integer such that

max
x∈V

|P (t)
u (x) − πx| ≤ n−3 for t ≥ T. (3)

For R(s) let

RT (s) =
T−1∑

j=0

rjs
j. (4)
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Thus RT (s) generates the probability of a return to v during steps 0, ..., T−1 of a walk starting
at v. Similarly for H(s), let

HT (s) =
T−1∑

j=0

hjs
j. (5)

2.3 First visit time: Single vertex v

The following lemma should be viewed in the context that G is an n vertex graph which is
part of a sequence of graphs with n growing to infinity. We prove it in greater generality than
is needed for the proof of Theorem 3.

Let T be as defined in (3) and

λ =
1

K1T
(6)

for sufficiently large constant K1.

Lemma 4. Suppose that for some constant 0 < θ < 1,

(a) HT (1) < (1 − θ)RT (1).

(b) min
|s|≤1+λ

|RT (s)| ≥ θ.

(c) Tπv = o(1) and Tπv = Ω(n−2).

Let

pv =
πv

RT (1)(1 + O(Tπv))
, (7)

cu,v = 1 − HT (1)

RT (1)(1 + O(Tπv))
, (8)

where the values of the 1 + O(Tπv) terms are given implicitly in (15), (18) respectively. Then

ft(u→v) = cu,v
pv

(1 + pv)t+1
+ O(RT (1)e−λt/2) for all t ≥ T. (9)

Proof Write

R(s) = RT (s) + R̂T (s) +
πvs

T

1 − s
, (10)

where RT (s) is given by (4) and

R̂T (s) =
∑

t≥T

(rt − πv)s
t
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generates the error in using the stationary distribution πv for rt when t ≥ T . Similarly, let

H(s) = HT (s) + ĤT (s) + πv
sT

1 − s
. (11)

Note that for Z = H,R and |s| ≤ 1 + o(1),

|Ẑ(s)| = o(n−2). (12)

This is because the variation distance between the stationary and the t-step distribution
decreases exponentially with t.

Using (10), (11) we rewrite F (s) = H(s)/R(s) from (2) as F (s) = B(s)/A(s) where

A(s) = πvs
T + (1 − s)(RT (s) + R̂T (s)), (13)

B(s) = πvs
T + (1 − s)(HT (s) + ĤT (s)). (14)

For real s ≥ 1 and Z = H,R, we have

ZT (1) ≤ ZT (s) ≤ ZT (1)sT .

Let s = 1 + βπv, where β > 0 is constant. Since Tπv = o(1) we have

ZT (s) = ZT (1)(1 + O(Tπv)).

Tπv = o(1) and Tπv = Ω(n−2) and RT (1) ≥ 1 implies that

A(s) = πv(1 − βRT (1)(1 + O(Tπv))).

It follows that A(s) has a real zero at s0, where

s0 = 1 +
πv

RT (1)(1 + O(Tπv))
= 1 + pv, (15)

say. We also see that
A′(s0) = −RT (1)(1 + O(Tπv)) 6= 0 (16)

and thus s0 is a simple zero (see e.g. [5] p193). The value of B(s) at s0 is

B(s0) = πv

(
1 − HT (1)

RT (1)(1+O(Tπv))
+ O(Tπv)

)
6= 0. (17)

Thus, from (7), (8)
B(s0)

A′(s0)
= −pvcu,v. (18)

Thus (see e.g. [5] p195) the principal part of the Laurent expansion of F (s) at s0 is

f(s) =
B(s0)/A

′(s0)

s − s0

. (19)
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Note that s is a complex variable in the above equation.

To approximate the coefficients of the generating function F (s), we now use a standard tech-
nique for the asymptotic expansion of power series (see e.g.[14] Th 5.2.1).

We prove below that F (s) = f(s) + g(s), where g(s) is analytic in Cλ = {|s| = 1 + λ} and
that M = maxs∈Cλ

|g(s)| = O(RT (1)).

Let at = [st]g(s), then (see e.g.[5] p143), at = g(t)(0)/t!. By the Cauchy Inequality (see e.g.
[5] p130) we have that |g(t)(0)| ≤ Mt!/(1 + λ)t and thus

|at| ≤
M

(1 + λ)t
= O(RT (1)e−tλ/2).

As [st]F (s) = [st]f(s) + [st]g(s) and [st]1/(s − s0) = −1/(s0)
t+1 we have

[st]F (s) =
−B(s0)/A

′(s0)

st+1
0

+ O(RT (1)e−tλ/2). (20)

Thus, we obtain

[st]F (s) = cu,v
pv

(1 + pv)t+1
+ O(RT (1)e−tλ/2),

which completes the proof of (9).

Now M = maxs∈Cλ
|g(s)| ≤ max |f(s)| + max |F (s)| = o(1) + max |F (s)|. Furthermore, as

F (s) = B(s)/A(s) on Cλ we have that

|F (s)| ≤ HT (1)(1 + λ)T + O(Tπv)

|RT (s)| − O(Tπv)
≤ RT (1)e1/K1 + o(1)

θ − o(1)
= O(RT (1)).

We now prove that s0 is the only zero of A(s) inside the circle Cλ. We use Rouché’s Theorem
(see e.g. [5]), the statement of which is as follows: Let two functions φ(z) and γ(z) be analytic
inside and on a simple closed contour C. Suppose that |φ(z)| > |γ(z)| at each point of C, then
φ(z) and φ(z) + γ(z) have the same number of zeroes, counting multiplicities, inside C.

Let the functions φ(s), γ(s) be given by φ(s) = (1− s)RT (s) and γ(s) = πvs
T + (1− s)R̂T (s).

|γ(s)|/|φ(s)| ≤ πv(1 + λ)T

λθ
+

|R̂T (s)|
θ

= o(1).

