Random minimum length spanning trees
in regular graphs

Andrew Beveridge
Department of Mathematical Sciences
Carnegie Mellon University

Alan Frieze*
Department of Mathematical Sciences
Carnegie Mellon University

Colin McDiarmid
Department of Statistics
University of Oxford

February 9, 1998

Abstract

Consider a connected r-regular n-vertex graph G with random independent edge
lengths, each uniformly distributed on $(0,1)$. Let $\text{mst}(G)$ be the expected length of
a minimum spanning tree. We show that $\text{mst}(G)$ can be estimated quite accurately
under two distinct circumstances. Firstly, if r is large and G has a modest edge
expansion property then $\text{mst}(G) \sim \frac{1}{r} \zeta(3)$, where $\zeta(3) = \sum_{j=1}^{\infty} j^{-3} \sim 1.202$. Secondly,
if G has large girth then there exists an explicitly defined constant c_r such that
$\text{mst}(G) \sim c_r n$. We find in particular that $c_3 = 9/2 - 6 \log 2 \sim 0.341$.

1 Introduction

Given a graph $G = (V, E)$ with edge lengths $x = (x_e : e \in E)$, let $\text{msf}(G, x)$ denote the
minimum length of a spanning forest. When $X = (X_e : e \in E)$ is a family of independent random variables, each uniformly distributed on the interval $(0,1)$, denote the expected value $\mathbf{E}(\text{msf}(G, X))$ by $\text{msf}(G)$. This quantity gives a measure of the connectivity of G.
In the most important case when G is connected, we use mst in place of msf in order to indicate minimum spanning tree.

Consider the complete graph K_n and the complete bipartite graph $K_{n,n}$. It is known
(see [4, 5]) that, as $n \to \infty$, $\text{mst}(K_n) \to \zeta(3)$ and $\text{mst}(K_{n,n}) \to 2\zeta(3)$. Here $\zeta(3) = \sum_{j=1}^{\infty} j^{-3} \sim 1.202$. Also, it has recently been shown [12] that, for the d-cube Q_d, which has
2^d nodes and is regular of degree d, we have $(d/2^d) \text{mst}(Q_d) \to \zeta(3)$ as $d \to \infty$.

*Supported in part by NSF Grant CCR9530974
The results about mst quoted above (and others from [5]) are for particular regular graphs with growing degrees, and show that mst is about $\zeta(3)$ times the number of nodes divided by the degree. The results below provide a generalisation of all these results about mst. The first result gives a rather general lower bound. Let $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degree respectively of the graph G.

Theorem 1 For any n-vertex graph G with no isolated vertices,

$$msf(G) \geq (1 + o(1))(n/\Delta)\zeta(3)$$

where $\Delta = \Delta(G)$ and the $o(1)$ term is with respect to $\Delta \to \infty$. In other words, for any $\epsilon > 0$ there exist Δ_0 such that, for any graph G with no isolated vertices and with $\Delta = \Delta(G) \geq \Delta_0$, we have

$$msf(G) \geq (1 - \epsilon)(n/\Delta)\zeta(3).$$

The above result in fact gives the right value for graphs $G = (V,E)$ that are regular or nearly regular and have a modest edge expansion property. For $S \subseteq V$, let $(S : \bar{S})$ be the set of edges with one end in S and the other in $\bar{S} = V \setminus \bar{S}$.

Theorem 2 Let $\alpha = \alpha(r) = O(r^{-\frac{1}{3}})$ and let $\rho = \rho(r)$ and $\omega = \omega(r)$ tend to infinity with r. Suppose that the graph $G = (V,E)$ satisfies

$$r \leq \delta(G) \leq \Delta(G) \leq (1 + \alpha)r,$$

and

$$|(S : \bar{S})|/|S| \geq \omega r^{2/3} \log r \text{ for all } S \subseteq V \text{ with } r/2 < |S| \leq \min\{\rho r, |V|/2\}.$$

Then

$$msf(G) = (1 + o(1))\frac{|V|}{r}\zeta(3)$$

where the $o(1)$ term is with respect to $r \to \infty$.

Note that for $|S| = k$ we have

$$|S : \bar{S}|/|S| \geq \delta - k + 1$$

and so we are really getting some expansion here for $|S| \leq \min\{\rho r, |V|/2\}$.

For regular graphs we of course take $\alpha = 0$. For K_n, $K_{n,n}$ and Q_d we can define ω, ρ such that the condition (2) holds: when $G = Q_d$ we use the result that

$$|(S : \bar{S})|/|S| \geq d - \log_2 |S|,$$

see for example Bollobás and Leader [3].

There are further similar results. Let $[d]$ denote the set $\{1, \ldots, d\}$. Consider the d-dimensional mesh $M_{d,n}^{(1)} = (V_{d,n}, E_{d,n}^{(1)})$, where the vertex set $V_{d,n} = \{0, 1, \ldots, n - 1\}^d$ and if
If $d \to \infty$ then

$$mst(Q_d) \sim \frac{2^d}{d} \zeta(3),$$

$$mst(M_{d,n}^{(2)}) \sim \frac{n^d}{2d} \zeta(3)$$

uniformly over $n \geq 3$, and if also $n \to \infty$ in such a way that $d = o(n)$ then

$$mst(M_{d,n}^{(1)}) \sim \frac{n^d}{2d} \zeta(3).$$

We now move on to discuss the second circumstance under which we can estimate $msf(G)$ quite accurately. Instead of considering graphs with large degrees, we consider r-regular graphs with large girth, or at least with few edges on short cycles. Recall that the girth of a graph G is the length of a shortest cycle in G.

Theorem 4 For $r \geq 2$ let

$$c_r = \frac{r}{(r-1)^2} \sum_{k=1}^{\infty} \frac{1}{k(k+\rho)(k+2\rho)},$$

where $\rho = 1/(r-1)$. Then, for any $r \geq 2$ and any r-regular graph G

$$|msf(G) - c_r n| \leq \frac{3n}{2g},$$

where n denotes the number of vertices and g denotes the girth of G. The constants c_r satisfy $c_2 = \frac{1}{2}$, $c_3 = 9/2 - 6 \log 2 \approx 0.341$, $c_4 = 9 - 3 \log 3 - \pi \sqrt{3} \approx 0.264$, and $c_5 = 15 - 10 \log 2 - 5\pi/2 \approx 0.215$; and $c_r \sim \zeta(3)/r$ as $r \to \infty$.

Corollary 5 For each $r \geq 2$ and $g \geq 3$, there exists $\delta = \delta(r,g) > 0$ with the following property. For every r-regular graph G with n vertices such that there is a set of at most δn edges which hit all cycles of length less than g, we have

$$|msf(G) - c_r n| \leq \frac{2n}{g}.$$
From this corollary, we obtain easily a result about random regular graphs. Let \(G_{n,r} \) denote a random \(r \)-regular graph with vertex set \{1, \ldots, n\}. Let the random variable \(L_{n,r} \) be the minimum length of a spanning forest of the random regular graph \(G_{n,r} \) when it has independent edge lengths each uniformly distributed on \((0, 1)\). Thus in the notation above we may write \(L_{n,r} = msf(G_{n,r}, X) \) and \(E(L_{n,r}) = E(msf(G_{n,r})) \).

