s in the subgraph induced

$$\frac{n}{1} - \frac{j(n^2 - 4|s|)}{4n(n-1)}$$

$$(n) \over (1) - \frac{1}{4} \ge \frac{j^2}{4} - \frac{j}{3}.$$

ertices which has at least y in (5.2) just shown, this

$$\frac{\overline{(n-1)}}{|s|-n|}-2>\frac{n}{2\sqrt{|s|}}$$

corem 5.2 it is enough to and M edges contains a = $\log n/\log(2M/n)$ [see secrem VI.3.1 in Bollobás

demic, New York. New York.

). On the structure of edge

6

ON SMALL SUBGRAPHS OF RANDOM GRAPHS*

ALAN FRIEZE

Carnegie Mellon University

6.1. INTRODUCTION

Let H be some fixed graph with $r \ge 3$ vertices and s edges. H is assumed to be *strictly balanced*, that is,

$$\frac{s}{r} > \frac{\mu(H')}{\nu(H')}$$

for all nontrivial subgraphs H' of H, $H' \neq H$, where $\nu(H')$ and $\mu(H')$ are the numbers of vertices and edges in H', respectively. (From now on $H' \subset H$ will always mean such subgraphs.) Note that this implies H is connected.

Consider now the random graph $G_{n,m}$ chosen uniformly from $\mathcal{G}_{n,m} = \{\text{graphs with vertex set } [n] = \{1, 2, ..., n\} \text{ and } m \text{ edges} \}$ and let X_H denote the number of copies of H in $G_{n,m}$. Suppose now $m = \frac{1}{2}\omega n^{2-r/s}$, where $\omega = \omega(n)$. Erdős and Rényi (1960) showed that

$$Pr(X_H = 0) = 1 - o(1), \text{ if } \omega \to 0,$$

$$Pr(X_H \neq 0) = 1 - o(1), \text{ if } \omega \to \infty.$$

*Research supported in part by NSF grant CCR-89-00112.

Random Graphs, Volume 2. Edited by Alan Frieze and Tomasz Łuczak. Copyright © 1992 by John Wiley & Sons, Inc. ISBN: 0471-57292-6.

Here, as usual, we consider limits and so forth as $n \to \infty$. Using $a(n) \sim b(n)$ to stand for a(n) = (1 - o(1))b(n), we remark that

$$E(X_H) \sim \frac{\omega^s}{\alpha} = \lambda$$
, say,

where α denotes the number of automorphisms of H.

Erdős and Rényi's result has been refined in many ways. In particular, Bollobás (1981) and Karoński and Ruciński (1983) independently showed that if ω tends to a constant and k is a fixed nonnegative integer, then

$$\Pr(X_H = k) \sim e^{-\lambda} \frac{\lambda^k}{k!}.$$
 (6.1)

The aim of this paper is to show that the Poisson expression (6.1) is good for $\omega \to \infty$ sufficiently slowly. In particular we prove the following theorem.

Theorem 6.1. Let H be strictly balanced and λ be as previously defined. Then there exists a positive real constant $\theta = \theta(H)$ such that if $\omega \to \infty$ and $\omega = o(n^{\theta})$, then

$$\Pr(X_H = k) \sim e^{-\lambda} \frac{\lambda^k}{k!}$$
 for all $0 \le k \le (1 + \epsilon_1)\lambda$, (6.2)

where

$$\epsilon_1 = \frac{A_1 (\log n)^{r/(2r-1)}}{\lambda^{(r-1)/(2r-1)}} \quad \text{for some constant } A_1 > 0.$$

$$\Pr(X = k) \gg e^{-\lambda} \frac{\lambda^k}{k!}$$
 for all $(1 + \epsilon_2)\lambda \le k \le \lambda \log n$ (6.3)

where $\epsilon_2 = A_2(\log n/\lambda^{1-2/r})^{r/2(r-1)}$ for some constant $A_2 > 0$, provided $\epsilon_2 \le 1$. [The notation $a(n) \gg b(n)$ is used for $a(n)/b(n) \to \infty$.]