As φ(s) + γ(s) = A(s) we conclude that A(s) has only one zero inside the circle Cλ. This is
the simple zero at s0. 2

Corollary 5. Let At(v) be the event that Wu has not visited v by step t. Then under the
same conditions as those in Lemma 4, for t ≥ T ,

Pr(At(v)) =
cu,v

(1 + pv)t
+ O(RT (1)λ−1e−λt/2).
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Proof We use Lemma 4 and

Pr(At(v)) =
∑

τ>t

fτ (u→v).

2

Note that RT (1) = O(1) in our applications of this corollary. In any case RT (1) ≤ T .

As we leave this section we introduce the notation Rv, Hv to replace RT (1), HT (1) (which are
not attached to v).

3 The random graph Gm(n)

In this section we prove some properties of Gm(n). We first derive crude bounds on degrees.

Lemma 6. For k ≤ ℓ, let dℓ(k) denote the degree of vertex k in Gm(ℓ). For sufficiently large
n, we have:

(a)
Pr(∃(k, ℓ), 1 ≤ k ≤ ℓ ≤ n : dℓ(k) ≥ (ℓ/k)1/2(log n)3) = O(n−3).

(b)
Pr(∃k ≤ n1/8 : dn(k) ≤ n1/4) = O(n−1/17).

Proof

We consider the model G1(N), where 1 ≤ N ≤ mn. As discussed in [4], in Gm(ν), dν(s) has
the same distribution as dN (m(s − 1) + 1) + · · · + dN (ms) in G1(N) when N = mν.

Let Dk = dN(1) + · · · + dN (k) be the sum of the degrees of the vertices v1, ..., vk in the graph
G1(N), where Dk ≥ 2k. The following is a slight extension of (3) of [4]:
Assume A ≥ 1, k ≥ 1, then

Pr(|Dk − 2
√

kN | ≥ 3A
√

N log N) ≤ N−2A. (21)

We also need (4) from the same paper: Assume 0 ≤ d < N − k − s, then

Pr(dN (k + 1) = d + 1 | Dk − 2k = s) = (s + d)2d (N − k − s)d

(2N − 2k − s)d+1

(22)

=
s + d

2N − 2k − s − d

d−1∏

i=0

(
1 − s + i

2N − 2k − s − i

)
(23)

≤ exp

{
−d(s + (d − 1)/2)

2N

}
. (24)
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(a): Let N = ℓm, and k ≤ N . We first consider the case 1 ≤ k ≤ 100(log n)3. In order to
consider the degree of vertex 1, we additionally allow k = 0 and Pr(D0 = 0) = 1.
Let λ = 100(N/(k + 1))1/2(log n)2 then

Pr(dN(k + 1) ≥ λ) ≤
∑

0≤s≤N−k
d+1≥λ

Pr(dN (k + 1) = d + 1 | Dk − 2k = s)

≤ N2 exp

{
−2400(log n)4

k + 1

}
≤ n−20, (25)

after using (24).

For fixed ℓ, and N = mℓ, define k0 = k0(N) = N/ log N . Assume 100(log n)3 < k ≤ k0. We
use (21) with A = 3 logℓ n to argue that

Pr
(
Dk ≤ 2

√
kN − 9 logℓ n

√
N log N

)
≤ n−6. (26)

Now
kN

81(logℓ n)2N log N
≥ 100(log n)3(log ℓ)2

81(log n)2(log ℓ + log m)
> log n

and
N ≥ k log N ≥ k log k ≥ k log log n

and so (26) implies

Pr
(
Dk − 2k ≤ 3

√
kN/2

)
≤ n−6,

and thus s > 3
√

kN/2 whp. Arguing as in (25) we deduce that

Pr(dN (k+1) ≥ 10
√

N/k(log n)2) ≤ n−6 +N2 exp

{
−(10

√
N/k(log n)2)(3

√
kN/2)

2N

}
≤ 2n−6.

(27)
When k0 < k ≤ N , let N ′ = 2N log N and n′ = max{n,N ′/m}, and now assume that
N ′/(2(log N ′)2 ≤ k < N < k0(N

′). We use (26), (27) evaluated at N ′ together with the fact
that dN (k) is stochastically dominated by d2N log N (k) to obtain

Pr(dN (k + 1) ≥ 10
√

N ′/k(log n′)2) = O(n′−6).

Using the relationship between Gm(n) and G1(N), part (a) now follows.

(b): Here N = nm, and k ≤ mN1/8. Using (21) with A = 2 we have

Pr(Dk − 2k ≥ 8
√

kN log N) ≤ N−4.

We then use (23) to write

Pr(dN (k) ≤ N1/4) ≤ N−4 +
N1/4∑

d=0

d + 8
√

kN log N

2N − 2k − 8
√

kN log N − d
= O

(√
k log n

n1/4

)
.
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Summing the RHS of the above inequality over k ≤ mN1/8 accounts for the possible values
of k and completes the proof of the lemma. 2

Let
ω = (log n)1/3. (28)

Let a cycle C be small if |C| ≤ 2ω + 1. Let a vertex v be locally-tree-like if the sub-graph Gv

induced by the vertices at distance 2ω or less is a tree. Thus a locally-tree-like vertex is at
distance at least 2ω from any small cycle.

Lemma 7. Whp Gm(n) does not contain a set of vertices S such that (i) |S| ≤ 100ω, (ii)
the sub-graph H induced by S has minimum degree at least 2 and (iii) H contains a vertex
v ≥ n1/10 of degree at least 3 in H.

Proof Let Z1 denote the number of sets S described in Lemma 7, and let s = |S|. Then

E (Z1) ≤ o(1) +
∑

3≤s≤100ω

∑

H

∏

(v,w)∈E(H)

(log n)3

(vw)1/2
(29)

≤ o(1) +
∑

3≤s≤100ω

∑

H

(log n)3|E(H)|
∏

v∈S

v−dH(v)/2

≤ o(1) +
∑

3≤s≤100ω

(1 + (log n)3)(
s
2)n−1/20

∏

v∈S

1

v

≤ o(1) +
∑

3≤s≤100ω

(1 + (log n)3)(
s
2)n−1/20Hs

n

≤ o(1) + 100ω(log n)20000(log n)2/3

n−1/20

= o(1).

where Hn =
∑n

v=1
1
v
.