Using the configuration model of random regular graphs see e.g. [2], it can easily be proved that

\[
\Pr(G_{n,r} \text{ contains } \geq n^{1/2} \text{ edges on cycles of length } \leq \sqrt{\log n}) \leq n^{-(1/2-o(1))}.
\]

We therefore have

Corollary 6 For each integer \(r \geq 3 \),

\[
(1/n)E(L_{n,r}) \to c_r.
\]

Remark: Since for \(r \geq 3 \), \(G_{n,r} \) is connected with probability \(1 - O(n^{-2}) \), this result is not changed if we condition on \(G_{n,r} \) being connected.

Further information on the constants \(c_r \) is given in Propositions 10 and 11 below. It is straightforward to extend these results to more general distributions on the edge lengths - see [5].

We also prove some results about how concentrated \(mst(G, X) \) is about its mean.

Theorem 7 (a) For any \(r \)-regular graph \(G = (V, E) \) with \(n \) vertices and \(r = o((n / \log n)^{1/2}) \),

\[
\Pr(\|mst(G, X) - mst(G)\| \geq \epsilon n/r) \leq e^{-c_3 n/(3r^2)}
\]

if \(n \) is sufficiently large.

(b) There is a constant \(K > 0 \) such that the following holds. Suppose that

\[
|\{S : \tilde{S}\}| \geq \gamma r |S| \text{ for all } S \subseteq V \text{ with } |S| \leq n/2.
\]

Then for any \(0 < \epsilon \leq 1 \),

\[
\Pr(\|mst(G, X) - mst(G)\| \geq \epsilon n/r) \leq n^2 e^{-K^2 \gamma^2 n/(\log n)^2},
\]

for \(n \) sufficiently large.

The following two propositions are easier than Corollary 6, and have short proofs. The first concerns random 2-regular graphs, where we can give a more precise result than for general \(r \).

Proposition 8

\[
E(L_{n,2}) = n/2 - \log n + O(\sqrt{\log n}).
\]

Finally, let us consider random graphs \(G_{n,p} \) which are not too sparse. Consider any edge-probability \(p = p(n) \) which is above the connectivity threshold, that is \(P(G_{n,p} \text{ connected}) \to 1 \) as \(n \to \infty \). (Thus we are assuming that \(p(n) = \frac{1}{2} n (\log n + \omega(n)) \) where \(\omega(n) \to \infty \) as \(n \to \infty \).

Proposition 9 If \(p = p(n) \) is above the threshold for connectivity, then \(p \cdot msf(G_{n,p}) \to \zeta(3) \) as \(n \to \infty \), in probability and in any mean.
2 Proofs

Given a graph $G = (V, E)$ with $|V| = n$ and $0 \leq p \leq 1$, let G_p be the random subgraph of G with the same vertex set which contains those edges e with $X_e \leq p$. [Here we are assuming that as before we have a family $X = (X_e : e \in E)$ of independent random variables each uniformly distributed on $(0, 1)$.] Note that the edges of G are included independently with probability p. In this notation, the usual random graph $G_{n,p}$ could be written as $(K_n)_p$. Let $\kappa(G)$ denote the number of components of G. We shall first give a rather precise description of $msf(G)$.

Lemma 1 For any graph G,

$$msf(G) = \int_{p=0}^{1} E(\kappa(G_p))dp - \kappa(G). \hspace{1cm} (5)$$

Proof We shall follow the proof method in [1] and [7]. Let F denote the random set of edges in the minimal spanning forest. For any $0 \leq p \leq 1$, $\sum_{e \in F} 1_{(X_e > p)}$ is the number of edges of F which are not in G_p, which equals $\kappa(G_p) - \kappa(G)$. But

$$msf(G, X) = \sum_{e \in F} X_e = \sum_{e \in F} \int_{p=0}^{1} 1_{(X_e > p)}dp = \int_{p=0}^{1} \sum_{e \in F} 1_{(X_e > p)}dp.$$

Hence

$$msf(G, X) = \int_{p=0}^{1} \kappa(G_p)dp - \kappa(G),$$

and the result follows on taking expectations. \qed}

2.1 Large Degrees

We substitute $p = x/r$ in (5) to obtain

$$msf(G) = \frac{1}{r} \int_{x=0}^{r} E(\kappa(G_{x/r}))dx - \kappa(G).$$

Now let $C_{k,x}$ denote the total number of components in $G_{x/r}$ with k vertices. Thus

$$msf(G) = \frac{1}{r} \int_{x=0}^{r} \sum_{k=1}^{n} E(C_{k,x})dx - \kappa(G). \hspace{1cm} (6)$$

We decompose

$$C_{k,x} = \tau_{k,x} + \sigma_{k,x}$$

where

$\tau_{k,x}$ denotes the number of tree components of $G_{x/r}$ with k vertices

and

$\sigma_{k,x}$ denotes the number of non-tree components in $G_{x/r}$ with k vertices.
We will find, perhaps not unexpectedly, that the number of components of $G_{x/r}$ is usually dominated by the number of components which are small trees. Imagine taking all trees T in G which have k vertices and giving them a root. Fix a vertex $v \in V$ and let $\mathcal{T}(v, k)$ be the set of trees obtained in this way which have root v. Let $t(v, k) = |\mathcal{T}(v, k)|$.

Lemma 2

\[
\frac{k^{k-2}(\delta - k)^{k-1}}{(k - 1)!} \leq t(v, k) \leq \frac{k^{k-2}\Delta^{k-1}}{(k - 1)!}.
\]

Proof Given a tree $T \in \mathcal{T}(v, k)$ we label v with k and then define a labelling $f : V(T) \setminus \{v\} \to \{1, \ldots, k - 1\}$ of the remaining vertices. Now consider pairs (T, f) where $T \in \mathcal{T}(v, k)$ and f is such a labelling. Clearly each rooted $T \in \mathcal{T}(v, k)$ is in $(k - 1)!$ such pairs. Furthermore each such pair defines a unique spanning tree T' of K_k, where (i, j) is an edge of T' if and only if there is an edge $\{x, y\}$ of T such that $f(x) = i$ and $f(y) = j$. Each spanning tree T' of K_k nodes lies in between $(\delta - k)^{k-1}$ and Δ^{k-1} such pairs. Take a fixed breadth first search of T' starting at k and on reaching vertex ℓ for the first time, define $f^{-1}(\ell)$. There will always be between $\delta - k$ and Δ choices. Thus

\[
(\delta - k)^{k-1} k^{k-2} \leq \#\text{pairs}(T, f) = t(v, k)(k - 1)! \leq \Delta^{k-1} k^{k-2}
\]

and the lemma follows. \qed

Now consider a fixed sub-tree T of G containing k vertices. Suppose that the vertices of T induce $a(T)$ edges in G, and the sum of their degrees in G is $b(T)$. Then the probability $\pi(x, T)$ that it forms a component of $G_{x/r}$ satisfies

\[
\pi(x, T) = \left(\frac{x}{r}\right)^{k-1} \left(1 - \frac{x}{r}\right)^{b(T) - a(T) - k + 1}.
\]