Remarks

- 1. We could also allow ω tends to a constant, but this is the well known case we are extending.
- 2. We are not able to obtain the largest possible values for $\theta(H)$ although we hope to refine our analysis for particular graphs, for

$$\frac{\omega^s}{\alpha} = \lambda$$
, say,

automorphisms of H.

een refined in many ways. In particuiand Ruciński (1983) independently astant and k is a fixed nonnegative

$$(6.1) \sim e^{-\lambda} \, \frac{\lambda^k}{k!} \, .$$

that the Poisson expression (6.1) is y. In particular we prove the follow-

balanced and λ be as previously ve real constant $\theta = \theta(H)$ such that

for all
$$0 \le k \le (1 + \epsilon_1)\lambda$$
, (6.2)

for some constant $A_1 > 0$.

$$\operatorname{all}(1 + \epsilon_2)\lambda \le k \le \lambda \log n \quad (6.3)$$

1) for some constant $A_2 > 0$, prob(n) is used for $a(n)/b(n) \to \infty$.

s to a constant, but this is the well

he largest possible values for $\theta(H)$ ur analysis for particular graphs, for

example, triangles. It is possible that the largest value coincides with that for Poisson convergence; see Ruciński (1988).

- 3. Observe that $\epsilon_1 \lambda \gg \lambda^{1/2}$ and so (6.2) is valid into the tails of the Poisson distribution.
- 4. A somewhat stronger result for k=0 and $G_{n,p}$ has been proved independently by Boppana and Spencer (1989) and Janson, Łuczak, and Ruciński (1990). Janson (1991) has extended this result to estimate $\Pr(X_H \le k)$ for $k \le E(X_H)$. See also Suen (1991).
- 5. See Ruciński (1991) for a recent survey on the distribution of the number of copies of small subgraphs of random graphs.

6.2. PROOF OF THEOREM 6.1

We will not specify $\theta(H)$ immediately, but upper bounds for it will be derived along with the proof. We will use A, A_1, A_2, \ldots to denote absolute constants whose values may or may not be explicitly stated. Throughout the paper, stated inequalities are only claimed to hold for n sufficiently large.

We distinguish between isolated copies of H and nonisolated copies. Here a copy of H in $G_{n,m}$ is isolated if it shares no edge with any other copy of H.

Now let

$$\pi_{k,l} = \Pr(G_{n,m} \text{ contains exactly } k \text{ isolated and } l \text{ nonisolated copies of } H)$$

and

$$q_l = \sum_{k=0}^{\infty} \pi_{k,l} = \Pr(G_{n,m} \text{ contains exactly } l \text{ nonisolated copies of } H),$$

$$p_k = \sum_{l=0}^k \pi_{k-l,l} = \Pr(G_{n,m} \text{ contains exactly } k \text{ copies of } H).$$

The main work involved in the proof is to justify the following inequalities:

$$n^{-A_3 l^{2/r}} \le q_l \le n^{-A_4 l^{1/r}}, \qquad 2 \le l \le \lambda_0 = \lfloor \lambda (\log n)^4 \rfloor, \quad (6.4)$$

$$Pr(G_{n,m} \text{ contains at least } \lambda_0 \text{ isolated copies of } H) = o(e^{-\lambda_0})$$
 (6.5)

and more importantly

$$\frac{\pi_{k,l}}{\pi_{k-1,l}} = (1 + \epsilon_{k,l}) \frac{\lambda}{k}, \qquad 0 \le k-1, l \le \lambda_0, \tag{6.6}$$

where $|\epsilon_{k,l}| = o(\lambda_0^{-1})$.

We devote the remainder of this section to showing how our theorem follows from (6.4)–(6.6), and we prove these inequalities later on.

Suppose now that $0 \le l \le \lambda_0$. It follows from (6.6) that

$$\pi_{i,l} = (1 + o(1))\pi_{0,l} \frac{\lambda^i}{i!}, \quad 0 \le i \le \lambda_0,$$
(6.7)

and so

$$q_{l} = (1 + o(1))\pi_{0, l} \sum_{i=0}^{\lambda_{0}} \frac{\lambda^{i}}{i!} + \sum_{i>\lambda_{0}} \pi_{i, l}$$
$$= (1 + o(1))\pi_{0, l} (e^{\lambda} - o(e^{-\lambda_{0}})) + o(e^{-\lambda_{0}})$$

on using (6.5). Hence

$$\pi_{0,l} = (1 + o(1))(q_l - o(e^{-\lambda_0}))e^{-\lambda}$$

and, by (6.7),

$$\pi_{i,l} = (1 + o(1))q_l e^{-\lambda} \frac{\lambda^i}{i!} + o\left(\frac{\lambda^i}{i!} e^{-\lambda - \lambda_0}\right), \qquad 0 \le i \le \lambda_0.$$

Thus

$$p_k = (1 + o(1)) \sum_{l=0}^k q_l e^{-\lambda} \frac{\lambda^{k-l}}{(k-l)!} + o(e^{-\lambda_0}), \qquad 0 \le k \le \lambda_0.$$