Explanation of (29): Suppose that 1 ≤ α < β ≤ n. Then

Pr(Gm(n) contains edge (α, β)) | dβ(α) ≤ (β/α)1/2(log n)3) ≤ (log n)3

(αβ)1/2
. (30)

This is because when β chooses its neighbours, the probability it chooses α is at most
m(log n)3(β/α)1/2

2m(β−1)
. Here the numerator is a bound on the degree of α in Gm(β − 1). We are

using Lemma 6 here and the o(1) term accounts for the failure of this bound. Furthermore,
this remains an upper bound if we condition on the existence of some of the other edges of
H. 2

This lemma is used to justify the following corollary: A small cycle is light if it contains no
vertex v ≤ n1/10 (it has no “heavy” vertices), otherwise it is heavy.

Corollary 8. Whp Gm(n) does not contain a small cycle within 10ω of a light cycle.
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2

We need to deal with the possibility that Gm(n) contains many cycles.

Lemma 9. Whp Gm(n) contains at most (log n)10ω vertices or edges on small cycles.

Proof Let Z be the number of vertices/edges on small cycles in Gm(n) (including parallel
edges). Then

E (Z) ≤ o(1) +
2ω+1∑

k=2

k
∑

a1,...,ak

k∏

i=1

(log n)3

(aiai+1)1/2
(31)

≤ o(1) +
2ω+1∑

k=2

k(log n)3kHk
n

= O((log n)9ω)

and the result follows from the Markov inequality.

Explanation of (31): We sum over the choices a1, a2, . . . , ak for the vertices of the cycle.
The term (log n)3/(aiai+1)

1/2 bounds the probability of edge (ai, ai+1) and comes from the
RHS of (30). The o(1) term accounts for the probability it is. 2

We estimate the number of non-locally-tree-like vertices.

Lemma 10. Whp there are at most O(n1/2+o(1)) non-locally-tree-like vertices.

Proof A non-locally-tree-like vertex v is within ω of a small cycle. So the expectation of
the number Z of such vertices satisfies

E (Z) ≤ o(1) +
∑

0≤r≤ω
3≤s≤2ω+1

1≤i≤s

∑

a0,...,ar
b1...,bs

(log n)3

(a0b1)1/2

r−1∏

k=1

(log n)3

(akak+1)1/2

s∏

l=1

(log n)3

(blbl+1)1/2

= O(n1/2+o(1)).

The result follows from the Markov inequality.

Here a0, a1, . . . , ar are the choices for the vertices of a path from v to a small cycle. The path
ends at b1 and the cycle is through b1, b2, . . . , bs. 2

Lemma 11. Whp there are at most n(log n)−ω vertices v ≥ n/2 which have more than
(log n)11ω vertices at distance 3ω or less from them.

Proof For a fixed vertex v, the expected number of paths of length ≤ 3ω and endpoint
v is bounded by

∑

1≤r≤3ω

∑

a1,...,ar

(log n)3

a
1/2
r v1/2

r−1∏

k=1

(log n)3

(akak+1)1/2
≤ (log n)10ω.
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The result now follows from the Markov inequality. 2

Let
ω0 = log log log n. (32)

We say that v is locally regular if it is locally tree-like and the first 2ω0 levels of Gv form a
tree of depth 2ω0, rooted at v, in which every non-leaf has branching factor m.

For j ∈ [n] we let X(j) denote the set of neighbours of j in [j − 1] i.e. the vertices “chosen”
by j, although not including j; recall that loops are allowed in the scale-free construction.
We regard X as a function from [n] to the power set of [n] and so X−1 is well defined. The
constraint that X−1(i) = {j}, means j is the only vertex v > i that chooses i.

Lemma 12. Whp, Gm(n) contains at least n1−o(1) locally regular vertices v ≥ n/2.

Proof Let Ik =
[
n
(
1 − 1

2k

)
, n
(
1 − 1

2k+1

))
for 1 ≤ k ≤ ω0. Let

J2 = {j ∈ I2 : X(j) ⊆ I1, |X(j)| = m and X−1(i) = {j} for i ∈ X(j)}.

We require |X(j)| = m so that there are no parallel edges originating from j.

Then for 2 < k ≤ ω0 we let

Jk = {j ∈ Ik : X(j) ⊆ Jk−1 , |X(j)| = m and X−1(i) = {j} for i ∈ X(j)}.

For j ∈ I2, define im+1 = j − 1, then

Pr(j ∈ J2) =

∑

{i1<···<im}⊆I1

m∏

k=1

mik+1∏

τ=mik+1

(
1 − km

2τ − 1

) mn∏

τ=mj+1

(
1 − m2

2τ − 1

)
· m!

m∏

i=1

m

2mj + 2i − 1
(33)

∼
∑

{i1<···<im}⊆I1

(
m∏

k=1

ik
j

)m/2

· jm2/2

nm2/2
· m!

(2j)m

∼ m!

(2j)mnm2/2

∑

{i1<···<im}⊆I1

m∏

k=1

i
m/2
k

≥ (1 − O(1/n))
1

(2j)mnm2/2

(
∑

i∈I1

im/2

)m

(34)

≥ |I1|m
2m+m2/2nm

. (35)

Explanation of (33)-(35): We sum over the choices i1 < i2 < · · · < im for X(j). The double
product followed by the single product is the probability that the vertices in set i1, i2, . . . , im
are chosen by j and j alone. The term m! counts the order in which j chooses these vertices
and the final product gives the probability that these choices are made.
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To see the derivation of (34) we note that for bj ≥ 0

(b1 + · · · + bt)
m − (b1

2 + · · · + bt
2)

(
m

2

)
(b1 + · · · + bt)

m−2 ≤ m!
∑

i1<···<im

m∏

k=1

bik .