(7)

Also

\[
k - 1 \leq a(T) \leq \left(\frac{k}{2}\right) \quad \text{and} \quad k\delta \leq b(T) \leq k\Delta.
\]

(8)

It follows from Lemma 2, (7) and (8) that

\[
\mathbb{E}(\tau_{k,x}) \leq \frac{1}{k} \sum_v t(v, k) \left(\frac{x}{r}\right)^{k-1} \left(1 - \frac{x}{r}\right)^{k\delta - (k+2)(k-1)/2}
\]

(9)

\[
\leq \frac{n k^{k-2}}{k!} \left(\frac{\Delta}{r}\right)^{k-1} x^{k-1} \left(1 - \frac{x}{r}\right)^{k\delta - k^2}.
\]

(10)

Similarly,

\[
\mathbb{E}(\tau_{k,x}) \geq \frac{1}{k} \sum_v t(v, k) \left(\frac{x}{r}\right)^{k-1} \left(1 - \frac{x}{r}\right)^{k\Delta - 2k + 2}
\]

(11)

\[
\geq \frac{n k^{k-2}}{k!} \left(\frac{\delta - k}{r}\right)^{k-1} x^{k-1} \left(1 - \frac{x}{r}\right)^{k\Delta}.
\]

(12)
The $1/k$ factor in front of the sums in (9) and (11) comes from the fact that each k-vertex tree appears k times in the sum $\sum_v t(v, k)$. The following will be needed below:

$$\int_{x=0}^{\infty} x^{k-1}e^{-kx}dx = \frac{(k-1)!}{k^k} \geq \frac{1}{k^k},$$

and for $a \geq 1$

$$\int_{x=a}^{\infty} x^{k-1}e^{-kx}dx \leq \int_{x=a}^{\infty} (xe^{-x})^kdx \leq \int_{x=a}^{\infty} e^{-kx/2}dx = \frac{2}{k}e^{-ka/2}.$$

Now, if $a, b \to \infty$, then

$$\int_{x=0}^{a} \sum_{k=1}^{b} \frac{k^{k-3}}{(k-1)!} x^{k-1}e^{-kx}dx = (1 + o(1)) \sum_{k=1}^{b} \frac{1}{k^3} = (1 + o(1))\zeta(3). \quad (13)$$

We may now prove Theorem 1: after that we shall continue the development here to prove Theorem 2.

Proof of Theorem 1 We use four stages.

(a) Let $\epsilon > 0$. Let a and b be sufficiently large that

$$\int_{x=0}^{a} \sum_{k=1}^{b} \frac{k^{k-3}}{(k-1)!} x^{k-1}e^{-kx}dx \geq (1 - \epsilon)\zeta(3).$$

Now, if $0 \leq x \leq r/2$ and $0 \leq \alpha \leq 1/2$, then

$$(1 - x/r)^{kr(1+\alpha)} \geq \exp \left(-k(1+\alpha)(x + 2x^2/r) \right) \geq e^{-kx} \exp(-xk\alpha - 3x^2k/r).$$

Let r_0 be sufficiently large that for $r \geq r_0$ we have $(1-b/r)^{b-1} \geq (1-\epsilon)$ and $\exp(-3\alpha^2 b/r) \geq (1-\epsilon)$. Let $0 < \eta < 1/2$ be sufficiently small that $\exp(-ab\eta) \geq (1-\epsilon)$.

Now suppose that $r \geq r_0$, that the graph G has $\delta = \delta(G) = r$, and that $\Delta = \Delta(G) \leq (1+\eta)r$. Then by (12) and the above, for $0 \leq x \leq a$ and $1 \leq k \leq b$,

$$E(\tau_{k,x}) \geq \frac{n}{k} \frac{k^{k-2}}{(k-1)!} x^{k-1} \left(1 - \frac{k}{r} \right) \left(1 - \frac{x}{r} \right)^{k\Delta} \geq \frac{n}{k} \frac{k^{k-2}}{(k-1)!} x^{k-1}e^{-kx}(1-\epsilon)^3.$$

Hence $msf(G) \geq (1-\epsilon)^4\frac{n}{\Delta}\zeta(3)$.

(b) Next we drop the assumption on $\delta(G)$. Let $\epsilon > 0$. We shall show that there exist r_1 and $\beta > 0$ such that, for any connected n-vertex graph G with $r_1 \leq \Delta = \Delta(G) \leq \beta n$, we have

$$mst(G) \geq (1-\epsilon)\frac{n}{\Delta}\zeta(3).$$

To do this, let r_0 and $\eta > 0$ be such that for any $r \geq r_0$ and any graph G with $\delta = \delta(G) = r$ and $\Delta = \Delta(G) \leq (1+\eta)r$, we have $msf(G) \geq (1-\epsilon)\zeta(3)$. We have just seen
that this is possible. Let \(r_1 = \max\{r_0, 2/\eta\} \) and \(\beta > 0 \) be such that if \(r_1 \leq r \leq \beta n \) then \(r + \frac{r^2}{n - r} + 1 \leq (1 + \eta)r \).

Now let \(G \) be a connected \(n \)-vertex graph with \(r_1 \leq r = \Delta(G) \leq \beta n \). We shall add edges to \(G \) to produce a graph \(G' \) which has minimum degree \(r \) and maximum degree \(\Delta' \leq (1 + \eta)r \): then

\[
mst(G) \geq \mst(G') \geq (1 - \epsilon) \frac{n}{\Delta'} \zeta(3),
\]

and the desired result follows. To get \(G' \) we add edges between vertices of degree less than \(r \) until the vertices \(S \) of degree less than \(r \) form a clique. We then add new edges from \(S \) to \(S = V \setminus S \) until the vertices in \(S \) have degree \(r \). When adding an \((S : S)\) edge we choose a vertex of current smallest degree in \(S \). In this way we end up with \(\delta(G') = r \) and

\[
\Delta' \leq r + \frac{r^2}{n - r} + 1 \leq (1 + \eta)r,
\]

as required.

(c) Next we shall deduce the corresponding result for connected graphs but without the condition that \(\Delta \leq \beta n \).