Now

$$p_k \ge (1 + o(1))q_k e^{-\lambda} + o(e^{-\lambda_0})$$

$$\ge n^{-A_3(\lambda_0)^{2/r}} e^{-\lambda} + o(e^{-\lambda_0}) \gg e^{-\lambda_0}, \text{ since } r \ge 3,$$

71

 $\leq k-1, l \leq \lambda_0$ (6.6)

ection to showing how our we prove these inequalities

vs from (6.6) that

$$0 \le i \le \lambda_0, \tag{6.7}$$

$$\sum_{i>\lambda_0} \pi_{i,l}$$

$$(e^{-\lambda_0}) + o(e^{-\lambda_0})$$

$$o(e^{-\lambda_0}))e^{-\lambda}$$

$$e^{-\lambda-\lambda_0}$$
, $0 \le i \le \lambda_0$.

$$-o(e^{-\lambda_0}), \qquad 0 \le k \le \lambda_0.$$

$$o(e^{-\lambda_0}) \gg e^{-\lambda_0}, \text{ since } r \ge 3,$$

and so

$$p_{k} \sim \sum_{l=0}^{k} q_{l} e^{-\lambda} \frac{\lambda^{k-l}}{(k-l)!} \qquad (0 \le k \le \lambda_{0})$$

$$= e^{-\lambda} \frac{\lambda^{k}}{k!} \left(q_{0} + \sum_{l=2}^{k} \frac{(k)_{l}}{\lambda^{l}} q_{l} \right), \qquad (6.8)$$

where $(k)_l = k(k-1)\cdots(k-l+1)$.

To proceed from here we need to show $q_0 = 1 - o(1)$. Assume this for the moment so that we can verify Theorem 6.1. With this done we will prove $q_0 = 1 - o(1)$.

Suppose first that $0 \le k \le \lambda$. Then for θ sufficiently small,

$$1 - o(1) \le q_0 + \sum_{l=2}^k \frac{(k)_l}{\lambda^l} q_l \le q_0 + \sum_{l=2}^k q_l \le 1.$$
 (6.9)

Now let $k = (1 + \epsilon)\lambda$ where $0 \le \epsilon \le \epsilon_1 = A_1(\log n)^{r/(2r-1)}/$ $\lambda^{(r-1)/(2r-1)}$. Then, using (6.4),

$$\begin{split} u_l &= \frac{(k)_l}{\lambda^l} q_l \leq 2 \bigg(\frac{k}{\lambda}\bigg)^l e^{-l^2/2k} n^{-A_4 l^{1/r}} \\ &\leq 2 \exp\bigg\{\epsilon l - \frac{l^2}{2k} - A_4 l^{1/r} \log n\bigg\}. \end{split}$$

Case 1

 $l \ge 3\epsilon\lambda$ (and hence $\epsilon \le \frac{1}{2}$).

$$u_l \leq 2n^{-A_4 l^{1/r}}$$

Case 2

 $l < 3\epsilon\lambda$.

$$\begin{split} u_l &\leq 2 \exp \left\{ l^{1/r} \left(\epsilon l^{1-1/r} - A_4 \log n \right) \right\} \\ &\leq 2 \exp \left\{ l^{1/r} \left(3^{1-1/r} \epsilon^{2-1/r} \lambda^{1-1/r} - A_4 \log n \right) \right\} \\ &\leq 2 \exp \left\{ l^{1/r} \log n \left(3^{1-1/r} A_1^{2-1/r} - A_4 \right) \right\}. \end{split}$$

So if we make A_1 small enough so that $A_4 \ge 4A_1^2$, then we have

$$u_l \le 2n^{-A_1^2 l^{1/r}},$$

which is also valid for Case 1.

Hence if $\lambda \le k \le (1 + \epsilon_1)\lambda$ and θ is sufficiently small

$$1 - o(1) \le q_0 + \sum_{l=2}^k \frac{(k)_l}{\lambda^l} q_l \le 1 + 2 \sum_{l=2}^\infty n^{-A_1^2 l^{1/r}}$$

= 1 + o(1).