The line (35) follows by putting i = n/2 and j = n.

So
E (|J2|) ≥

n

23m+m2/2
.

We use a martingale argument to prove that |J2| is concentrated around its mean.

We work in G1(mn). Let Y1, Y2, . . . , Ymn denote the sequence of choices of edges added. When
vertex i chooses its neighbour, it does so according to the model (1), and thus selects one of
the existing 2i − 1 edge-endpoints uar.

Fix Y1, Y2, . . . , Yi, let Yi = (i, v) and let Ŷi = (i, v̂) denote an alternative choice of edge-
endpoint v̂ at step i. For each complete outcome Y = Y1, Y2, . . . , Yi−1, Yi, . . . , Ymn we define
a corresponding outcome Ŷ = Y1, Y2, . . . , Yi−1, Ŷi, . . . , Ŷmn. Let S(i) = {i}. For j > i, Ŷj is
obtained from Yj as follows: If Yj creates a new edge (j, v) by choosing one of the |S(j − 1)|
edge-endpoints at v arising from edges with labels in S(j − 1), ie. edges generated directly
or indirectly from the edge-endpoint of Yi, then Ŷj chooses the corresponding edge-endpoint

v̂ to create edge (j, v̂). If this occurs then S(j) = S(j − 1) ∪ {j}. In all other cases Ŷj = Yj

and S(j) = S(j − 1).

We consider the martingale Z0, Z1, . . . , Zmn where

Zt = E (|J2| | Y1, Y2, . . . , Yt) − E (|J2| | Y1, Y2, . . . , Yt−1).

The map Y → Ŷ is measure preserving. In going from Y to Ŷ, |J2|, changes by at most 2,
according to the in-degree of the vertices v, v̂.

The Azuma-Hoeffding martingale inequality then implies that

Pr(||J2| − E (|J2|)| ≥ u) ≤ exp

{
− u2

2mn

}
. (36)

It follows that qs2

||J2| − E (|J2|)| ≤ n1/2 log n. (37)

Thus qs we have

|J2| ≥
n

23m+1+m2/2
= A2n,

which defines the constant A2.

2A sequence of events En occurs quite surely (qs) if Pr(En) = 1 − O(n−K) for any constant K > 0.

12



Repeating the argument given for Pr(j ∈ J2), we see that for j ∈ I3

Pr(j ∈ J3 | J2) =

∑

{i1<···<im}⊆J2

m∏

k=1

mik+1∏

τ=mik+1

(
1 − km

2τ − 1

) mn∏

τ=mj+1

(
1 − m2

2τ − 1

)
· m!

m∏

i=1

m

2mj + 2i − 1

∼ 1

(2j)mnm2/2

(
∑

i∈J2

im/2

)m

≥ |J2|m
2m+m2/2nm

.

Thus,

E (|J3| | J2) ≥
|J2|m

2m+m2/2nm
|I3|

and given J2, qs |J3| will be concentrated around its mean to within n1/2 log n.

Proceeding in this way we find that for 2 ≤ k ≤ ω0 we have qs

|Jk| ≥ Akn

where for k ≥ 2,

Ak+1 =
Am

k

2m+k+3+m2/2
,

and (inductively) Ak ≥ 2−10kmk
. It follows that |Jk| ≥ 2−10kmk

n and that |Jω0| = n1−o(1).

By construction, any locally tree-like vertex of Jω0 is locally regular. The lemma follows from
the bound on the number of non locally tree-like vertices in Lemma 10. 2

3.1 Mixing time

The conductance Φ of the walk Wu is defined by

Φ = min
π(S)≤1/2

e(S : S)

d(S)
.

Mihail, Papadimitriou and Saberi [13] proved that the conductance Φ of the walks W are
bounded below by some absolute constant. Now it follows from Jerrum and Sinclair [10] that

|P (t)
u (x) − πx| ≤ (πx/πu)

1/2(1 − Φ2/2)t. (38)

For sufficiently large t, the RHS above will be O(n−10) at τ0. We remark that there is a
technical point here. The result of [10] assumes that the walk is lazy, and only makes a move

13



to a neighbour with probability 1/2 at any step. This halves the conductance but we still
have

T = O(log n) (39)

in (3). The cover time is doubled. Asymptotically the values Rv are doubled too. Otherwise,
it has a negligible effect on the analysis and we will ignore this for the rest of the paper and
continue as though there are no lazy steps.

Notice that Lemma 6 implies πv = O((log n)2n−1/2) and so together with (39) we see that

Tπv = o(1) and Tπv = Ω(n−2) (40)

for all v ∈ V , as required by Lemma 4.

4 Cover time of Gm(n)

4.1 Parameters

Recall that the values of ω, ω0 are given by (28), (32) respectively.

Assume now that Gm(n) has the following properties: (i) there are n1−o(1) locally regular
vertices, (ii) d(s) ≥ n1/4 for s ≤ n1/10, (iii) no small cycle is within distance 10ω of a light
cycle, (iv) there are at most (log n)10ω vertices on small cycles and (v) there are at most
n(log n)−ω vertices v ≥ n/2 which have more than (log n)11ω vertices at distance 3ω or less
from them.

Consider first a locally regular vertex v. It was shown in [7] (Lemma 6) that Rv = r−1
r−2

+o(ω−1)
for a locally-tree-like vertex w of an r-regular graph. We obtain the same result for v by putting
r = m + 1. Note that the degree of v is irrelevant here. It is the branching factor of the rest
of the tree Gv that matters.

Lemma 13. Suppose that v is locally-tree-like. Then

(a) Rv ≤ d(v)
m−1

+ o(1).

(b) d(v) ≥ m + 1 implies Rv ≤ d(v)(m+m−1−1)
d(v)(m+m−1−2)−m−1+1

+ o(1)

(c) If v is locally regular then Rv = m
m−1

+ o(1).