Let \(\epsilon > 0 \). Choose \(r_1 \) and \(\beta > 0 \) as above for \(\epsilon/3 \). Let \(r_2 \) be the maximum of \(r_1 \) and \([6/\epsilon] \). Consider a connected \(n \)-vertex graph \(G \) with \(\Delta = \Delta(G) \geq r_2 \). Let \(k = \lfloor (2/\beta) \rfloor \), and form \(k \) disjoint copies \(G_1, \ldots, G_k \) of \(G \). For each \(i = 1, \ldots, k - 1 \) add a perfect matching between \(G_i \) and \(G_{i+1} \). The new graph \(H \) is connected, and has \(kn \) vertices and maximum degree \(\Delta + 2 \), and thus satisfies \(\Delta(H) \leq 2n \leq \beta|V(H)| \). Hence

\[
mst(H) \geq (1 - \epsilon/3) (kn/(\Delta + 2)) \zeta(3) \geq (1 - 2\epsilon/3) (kn/\Delta) \zeta(3),
\]

since \(2/(\Delta + 2) < 2/r_1 \leq \epsilon/3 \). But \(mst(H) \leq k \, mst(G) + (k - 1)/(n + 1) \), and so

\[
mst(G) \geq (1/k) mst(H) - 1/n \geq (1 - 2\epsilon/3) (n/\Delta) \zeta(3) - 1/n \geq (1 - \epsilon)(n/\Delta) \zeta(3),
\]

for \(n \geq 3/\epsilon \).

(d) Finally we remove the assumption of connectedness. Let \(c \) be the infimum of \(\mst(K_n) \) over all positive integers \(n \). Then \(c > 0 \) - indeed it is easy to see that \(c \geq 1/2 \). Let \(\epsilon > 0 \). Let \(r_2 \) be as above, and let \(r_3 \) be the maximum of \(r_2 \) and \(\lceil \zeta(3) r_2 / c \rceil \). Consider a graph \(G \) with \(\Delta = \Delta(G) \geq r_3 \). List the components of \(G \) as \(G_1, \ldots, G_k \) where \(G_i = (V_i, E_i) \).

If \(|V_i| < r_2 \) then

\[
mst(G_i) \geq c \geq r_2 \zeta(3)/r_3 \geq |V_i| \zeta(3)/\Delta(G),
\]

and if \(|V_i| \geq r_2 \) then

\[
mst(G_i) \geq (1 - \epsilon)|V_i| \zeta(3)/\Delta(G).
\]

Hence

\[
mst(G) = \sum_{i=1}^{k} mst(G_i) \geq (1 - \epsilon)(\sum_{i=1}^{k} |V_i|) \zeta(3)/\Delta(G) = (1 - \epsilon)|V(G)| \zeta(3)/\Delta(G),
\]
as required. This completes the proof of Theorem 1.

\[\square \]

Proof of Theorem 2

In order to use (6) we need to consider a number of separate ranges for \(x \) and \(k \). Let \(A = 2r^{1/3}/\omega \), \(B = [(Ar)^{1/4}] \) so that each of \(B\alpha \), \(AB^2/r \) and \(A/B \to 0 \) as \(r \to \infty \).

Range 1: \(0 \leq x \leq A \) and \(1 \leq k \leq B \). By (10) we have

\[
E(\tau_{k,x}) \leq \frac{n k^{k-2}}{k!} x^{k-1} e^{-kx} \exp(k\alpha + x k^2/r),
\]

since \((\Delta/r)^{k-1} \leq (1 + \alpha)^k \leq \exp(k\alpha)\), and \((1 - x/r)^{k+2} \leq \exp(-xk + x k^2/r)\). Also,

\[
\exp(k\alpha + x k^2/r) \leq \exp(B\alpha + AB^2/r) = 1 + o(1).\]

Hence

\[
\frac{1}{r} \int_{x=0}^{A} \sum_{k=1}^{B} E(\tau_{k,x}) \, dx \leq (1 + o(1)) \frac{n}{r} \int_{x=0}^{A} \sum_{k=1}^{B} \frac{k^{k-2}}{k!} x^{k-1} e^{-kx} \, dx
\]

\[
\leq (1 + o(1)) \frac{n}{r} \zeta(3). \tag{14}
\]

Let \(\sigma_{k,x,u} \) be the number of non-tree components of \(G_{x,r} \) which have \(k \) vertices and \(k - 1 + u \) edges. Then

\[
E(\sigma_{k,x,u}) \leq \frac{1}{k} \sum_{v \in V} t(v,k) \left(\frac{k}{2} \right)^u \left(\frac{x}{r} \right)^{k-1+u} \left(1 - \frac{x}{r} \right)^{kr-k^2}.
\]

So

\[
E(\sigma_{k,x}) \leq \frac{n k^{k-2}}{k!} \frac{\Delta^{k-1}}{r} \sum_{u=1}^{\infty} \left(\frac{k^2}{2} \right)^u \left(\frac{x}{r} \right)^{k-1+u} \left(1 - \frac{x}{r} \right)^{kr-k^2}
\]

\[
\leq \frac{n k^{k-2}}{k!} \left(\frac{\Delta}{r} \right)^{k-1} x^{k-1} e^{-xk} e^{x k^2/r} \sum_{u=1}^{\infty} \left(\frac{k^2 x}{2r} \right)^u
\]

\[
\leq \left(\frac{e^{k\alpha+x k^2/r}}{2-x k^2/r} \right) \frac{n k^{k}}{r} \frac{k}{k!} x^{k} e^{-kx}
\]

\[
\leq \frac{n k^{k}}{r} \frac{k}{k!} x^{k} e^{-kx}
\]

if \(r \) is sufficiently large. Thus,

\[
\frac{1}{r} \int_{x=0}^{A} \sum_{k=1}^{B} E(\sigma_{k,x}) \leq \frac{n}{r^2} \sum_{k=1}^{B} \frac{k^k}{k!} \int_{x=0}^{\infty} x^{k} e^{-kx} \, dx
\]

\[
= \frac{n}{r^2} \sum_{k=1}^{B} \frac{1}{k^2}
\]

\[
\leq 2 \frac{n}{r^2} = o(n/r). \tag{15}
\]
Range 2: $x \leq A$ and $k \geq B$. Using the bound

$$\sum_{k=\ell}^{n} C_{k,x} \leq \frac{n}{\ell} \quad (16)$$

for all ℓ, x we get

$$\frac{1}{r} \int_{x=0}^{A} \sum_{k=B}^{n} E(C_{k,x}) dx \leq \frac{1}{r} \int_{x=0}^{A} \frac{n}{B} dx = \frac{A}{B} \cdot \frac{n}{r} = o(n/r). \quad (17)$$

We next have to consider larger values of x in our integral. Now G contains at most $n(e\Delta)^k$ connected subgraphs with k vertices. To see this, choose $v \in V$ and note that G contains fewer than $(e\Delta)^k$ k-vertex trees rooted at v. This follows from the formula (29) below for the number of subtrees of an infinite rooted r-ary tree which contain the root.