Proof We first define an infinite tree T ∗
v by taking the tree T ′

v defined by the first ω + 1
levels of Gv and then rooting a copy of the infinite tree T∞

m which has branching factor m
from each leaf of T ′

v. This construction is modified in the case that v is locally regular. We
now let T ′

v be made up from the first ω0 levels. Thus if v is locally regular, T ∗
v is an infinite

tree with branching factor m, rooted at v.

14



Let R∗
v be the expected number of visits to v for an infinite random walk W∗

v on T ∗
v , started

at v. We argue first that
|Rv − R∗

v| = o(1). (41)

Let r∗t = Pr(W∗
v (t) = v). Then

|Rv − R∗
v| ≤

T∑

t=ω+1

rt +

∞∑

t=ω+1

r∗t

≤ o(1) +
∞∑

t=ω+1

e−αt for some constant α > 0 (42)

= o(1).

(When v is locally regular, the sums are from ω0 + 1.)

Explanation of (42): We prove that
∑T

t=ω+1 rt = o(1) via (38); replace rt by πv + O(ζt)
for some constant ζ < 1. For the second sum we project the walk W∗

v onto {0, 1, 2, . . . , } by
letting X (t) be the distance of W∗

v (t) from v. The degree of every vertex in T ∗
v is at least

m and if a vertex has degree exactly m then its immediate descendants have degree at least
m + 1 and so we see that for any positive λ < 1/2 and t ≥ 0 we have

E (e−λ(X (2t+2)−X (2t)) | X (2t)) ≤ m − 1

m + 1
e−2λ +

2m − 1

m(m + 1)
+

1

m(m + 1)
e2λ (43)

≤ 1

3
e−2λ +

1

2
+

1

6
e2λ

≤ 1

3
(1 − 2λ + 4λ2) +

1

2
+

1

6
(1 + 2λ + 4λ2)

≤ e−λ(1−6λ)/3. (44)

We take λ = 1/12 and α = λ(1 − 6λ)/3 = 1/72.

Explanation of (43) If W∗
v (t) = w and the degree of w is m then all of w’s neighbours in T ∗

v

have degree at least m + 1. The expression on the RHS of (43) gives the exact expectation if
either (i) the degree of w is m and all its neighbours have degree m + 1 or (ii) the degree of w
is m + 1 and all neighbours have degree m. This situation minimizes the expectation, since
the higher the degree the more likely it is that X increases.
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It follows from (44) that

E (e−λX (2t)) = E

(
t−1∏

τ=0

e−λ(X (2τ+2)−X (2τ))

)

= E

(
E (e−λ(X (2t)−X (2t−2)) | X (2t − 2))

t−2∏

τ=0

e−λ(X (2τ+2)−X (2τ))

)

≤ e−αE

(
t−2∏

τ=0

e−λ(X (2τ+2)−X (2τ))

)

≤ e−αt.

Thus
r∗2t = Pr(X (2t) = 0) = Pr(e−X (2t) ≥ 1) ≤ E (e−X (2t)) ≤ e−αt

and (42) follows.

Let bw, w ∈ T ∗
v be the branching factor at w i.e. bv = dv and bw = dw − 1 if w is not the root.

Let T̂w be the sub-tree of T ∗
v rooted at vertex w. (Thus T̂v = T ∗

v ). Let ρw denote the probability

that a random walk on T̂w which starts at w ever returns to w. Our aim is to estimate ρv and
use

R∗
v =

1

1 − ρv
. (45)

Let C(w) denote the children of w in T ∗
v . We use the following recurrence: The parameter k

counts the number of returns to x, for x ∈ C(w).

ρw = 1 − 1

bw

∑

x∈C(w)

∑

k≥0

(
1 − 1

dx

)(
ρx

(
1 − 1

dx

))k

(1 − ρx) (46)

= 1 − 1

bw

∑

x∈C(w)

(
1 − 1

dx

)
(1 − ρx)

1 − ρx

(
1 − 1

dx

)

= 1 − 1

bw

∑

x∈C(w)

bx − bxρx

bx + 1 − ρxbx

=
1

bw

∑

x∈C(w)

1

bx + 1 − ρxbx

. (47)

Explanation of (46): For each x ∈ C(w), 1/bw gives the probability that the walk moves
to x in the first step. The term 1 − 1/dx is the probability that the first step from x is away
from w. Then the term ρx(1 − 1/dx) is the probability that the walk returns to x and does
not visit w in its first move from x. We sum over the number of times, k, that this happens.
The final factor 1 − ρx is the probability of no return for the k + 1th time.
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We see immediately that if T ∗
v is a regular tree with branching factor m ≥ 2 then, with ρw = ρ

for all w,

ρ =
1

m + 1 − ρm
and hence ρ =

1

m

and this deals with the locally regular case. (The solution ρ = 1, which implies R∗
v = ∞ is

ruled out by (42) which implies R∗
v < ∞).

If w is in the first ω levels let bw = b+
w + b−w where b+

w is the number of children w′ of w in Tv

with w > w′ i.e. w chose w′ in the construction of Gm(n). If w is at a higher level, we take
bw = b+

w = m and b−w = 0.

We will now prove the following by induction on ω + 1 − ℓw, where ℓw ≤ ω + 1 is the level of
w in the tree.:

(a) bw = m − 1 implies ρw ≤ 1
m

.

(b) b+
w = m, b−w ≥ 1 implies ρw ≤ 1

bw

(
1 + bw−m

m+m−1−1

)
.

(c) bw = b+
w = m implies ρw ≤ 1

m
.

(d) b+
w = m − 1, b−w ≥ 1 implies ρw ≤ 1

bw

(
m−1

m
+ b−w

m+m−1−1

)

The base case will be ℓw = ω + 1. For which, Case (c) applies and the induction hypothesis
holds from the locally regular case.