Also, from (3) we get $S \subseteq V$, $|S| = k$ implies $|S : S| \geq k\delta - k(k - 1) \geq k(r - k)$. Thus

$$E(C_{k,x}) \leq n(e\Delta)^k \left(1 - \frac{x}{r}\right)^{k(r-k)} \leq n(re^{1+\alpha-\alpha(1-k/r)})^k. \quad (18)$$

Range 3: $x \geq A$ and $k \leq r/2$. Equation (18) implies that for large r,

$$E(C_{k,x}) \leq ne^{-kA/3}. \quad (19)$$

Thus

$$\frac{1}{r} \int_{x=A}^{r/2} \sum_{k=1}^{r/2} E(C_{k,x}) dx \leq nr e^{-A/3} = o(n/r). \quad (20)$$

Range 4: $x \geq A$ and $r/2 < k \leq k_0 = \min\{pr, n/2\}$. It is only here that we use the expansion condition (2). We find

$$E(C_{k,x}) \leq n(\rho r)^k \left(1 - \frac{x}{r}\right)^{k\rho r^2/3 \log r} \leq n \left(\frac{e}{r}\right)^k. \quad (21)$$

So,

$$\frac{1}{r} \int_{x=A}^{r} \sum_{k=r/2+1}^{k_0} E(C_{k,x}) dx \leq n \left(\frac{e}{r}\right)^{r/2} = o(n/r). \quad (22)$$

We split the remaining range into two cases.

Range 5: $x \geq A$ and $k > k_0$.

10
Case 1: $n \geq 2\rho r$, so that $k_0 = \rho r$.
If $k \geq k_0$ we use (16) to deduce that
\[
\frac{1}{r} \int_r^n \sum_{k=0}^n E(C_{k,x})dx \leq \frac{n}{\rho r} = o(n/r).
\] (23)

Part (b) now follows from (6), (14), (15), (17), (20), (22) and (23).

Case 2: $n < 2\rho r$, so that $k_0 = n/2$.
For larger r, we have to use the $-\kappa(G)$ term in (6), ignored in the previous case. Here (2) implies $\kappa(G) = 1$. We deduce from (19) and (21) that
\[
\Pr(G_{A/r} \text{ is not connected }) \leq 2n e^{-A/3} + 2n \left(\frac{e}{r} \right)^{r/2}.
\] (24)

Then,
\[
\frac{1}{r} \int_r^n \sum_{k=0}^n E(C_{k,x})dx = 1 - O(n^{-K})
\]
for any constant $K > 0$, and the proof is completed by (6), (14), (15), (17).

Remark: It is worth pointing out that it is not enough to have $r \to \infty$ in order to have Theorem 2, that is, we need some extra condition such as the expansion condition (2). For consider the graph G_0 obtained from n/r r-cliques $C_1, C_2, \ldots, C_{n/r}$ by deleting an edge (x_i, y_i) from C_i, $1 \leq i \leq n/r$ then joining the cliques into a cycle of cliques by adding edges (y_i, x_{i+1}) for $1 \leq i \leq n/r$. It is not hard to see that
\[
mst(G_0) \sim \frac{n}{r} \left(\zeta(3) + \frac{1}{2} \right)
\]
if $r \to \infty$ with $r = o(n)$. We conjecture that this is the worst-case, that is

Conjecture: Assuming only the conditions of Theorem 1,
\[
mst(G) \leq (1 + o(1)) \frac{n}{r} \left(\zeta(3) + \frac{1}{2} \right).
\]

2.1.1 Proof of Theorem 3

We consider $M_{d,n}^{(2)}$ first. We prove the equivalent of (4). For this we need a technical lemma.

Lemma 3 Assume $s_1, s_2, \ldots, s_n \geq 0$ and $s = s_1 + s_2 + \cdots + s_n$ then
\[
\frac{1}{2} s \log_2 s \geq \frac{1}{2} \sum_{i=1}^n s_i \log_2 s_i + \sum_{i=1}^n \min\{s_i, s_{i+1}\}.
\] (25)

(Here $s_{n+1} = s_1$ and $s_i \log_2 s_i = 0$ when $s_i = 0$.)

11
Proof We prove (25) by induction on \(n \). The case \(n = 2 \) is proved in [3]. Assume (25) is true for some \(n \geq 2 \) and consider \(n + 1 \).

\[
\Lambda = \frac{1}{2} \sum_{i=1}^{n+1} s_i \log_2 s_i + \sum_{i=1}^{n+1} \min\{s_i, s_{i+1}\}
\]

\[
\leq \frac{1}{2}(s - s_{n+1}) \log_2(s - s_{n+1}) + \frac{1}{2}s_{n+1} \log_2 s_{n+1} + \min\{s_n, s_{n+1}\} + \min\{s_{n+1}, s_1\} - \min\{s_n, s_1\}
\]

by induction.

Case 1 \(\min\{s_1, s_n, s_{n+1}\} = s_1 \):

\[
\Lambda \leq \frac{1}{2}(s - s_{n+1}) \log_2(s - s_{n+1}) + \frac{1}{2}s_{n+1} \log_2 s_{n+1} + \min\{s_n, s_{n+1}\}
\]

\[
\leq \frac{1}{2}(s - s_{n+1}) \log_2(s - s_{n+1}) + \frac{1}{2}s_{n+1} \log_2 s_{n+1} + \min\{s - s_{n+1}, s_{n+1}\}
\]

\[
\leq \frac{1}{2}s \log_2 s.
\]

Case 2 \(\min\{s_1, s_n, s_{n+1}\} = s_n \): similar.

Case 3 \(\min\{s_1, s_n, s_{n+1}\} = s_{n+1} \):

\[
\Lambda \leq \frac{1}{2}(s - s_{n+1}) \log_2(s - s_{n+1}) + \frac{1}{2}s_{n+1} \log_2 s_{n+1} + 2s_{n+1} - \min\{s_n, s_1\}
\]

\[
\leq \frac{1}{2}(s - s_{n+1}) \log_2(s - s_{n+1}) + \frac{1}{2}s_{n+1} \log_2 s_{n+1} + s_{n+1}
\]

\[
= \frac{1}{2}(s - s_{n+1}) \log_2(s - s_{n+1}) + \frac{1}{2}s_{n+1} \log_2 s_{n+1} + \min\{s - s_{n+1}, s_{n+1}\}
\]

\[
\leq \frac{1}{2}s \log_2 s.
\]

\[\square\]

Now consider \(S \subseteq V_{d,n} \) with \(|S| = s \). We now prove by induction on \(s \) that

\(S \) contains at most \(\frac{1}{2}s \log_2 s \) edges. (26)

Let \(S_i \) be the set of vertices \(x \in S \) with \(x_n = i \). Let \(s_i = |S_i|, \ i = 1, 2, \ldots, n \). Each \(S_i \) can be considered a subset of \(V_{d,n-1} \) and we can assume inductively that each \(S_i \) contains at most \(\frac{1}{2}s_i \log_2 s_i \) edges. Therefore \(S \) contains at most \(\Lambda \) edges and (26) follows from Lemma 3. It follows that \(|S : S| \geq 2ds - s \log_2 s \) and so \(M_{d,n}^{(2)} \) has adequate expansion to apply Theorem 2.

Now consider the spanning subgraph \(M_{d,n}^{(1)} \) of \(M_{d,n}^{(2)} \). Since each edge of \(M_{d,n}^{(2)} \) is equally likely to be in a minimum spanning tree \(T \), the expected number of ‘wrap-around’ edges in \(T \) equals \((n^d - 1)/n < n^{d-1} \). Hence

\[
\text{mst}(M_{d,n}^{(2)}) \leq \text{mst}(M_{d,n}^{(1)}) \leq \text{mst}(M_{d,n}^{(2)}) + n^{d-1},
\]

which completes the proof. \[\square\]
2.2 Large Girth

We note first that all components of G_p with fewer than g vertices are trees. Here g denotes the girth of G. Hence

$$|mst(G) - \int_{p=0}^{\frac{g-1}{g}} \sum_{k=1}^{g-1} E(\tau_{k,p})dp| \leq \frac{n}{g}. \quad (27)$$

Here $\tau_{k,p}$ is the number of (tree) components with k vertices in G_p and n/g is an upper bound for the number of components of G_p with g or more vertices.

Let $t(v, k)$ be as in Lemma 2. This time we have an exact formula for $t(v, k)$ when k is less than the girth g of G.

Lemma 4 For $k < g$,

$$t(v, k) = \frac{r((r-1)k)!}{(k-1)!((r-2)k+2)!}.$$

Proof We use the formula

$$t(v, k) = \sum_{i=1}^{k} \frac{1}{(r-2)i+1} \binom{(r-1)i}{i} \frac{1}{(r-2)(k-i)+1} \binom{(r-1)(k-i)}{k-i}. \quad (28)$$

This follows from the formula

$$\frac{1}{(r-1)m+1} \binom{rm}{m} \quad (29)$$

for the number of m-vertex subtrees of an infinite rooted r-ary tree which contain the root – see Knuth [8], Problem 2.3.4.4.11. To obtain (28) we take each tree with k vertices rooted at v and view it as an $(r-1)$-ary tree with i vertices rooted at v plus an $(r-1)$-ary tree with $k-i$ vertices rooted at the largest (numbered) neighbour of v. Let

$$a_k = \sum_{i=0}^{k} \frac{1}{(r-2)i+1} \binom{(r-1)i}{i} \frac{1}{(r-2)(k-i)+1} \binom{(r-1)(k-i)}{k-i}.$$

[Sum from $i = 0$ as opposed to $i = 1$ in (28).] Then

$$\sum_{k=0}^{\infty} a_k x^k = \sum_{k=0}^{\infty} \sum_{i=0}^{k} \frac{1}{(r-2)i+1} \binom{(r-1)i}{i} \frac{1}{(r-2)(k-i)+1} \binom{(r-1)(k-i)}{k-i} x^k$$

$$= \sum_{i=0}^{\infty} \frac{1}{(r-2)i+1} \binom{(r-1)i}{i} x^i \sum_{k=i}^{\infty} \frac{1}{(r-2)(k-i)+1} \binom{(r-1)(k-i)}{k-i} x^{k-i}$$

$$= \left(\sum_{i=0}^{\infty} \frac{1}{(r-2)i+1} \binom{(r-1)i}{i} x^i \right)^2$$

$$= \left(\sum_{i=0}^{\infty} \frac{1}{(r-1)i+1} \binom{(r-1)i+1}{i} x^i \right)^2$$

$$= B_{r-1}(x)^2,$$

13
where
\[B_t(x) = \sum_{i=0}^{\infty} \frac{1}{ti+1} \binom{ti+1}{i} x^i \]
is the **Generalised Binomial Series.** The identity
\[B_t(x)^s = \sum_{i=0}^{\infty} \frac{s}{ti+s} \binom{ti+s}{i} x^i \]
is given for example in Graham, Knuth and Patashnik [6]. Thus,
\[a_k = \frac{2}{(r-1)k+2} \binom{(r-1)k+2}{k} . \]
The lemma follows from
\[t(v, k) = a_k - \frac{1}{(r-2)k+1} \binom{(r-1)k}{k} . \]
\[\square \]

We may now prove the first part of Theorem 4. We have
\[\int_{p=0}^{1} \sum_{k=1}^{g-1} \mathbb{E}(\tau_{k,p}) dp \]
\[= \frac{1}{k} \int_{p=0}^{1} \sum_{k=1}^{g-1} \sum_{v \in V} t(v, k)p^{k-1}(1-p)^{rk-2k+2} dp \]
\[= \sum_{k=1}^{g-1} n \frac{r((r-1)k)!}{k(k-1)!(k-2)!(r-1)k+2} \frac{(k-1)!(r-2)k+2)!}{((r-1)k+2)!} \]
\[= \sum_{k=1}^{g-1} \frac{nk((r-1)k+1)((r-1)k+2)}{k((r-1)k+1)((r-1)k+2)} \]
\[= \frac{nr}{(r-1)^2} \sum_{k=1}^{g-1} \frac{1}{k(k+\rho)(k+2\rho)} \]
where \(\rho = 1/(r-1) \). Theorem 4 now follows from (27) and
\[\frac{r}{(r-1)^2} \sum_{k=g}^{\infty} \frac{1}{k(k+\rho)(k+2\rho)} \leq \frac{r}{(r-1)^2} \sum_{k=g}^{\infty} k^{-3} \]
\[\leq \frac{r}{(r-1)^2} \int_{g-1}^{\infty} x^{-3} dx \]
\[= \frac{r}{(r-1)^2} \frac{1}{2(g-1)^2} \]
\[\leq \frac{1}{2g} . \]
Proof of Corollary 5 Start with a 2-edge-connected r-regular graph with girth at least $g - 2$, and form a new graph H by ‘splitting’ an edge so that two vertices have degree 1 and all the others have degree r. Let F be a set of edges in G which meet each cycle of length less than g. From the graph G, form a new graph \hat{G} as follows. For each edge $f = \{u, v\} \in F$, take a new copy H_f of H and identify the vertices u and v with the vertices of degree 1 in H_f. Then \hat{G} has girth at least g, $|V(\hat{G})| = n + |F|(|V(H)| - 2) = (1 + o(1))n$, and $|msf(\hat{G}) - msf(G)| \leq |F||E(H)| = o(n)$.

\[\square\]