The lemma follows from this since only cases (b),(c) can apply to the root v, in which case
bv = d(v).

Let us now go through the inductive step. Let us assume these conditions apply to x ∈ C(w).
Then case by case, the following inequalities will hold:

(a) bx + 1 − bxρx ≥ m + 1
m
− 1.

(b) bx + 1 − bxρx ≥ m + (bx − m)
(
1 − 1

m+m−1−1

)
≥ m.

(c) bx + 1 − bxρx ≥ m.

(d) bx + 1 − bxρx ≥ m + 1
m
− 1 + b−x

(
1 − 1

m+m−1−1

)
≥ m + 1

m
− 1.

Case (a): In this case bw = b+
w and only cases (b),(c) are possible for x ∈ C(w). In which

case bx + 1 − bxρx ≥ m for x ∈ C(w) and then (47) implies that ρw ≤ 1/m.

Case (b): In C(w) we have b+
w = m cases of (b) or (c) and b−w cases of (a) or (d). In the first

case we have bx + 1 − bxρx ≥ m. In the second case we have bx + 1 − bxρx ≥ m + m−1 − 1.
Thus

ρw ≤ 1

bw

(
1 +

bw − m

m + m−1 − 1

)
.
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Case (c): This follows as in Case (a).

Case (d): In C(w) we have m − 1 cases of (b) or (c) and b−w cases of (a) or (d). Thus

ρw ≤ 1

bw

(
m − 1

m
+

b−w
m + m−1 − 1

)

as is to be shown. 2

We deal with non-locally-tree like vertices in a somewhat piece-meal fashion: We remind the
reader that if Gv is not tree-like, then it consists of a breadth-first tree Tv of depth ω plus
extra edges Ev. Each e ∈ Ev lies in a small cycle σe. If one of these cycles is light, then Gv

must be a tree plus a single extra edge, see Corollary 8. Otherwise, all the cycles σe are heavy.
Gv may of course contain other cycles, but these will play no part in the proof.

Lemma 14. Suppose that either
(i) Gv contains a unique light cycle Cv, that v /∈ Cv and that the shortest path P = (w0 =
v, w1, . . . , wk) from v to Cv is such that max{d(w1), . . . , d(wk)} ≥ ω3, or
(ii) the small cycles of Gv are all heavy cycles. Then

(a) Rv ≤ d(v)
m−1

+ o(1)).

(b) d(v) ≥ m + 1 implies Rv ≤ d(v)(m+m−1−1)
d(v)(m+m−1−2)+m−1−1

+ o(1)

Proof
(a) Let w be the first vertex on the path from v to Cv which has degree at least ω3. Let G′

v

be obtained from Gv by deleting those vertices, other than w, all of whose paths to v in Gv

go through w.(By assumption there are one or two paths). Let R′
v be the expected number

of returns to v in a random walk of length ω on G′
v where w is an absorbing state. We claim

that
Rv ≤ R′

v + O(ω−2). (48)

Once we verify this, the proof of (a) follows from the proof of Lemma 13 i.e. embed the tree
H ′v in an infinite tree by rooting a copy of T∞

m at each leaf. To verify (48) we couple random
walks on Gv, G

′
v until w is visited. In the latter the process stops. In the former, we find

that when at w, the probability we get closer to v in the next step is at most ω−3 and so the
expected number of returns from now on is at most ω × ω−3 and (48) follows.

(b) Now consider the case where the small cycles of Gv are all heavy. We argue first that
a random walk of length ω that starts at v might as well terminate if it reaches a vertex
w ≤ n1/10, w 6= v. By the assumptions made at the start of Section 4.1 we can assume
d(w) ≥ n1/4. Now we can assume from Lemma 9 at least n0 = n1/4 − (log n)10ω of the Tv

edges incident with w are not in any cycle σe contained in Gv. But then if a walk arrives
at w, it has a more than n0

n1/4 chance of entering a sub-tree Tw of Gv rooted at w for which
every vertex is separated from v by w. But then the probability of leaving Tw in ω steps is
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O(ω(log n)10ω/n1/4) and so once a walk has reached w, the expected number of further returns
to v is o(ω−1). We can therefore remove Tw from Gv and then replace an edge (x,w) by an
edge (x,wx) and make all the vertices wx absorbing. Repeating this argument, we are left
with a tree to which we can apply the argument of Lemma 13. 2

Note that if v ∈ VB then no bound on Rv has been established:

VB = {v : Gv contains a unique light cycle Cv and the path from v to Cv

contains no vertex of degree at least ω3}

However, for these it suffices to prove

Lemma 15. If v ∈ VB then Rv ≤ 2ω.

Proof We write, for some constant ζ < 1,

Rv =
ω∑

t=1

rt +
T∑

t=ω+1

(πv + O(ζt))

≤ ω + o(ω)

and the lemma follows. 2

We remind the reader that in the following lemma, λ is defined in (6) and RT (s) is defined in
(4).

Lemma 16. There exists a constant 0 < θ < 1 such that if v ∈ V then |RT (s)| ≥ θ for
|s| ≤ 1 + λ.

Proof Assume first that v is locally tree-like. We write

RT (s) = A(s) + Q(s)

=
1

1 − B(s)
+ Q(s). (49)

Here A(s) =
∑

ats
t where at = r∗t is the probability that the random walk W∗

v is at v at time
t (see Lemma 13 for the definition of W∗

v ). B(s) =
∑

bts
t where bt is the probability of a first

return at time t. Then Q(s) = Q1(s) + Q2(s) where

Q1(s) =
T∑

t=ω+1

(rt − at)s
t

Q2(s) = −
∞∑

t=T+1

ats
t.
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Here we have used the fact that at = rt for 0 ≤ t ≤ ω.

We now justify equation (49). For this we need to show that

|B(s)| < 1 for |s| ≤ 1 + λ. (50)

We note first that, in the notation of Lemma 13, B(1) = ρv < 1. Then observe that bt ≤ at ≤
e−αt. The latter inequality is proved in Lemma 13, see (42). Thus the radius of convergence
ρB of B(s) is at least eα, B(s) is continuous for 0 ≤ |s| < ρB, |B(s)| ≤ B(|s|) and B(1) < 1.
Thus there exists a constant ǫ > 0 such that B(s) < 1 for |s| ≤ 1 + ǫ. We can assume that
λ < ǫ and (50) follows. We will use

|RT (s)| ≥ 1

1 + B(|s|) − |Q(s)| ≥ 1

1 + B(1 + λ)
− |Q(s)| ≥ 1

2
− |Q(s)|.

The lemma for locally tree-like vertices will follow once we show that |Q(s)| = o(1). But,
using (38),

|Q1(s)| ≤ (1 + λ)T
T∑

t=ω+1

(πv + e−Φ2t/2 + e−αt) = o(1)

|Q2(s)| ≤
∞∑

t=T+1

(e−α(1 + λ))t = o(1).

For non tree-like vertices we proceed more or less as in Lemma 14. If v /∈ VB then we truncate
Gv at vertices of degree more than n1/4, add copies of Tm at leaves and then proceed as above.

If v ∈ VB let T ∗
v be the graph obtained by adding T∞

m to all the leaves of Gv. Thus T ∗
v contains

a unique cycle C = (x1, x2, . . . , xk, x1). We can write an expression equivalent to (49) and
then argument rests on showing that B(1) < 1 and as ≤ ζs for some ζ < 1. The latter
condition can be relaxed to as ≤ eo(s)ζs, allowing us to take less care with small s.

B(1) < 1: If m ≥ 3 there is a ≥ 1 − 2
m

probability of the first move of W∗
v going into an

infinite tree rooted at a neighbour of v and then the probability of return to v is bounded
below by a positive constant. The same argument is valid for m = 2 when v /∈ C. So assume
that v ∈ C and that T ∗

v consists of C plus a tree Ti attached to xi for i = 1, 2, . . . , k. Here Ti

is empty (if degree of xi is 2) or infinite. Furthermore, Ti empty, implies that Ti−1, Ti+1 are
both infinite. Thus the walk W∗

v has a constant positive probability of moving into an infinite
tree within 2 steps and then never returning to v.

as ≤ eo(s)ζs: If C is an even cycle then we can couple the distance Xt of W ∗
v (t) to v with a

random walk on {0, 1, 2, . . . , } as we did in Lemma 13. If C is an odd cycle let w1, w2 be the
vertices of C which are furthest from v in T ∗

v . If W ∗
v (t) 6= w1, w2 then E (Xt+2−Xt) ≥ 1/6 and

otherwise E (Xt+2 − Xt) ≥ 0. Thus E (Xt+4 − Xt) ≥ 1/6 always and we can use Hoeffding’s
theorem. 2

Lemma 17. If v ∈ V and its degree dn(v) ≤ (log n)2 then Hv < CRv +o(1) for some constant
C < 1.
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Proof As in Section 2.1 let ft be the probability that Wu has a first visit to v at time t.
As H(s) = F (s)R(s) we have

Hv ≤ Pr(Wu visits v by time T − 1)Rv

= Rv

T∑

t=1

ft.

We now estimate
∑T

t=1 ft, the probability that Wu visits v by time T . We first observe that
(38) implies

T∑

t=ω+1

ft ≤
T∑

t=ω+1

(((log n)2/m)1/2e−Φ2t/2 + πv) = o(1).

Thus it suffices to bound
∑ω

t=1 ft, the probability that Wu visits v by time ω.

Let v1, v2, . . . , vk be the neighbours of v and let w be the first neighbour of v visited by Wu.
Then

Pr(Wu visits v by time ω) =
k∑

i=1

Pr(Wu visits v by time ω | w = vi)Pr(w = vi)

≤
k∑

i=1

Pr(Wvi
visits v by time ω)Pr(w = vi).

So it suffices to prove the lemma when u is a neighbour of v.

Let the neighbours of u be u1, u2, . . . , ud, d ≥ m and v = ud. If u is locally tree-like than we
can write

Pr(Wu does not visit v by time ω) ≥ ρ
d − 1

d
− o(1) > 0. (51)

Here ρ is a lower bound on the probability of not returning to u in ω steps, given that
Wu(1) 6= v. We have seen in the previous lemma that this is at least some positive constant.

If u /∈ VB then we truncate Hu as we did in Lemma 14 and argue for (51).

If u ∈ VB and there exist neighbours u1, . . . , uk say, which are not on the unique cycle C of Hu

then there is a probability k/d that W∗
u(1) = ui for some i ≤ k and then the probability that

Wu does not return to ui in ω steps is bounded below by a constant. The final case is where
m = 2, dn(u) = 2 and u, u1, v are part of the unique cycle of Hu. But then with probability
1/2 Wu(1) = u1 and then with conditional probability at least 1/3 x = Wu(2) is not on C and
then the probability that Wu does not return to x in ω steps is bounded below by a constant.

2
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4.2 Upper bound on cover time

Let t0 = ⌈ 2m
m−1

n log n⌉. We prove that whp, for Gm(n), for any vertex u ∈ V , Cu ≤ t0 + o(t0).

Let TG(u) be the time taken to visit every vertex of G by the random walk Wu. Let Ut be the
number of vertices of G which have not been visited by Wu at step t. We note the following:

Cu = E (TG(u)) =
∑

t>0

Pr(TG(u) ≥ t), (52)

Pr(TG(u) ≥ t) = Pr(TG(u) > t − 1) = Pr(Ut−1 > 0) ≤ min{1,E Ut−1}. (53)

It follows from (52), (53) that for all t

Cu ≤ t + 1 +
∑

s≥t

E (Us) = t + 1 +
∑

v∈V

∑

s≥t

Pr(As(v)) (54)

where As(v) is defined in Corollary 5.