2.2.1 Proof of Theorem 7

Our main tool here is a concentration inequality of Talagrand [14], see Steele [13] for a good exposition. Let A be a (measurable) non-empty subset of R^E. For $x, \beta \in R^E$ with $||\beta||_2 = 1$ let
\[d_A(x, \beta) = \inf_{y \in A} \sum_{e \in E} \beta_e 1_{\{x_e \neq y_e\}}.\]
and let
\[d_A(x) = \sup_{\beta} d_A(x, \beta).\]
Talagrand shows that for all $t > 0$,
\[\Pr(X \in A)\Pr(d_A(X) \geq t) \leq e^{-t^2/4}.\]
(a) For $a \in R$ let
\[S(a) = \{y \in R^E : mst(G, y) \leq a\}.\]
Given x we let $T = T(x)$ be a minimum spanning tree of G using these weights ($T(X)$ is unique with probability 1). Let $L = L(x) = (\sum_{e \in T} x_e^2)^{1/2}$. Note that $L(x) \leq n^{1/2}$. Define, \(\beta = \beta(x)\) by
\[\beta_e = \begin{cases} x_e/L & e \in T \\ 0 & \text{otherwise} \end{cases}\]
Then for $y \in S(a)$ we have
\[mst(G, x) \leq mst(G, y) + \sum_{e \in T(x)} (x_e - y_e)^+ \leq mst(G, y) + L(x) \sum_{e \in E} \beta_e 1_{\{x_e \neq y_e\}}.\]
By choosing y achieving the minimum in (31) (the infimum is achieved) we see that
\[mst(G, x) \leq a + L(x)d_a(x, \beta) \leq a + n^{1/2}d_a(x, \beta).\]
Applying (32) with $A = S(a)$ we get

$$
\Pr(\text{mst}(G, X) \leq a) \Pr(\text{mst}(G, X) \geq a + n^{1/2}t) \leq e^{-t^2/4}.
$$

(33)

Let M denote the median of $\text{mst}(G, X)$. Then with $a = M$ and $t = en^{1/2}/r$,

$$
\Pr(\text{mst}(G, X) \geq M + en/r) \leq 2e^{-en/(4r^2)}.
$$

(34)

With $a = M - en/r$,

$$
\Pr(\text{mst}(G, X) \leq M - en/r) \leq 2e^{-en/(4r^2)}.
$$

(35)

Equations (34) and (35) plus $r = o((n/ \log n)^{1/2})$ imply that

$$
|M - \text{mst}(G)| = o(n/r)
$$

and so it is a simple matter to replace M by $\text{mst}(G)$ in (34), (35) to obtain (a).

(b) We change the definition of β slightly. For minimum spanning tree $T(x)$ we let $T_1(x) = \{e \in T : x_e \leq 12 \log n/(\gamma r)\}$. Then let

$$
L_1(x) = \left(\sum_{e \in T_1} x_e^2 \right)^{1/2} \leq \frac{12n^{1/2} \log n}{\gamma r}.
$$

Then define

$$
\beta_e = \begin{cases}
 x_e/L_1 & : e \in T_1 \\
 0 & : \text{otherwise}
\end{cases}
$$

Also let

$$
\phi(x) = \sum_{e \in T \setminus T_1} x_e.
$$

Then for $y \in S(a)$ we have

$$
\text{mst}(G, x) \leq \text{mst}(G, y) + \sum_{e \in T_1} (x_e - y_e)^+ + \phi(x)
$$

$$
\leq \text{mst}(G, y) + L_1(x) \sum_{e \in E} \beta_e 1_{\{x_e \neq y_e\}} + \phi(x).
$$

By choosing y achieving the minimum in (31) we see that

$$
\text{mst}(G, x) \leq a + L_1(x)d_a(x, \beta) + \phi(x).
$$

Applying (32) we get

$$
\Pr(\text{mst}(G, X) \leq a) \Pr(\text{mst}(G, X) \geq a + t \frac{12n^{1/2} \log n}{\gamma r} + \phi(X)) \leq e^{-t^2/4}.
$$

(36)
We will show below that
\[\Pr(\phi(X) \geq \varepsilon n/(3r)) \leq e^{-\gamma/(20 \log n)^2}. \]
(37)

So putting \(a = M \) and \(t = \varepsilon \gamma n^{1/2}/(36 \log n) \) into (36) we get
\[\Pr(mst(G, X) \geq M + 2\varepsilon n/(3r)) \leq 2e^{-\gamma^2/(5184 \log n)^2} + \Pr(\phi(X) \geq \varepsilon n/(3r)). \]

On the other hand, putting \(a = M - 2\varepsilon n/(3r) \) and \(t = \varepsilon \gamma n^{1/2}/(36 \log n) \) we get
\[\Pr(mst(G, X) \leq M - 2\varepsilon n/(3r)) \Pr(mst(G, X) \geq M - \varepsilon n/(3r) + \phi(X)) \leq e^{-\gamma^2/4}. \]

But
\[\Pr(mst(G, X) \geq M - \varepsilon n/(3r) + \phi(X)) \geq \frac{1}{2} - \Pr(\phi(X) \geq \varepsilon n/(3r)) \]
and we can finish as in (a).

Proof of (37) Let
\[\pi(m, k, p) = \Pr(G_p \text{ contains } \geq m \text{ components of size } k) \]
\[\leq \left(\frac{n}{k} \right)^m (1 - p)^{\gamma kr m/2} \]
\[\leq \left(\frac{\nu}{k} e^{-p \gamma r / 2} \right)^{mn} \]
\[\leq e^{-mn p \gamma r / 3} \]
if \(p \geq p_0 = \min\{1, 12 \log n / (\gamma r)\} \). Next let
\[p_i = \min\{1, 2^i p_0\} \text{ for } 0 \leq i \leq i_0 = [\log_2 p_0^{-1}] \]
and
\[m_{k,p} = \frac{\varepsilon n}{6 k p r (\log n)^2}. \]

Now
\[\phi(X) \leq \sum_{i = 0}^{i_0 - 1} \sum_{k = 1}^{n} C_{k,p_i} p_{i+1} \]
and so if
\[G_{p_i} \text{ contains } < m_{k,p_i} \text{ components of size } k \text{ for } 0 \leq i < i_0, 1 \leq k \leq n \]
then
\[\phi(X) \leq \sum_{i = 0}^{i_0 - 1} \sum_{k = 1}^{n} \frac{\varepsilon n}{3 k r (\log n)^2} \leq \frac{\varepsilon n}{3 r}. \]

Furthermore, the probability that (38) fails to hold is at most
\[\sum_{i = 0}^{i_0 - 1} \sum_{k = 1}^{n} \pi(m_{k,p_i}, k, p_i) \leq \sum_{i = 0}^{i_0 - 1} \sum_{k = 1}^{n} e^{-c_\gamma / (18 (\log n)^2)} \]
which proves (37).

We now consider the values of the constants \(c_\gamma \) more carefully. \(\square \)
Proposition 10 The constants c_r satisfy $c_2 = 1/2$, $c_3 = 9/2 - 6 \log 2 \approx 0.341$, $c_4 = 9 - 3 \log 3 - \pi \sqrt{3} \approx 0.264$ and $c_5 = 15 - 10 \log 2 - 5\pi/2 \approx 0.215$; and in general, for $r \geq 3$, $c_r = r \sum_{j=0}^{r-2} g(\omega^j)$, where $g(x) = \frac{(x-1)^2}{2x^2} \log\left(\frac{1}{1-x}\right) + \frac{3}{4}$ and $\omega = e^{2\pi i/(r-1)}$.

Proof Let Σ_r denote the sum in Theorem 4, so that $c_r = r \Sigma_r$. Note first that

\[
\sum_{k=1}^{\infty} \frac{x^k}{k(k+1)(k+2)} = \sum_{k=1}^{\infty} x^k \left(\frac{1}{2k} - \frac{1}{k+1} + \frac{1}{2(k+2)} \right) = \frac{1}{2} \log \left(\frac{1}{1-x} \right) - \frac{1}{x} \left(\log \left(\frac{1}{1-x} \right) - x \right) + \frac{1}{2x^2} \left(\log \left(\frac{1}{1-x} \right) - x - \frac{x^2}{2} \right) = \frac{(x-1)^2}{2x^2} \log \left(\frac{1}{1-x} \right) + \frac{3}{4} - \frac{1}{2x}.
\]

Thus $\Sigma_2 = \frac{1}{4}$. Also, for $r \geq 3$, note that $\omega^{r-1} = 1$ and $1 + \omega + \cdots + \omega^{r-2} = 0$. Hence, for $r \geq 3$

\[
\Sigma_r = (r-1) \sum_{k:(r-1)|k} \frac{1}{k(k+1)(k+2)} = \sum_{j=0}^{r-2} g(\omega^j).
\]

For $r = 3$, $\omega = -1$ so

\[
\Sigma_3 = g(1) + g(-1) = \frac{3}{2} - 2 \log 2,
\]

and thus c_3 is as given. For $r = 4$ we find after some calculation that

\[
Re(g(\omega)) = \frac{3}{4} - \frac{3 \log 3}{8} - \frac{\pi \sqrt{3}}{8}.
\]

But $\Sigma_4 = \frac{3}{4} + 2Re(g(\omega))$ and so c_4 is as given. For $r = 5$, $\omega = i$ and we find that

\[
\Sigma_5 = g(1) + g(i) + g(-1) + g(-i) = 3 - 2 \log 2 - \pi/2,
\]

and so c_5 is as given. \hfill \Box

Proposition 11 For any $r \geq 2$,

\[
\frac{\zeta(3)}{r+1} < c_r < \frac{r \zeta(3)}{(r-1)^2}.
\]

Also

\[
c_r = r \sum_{k=3}^{\infty} \left(-\frac{1}{r-1} \right)^{k-1} (2^{k-2} - 1) \zeta(k) = \frac{r}{(r-1)^2} \zeta(3) - 3 \frac{r}{(r-1)^3} \zeta(4) + 7 \frac{r}{(r-1)^4} \zeta(5) - \cdots.
\]

Both of these results show that $c_r \sim \zeta(3)/r$ as $r \to \infty$.

18
Proof We may write

\[c_r = r(r-1)^{-2} \sum_{k=1}^{\infty} (k(k+1/(r-1))(k+2/(r-1)))^{-1}. \]

It follows that \(c_r < \frac{r}{(r-1)^2} \zeta(3) \), and

\[c_r > r(r-1)^{-2} \left(1 + \frac{1}{r-1} \right)^{-1} \left(1 + \frac{2}{r-1} \right)^{-1} \zeta(3) = \frac{1}{r+1} \zeta(3). \]

Also, for any \(0 \leq x \leq 1 \)

\[\sum_{k=1}^{\infty} (k(k+x))^{-1} = \sum_{k=1}^{\infty} k^{-2} \sum_{j=0}^{\infty} (-x/k)^j = \sum_{k=2}^{\infty} (-x)^{k-2} \zeta(k). \]

Hence, for any \(a > 1 \)

\[\sum_{k=1}^{\infty} (k(k+1/a)(k+2/a))^{-1} = \sum_{k=1}^{\infty} \frac{a}{k} \left(\frac{1}{k+1/a} - \frac{1}{k+2/a} \right) = \sum_{k=3}^{\infty} (-1/a)^{k-3} (2^{k-2} - 1) \zeta(k). \]

Thus

\[c_r = r \sum_{k=3}^{\infty} \left(\frac{-1}{r-1} \right)^{k-1} (2^{k-2} - 1) \zeta(k) \]

\[= \frac{r}{(r-1)^2} \zeta(3) - 3 \frac{r}{(r-1)^3} \zeta(4) + 7 \frac{r}{(r-1)^4} \zeta(5) - \cdots \]

\[\square \]

It remains only to prove Propositions 8 and 9.

Proof of Proposition 8 We estimate the maximum total weight of edges that can be deleted without increasing the number of components, which are all cycles. Let \(C_k \) be the random number of \(k \)-cycles in \(G_{n,2} \). Then using the configuration model we can prove that for \(k \geq 3 \), \(\mathbb{E}(C_k) = (1 + O(k/n))^2 k \). So the expected ‘savings’ from \(k \)-cycles is

\(\left(1 + O\left(\frac{k}{n} \right) \right) \frac{1}{k} \left(1 - \frac{1}{k+1} \right) = \left(1 + O\left(\frac{k}{n} \right) \right) \frac{1}{k+1}. \)

Hence the total expected savings from cycles of length at most \(k \) is

\(\left(1 + O\left(\frac{k}{n} \right) \right) \sum_{i=3}^{k} \frac{1}{i+1} = \left(1 + O\left(\frac{k}{n} \right) \right) (\log k + O(1)). \)
Take $k \sim n/\sqrt{\log n}$. Then the total savings is at least

$$\left(1 + O \left(\frac{k}{n} \right) \right) (\log k + O(1)) = \log n + O(\sqrt{\log n}),$$

and is at most this value plus $n/k \sim \sqrt{\log n}$. \hfill \Box

Proof of Proposition 9 Consider the complete graph K_n, with independent edge lengths X_e on the edges e, each uniformly distributed on $(0,1)$. Call this the random network (K_n, X). Form a random subgraph H on the same set of vertices by including the edge e exactly when $X_e \leq p$, and give e the length X_e/p. We thus obtain a random graph $G_{n,p}$ with independent edge lengths, each uniformly distributed on $(0,1)$. Call this the random network (H, Y). We observe

$$mst(K_n, X) 1_{(H \text{ connected})} \leq p mst(H, Y) \leq mst(K_n, X).$$

The theorem now follows easily from the fact that that $mst(K_n, X) \to \zeta(3)$ as $n \to \infty$, in probability and in any mean [4, 5]. \hfill \Box

Acknowledgement We would like to thank Noga Alon, Bruce Reed and Gunter Rote for helpful comments.

References