For vertices v satisfying Corollary 5 we see that

∑

s≥t

Pr(As(v)) ≤ (1 + O(Tπv))
Rv

πv
e−(1+O(Tπv))tπv/Rv + O(λ−2e−λt/2). (55)

The second term arises from the sum of the error terms O(λ−1e−λs/2) for s ≥ t.

Recall that VB is the set of vertices v such that Gv contains a unique light cycle Cv and the
path from v to Cv contains no vertex of degree at least ω3.

We write V = V1 ∪ V2 ∪ V3 where V1 = (V \ VB)∩ {dn(v) ≤ (log n)2}, V2 = {dn(v) ≥ (log n)2}
and V3 = VB ∩ {dn(v) ≤ (log n)2}.
Let t1 = (1 + ǫ)t0 where ǫ = n−1/3 can be assumed by Lemma 6 to satisfy Tπv = o(ǫ) for all
v ∈ V − V2.

If v /∈ VB then by Lemmas 13(a) and 14(a),

t1(1 + O(Tπv))πv/Rv ≥ 2m

m − 1
n log n · d(v)

2mn
· m − 1

d(v)
= log n. (56)

Plugging (56) into (54) and using Rv ≤ 5 (Lemmas 13 and 14) and πv ≥ 1
2n

for all v ∈ V \ VB

we get ∑

v∈V1

∑

s≥t1

Pr(As(v)) ≤ 10n. (57)

Suppose now that v ∈ V2 ie. dn(v) ≥ (log n)2. After a walk of length T there is an
Ω((log n)2/n) chance of being at v. Thus for some constant c > 0 and s ≥ t1, we have

Pr(As(v)) ≤
(

1 − c(log n)2

n

)⌊s/T ⌋

≤ exp

{
−cs(log n)2

2Tn

}
.
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Thus

∑

v∈V2

∑

s≥t1

Pr(As(v)) ≤ n
∑

s≥t1

exp

{
−cs(log n)2

2Tn

}

≤ 3Tn2

c(log n)2
exp

{
−ct1(log n)2

2Tn

}
= o(1). (58)

It remains to deal with v ∈ V3. We first observe that

|VB| ≤ (log n)10ωω3ω ≤ (ω log n)10ω

and from Lemma 15 and (55) we have

∑

v∈V3

∑

s≥t1

Pr(As(v)) ≤ (ω log n)10ω
(
2nωe−(1+o(1))t1πv/(2ω) + O(λ−2e−λt1/2)

)

= o(n). (59)

Thus combining (57) with (58) and (59) gives

Cu ≤ t1 + O(n) = t0 + o(t0),

completing our proof of the upper bound on cover time.

4.3 Lower bound on cover time

For some vertex u, we can find a set of vertices S such that at time t1 = t0(1− ǫ), ǫ → 0, the
probability the set S is covered by the walk Wu tends to zero. Hence TG(u) > t1 whp which
implies that CG ≥ t0 − o(t0).

We construct S as follows. Let S be some maximal set of locally regular vertices such that
the distance between any two elements of S is least2ω + 1. Thus |S| ≥ ne−eO(ω0)

(log n)−11ω ≥
n(log n)−12ω.

Let S(t) denote the subset of S which has not been visited by Wu after step t. Now, by
Corollary 5, provided t ≥ T

E (|S(t)|) ≥ (1 − o(1))
∑

v∈S

(
cu,v

(1 + pv)t
+ o(n−2)

)
.

Let u be a fixed vertex of S. Let v ∈ S and let HT (1) be given by (5), then (38) implies that

HT (1) ≤
T−1∑

t=ω

(πv + e−Φ2t/2) = o(1). (60)
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Rv ≥ 1 and so cuv = 1 − o(1). Setting t = t1 = (1 − ǫ)t0 where ǫ = 2ω−1, we have

E (|S(t1)|) ≥ (1 + o(1))|S|e−(1−ǫ)t0pv

= (1 + o(1)) exp

{
log n − 12ω log log n − (1 + o(1))(1 − ǫ)

2m

m − 1
n log n · m

2mn
· m − 1

m

}

≥ n1/ω. (61)

Let Yv,t be the indicator for the event At(v). Let Z = {v, w} ⊂ S. We will show (below) that
that for v, w ∈ S

E (Yv,t1Yw,t1) =
cu,Z

(1 + pZ)t+2
+ o(n−2), (62)

where cu,Z ∼ 1 and pZ ∼ (m − 1)/(mn) ∼ pv + pw. Thus

E (Yv,t1Yw,t1) = (1 + o(1))E (Yv,t1)E (Yw,t1)

which implies
E (|S(t1)|(|S(t1)| − 1)) ∼ E (|S(t1)|)(E (|S(t1)|) − 1). (63)

It follows from (61) and (63), that

Pr(S(t1) 6= ∅) ≥ E (|S(t1)|)2

E (|S(t1)|2)
=

1
E(|S(t1)|(|S(t1)|−1))

E(|S(t1)|)2
+ E (|S(t1)|)−1

= 1 − o(1).

Proof of (62). Let Γ be obtained from G by merging v, w into a single node Z. This node
has degree 2m.

There is a natural measure preserving mapping from the set of walks in G which start at u
and do not visit v or w, to the corresponding set of walks in Γ which do not visit Z. Thus the
probability that Wu does not visit v or w in the first t steps is equal to the probability that
a random walk Ŵu in Γ which also starts at u does not visit Z in the first t steps.

We apply Lemma 4 to Γ. That πZ = 1
n

is clear, and cu,Z = 1− o(1) is argued as in (60). The
vertex Z is tree-like up to distance ω in Γ. The derivation of RZ in Lemma 13(c) is valid.
The fact that the root vertex of the corresponding infinite tree has degree 2m does not affect
the calculation of R∗

Z . 2
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