This together with (6.9) proves the first part of the theorem. Suppose now that $k = (1 + \epsilon)\lambda$ where

$$1 \ge \epsilon \ge \epsilon_2 = A_2 (\log n / \lambda^{1 - 2/r})^{r/2(r - 1)}$$

Then by (6.8),

$$p_{k} / \left(\frac{e^{-\lambda} \lambda^{k}}{k!}\right) \ge (1 - o(1)) \frac{k!}{\lambda^{k - \lfloor \lambda \rfloor} \lfloor \lambda \rfloor!} q_{k - \lfloor \lambda \rfloor}$$

$$\ge A \left(\frac{k}{e\lambda}\right)^{k} e^{\lambda} n^{-A_{3}(\epsilon\lambda + 1)^{2/r}}$$

$$\ge A e^{\epsilon^{2} \lambda / 3} n^{-2A_{3}(\epsilon\lambda)^{2/r}}$$

$$= A \exp\left\{\frac{\epsilon^{2} \lambda}{3} \left(1 - 6A_{3} \epsilon^{2/r - 2} \lambda^{2/r - 1} \log n\right)\right\}$$

$$\ge A \exp\left\{\frac{\epsilon^{2} \lambda}{3} \left(1 - 6A_{3} A_{2}^{2/r - 2}\right)\right\}.$$

Now $\epsilon^2 \lambda \to \infty$ and we are free to choose A_2 so that

$$1 - 6A_3A_2^{2/r-2} = \frac{1}{2}$$

and the result is proved for this case.

When $k \ge 2\lambda$ we use

$$\frac{(k+1)!}{\lambda^s(k+1-s)!}q_s \ge \frac{k!}{\lambda^s(k-s)!}q_s$$

to reduce to the previous case.

We of course have to prove that $q_0 = 1 - o(1)$. To prove this we need a lemma on the edge density of intersecting copies of H. We

that $A_4 \ge 4A_1^2$, then we have $-A_1^2 l^{1/r}$,

l heta is sufficiently small

$$\frac{1}{l}q_{l} \le 1 + 2\sum_{l=2}^{\infty} n^{-A_{1}^{2}l^{1/r}}$$

first part of the theorem. where

$$n/\lambda^{1-2/r})^{r/2(r-1)}$$

$$\frac{k!}{\lfloor \lambda \rfloor \lfloor \lambda \rfloor !} q_{k-\lfloor \lambda \rfloor}$$

$$_{3}(\epsilon\lambda+1)^{2/r}$$

$$-6A_3\epsilon^{2/r-2}\lambda^{2/r-1}\log n$$

$$-6A_3A_2^{2/r-2}$$
).

choose A_2 so that

$$r-2 = \frac{1}{2}$$

$$\frac{k!}{\lambda^s(k-s)!}q_s$$

= 1 - o(1). To prove this we intersecting copies of H. We

need a general version of this to prove (6.4) and we prove this here. Let

$$\theta_1 = \min_{H' \subset H} \left(\frac{2s - \mu(H')}{2r - \nu(H')} \right) - \frac{s}{r} > 0.$$

Note that $\theta_1 > 0$ follows from the fact that H is strictly balanced. A collection H_1, H_2, \ldots, H_k of copies of H in $G_{n,m}$ is said to be *linked* if for each i there is $j \neq i$ such that H_i, H_i share an edge.

Lemma 6.1. Let $H_1, H_2, \ldots, H_k, k \ge 2$, be a linked collection of copies of H. Let $K = \bigcup_{i=1}^k H_i$. Then

$$\mu(K) \geq \left(\theta_1 + \frac{s}{r}\right)\nu(K).$$

Proof. Assume w.l.o.g. that $H_i \nsubseteq \bigcup_{j \neq i} H_j$ for i = 1, 2, ..., k. We prove the result by induction on k. We discuss the base case and the inductive step in tandem. Let $K' = \bigcup_{i=1}^{k-1} H_i$. Then

$$\frac{\mu(K)}{\nu(K)} = \frac{\mu(H_k) + \mu(K') - |E(H_k) \cap E(K')|}{\nu(H_k) + \nu(K') - |V(H_k) \cap V(K')|}.$$
 (6.10)

Furthermore,

$$uv \in E(H_k) \cap E(K') \rightarrow u, v \in V(H_k) \cap V(K')$$

and so if $H' = (V(H_k) \cap V(K'), E(H_k) \cap E(K'))$, then H' is a nontrivial proper subgraph of H and, by (6.10),

$$\frac{\mu(K)}{\nu(K)} = \frac{s + \mu(K') - \mu(H')}{r + \nu(K') - \nu(H')}.$$

Base case: k = 2

Here $K' = H_2$ and $\mu(K)/\nu(K) \ge \theta_1 + s/r$ follows from the definition of θ_1 .

Inductive step

Write

$$\frac{\mu(K)}{\nu(K)} = \frac{2s - \mu(H') + (\mu(K') - s)}{2r - \nu(H') + (\nu(K') - r)}$$

and observe that

$$(\mu(K') - s) - \left(\theta_1 + \frac{s}{r}\right)(\nu(K') - r)$$

$$= \left(\mu(K') - \left(\theta_1 + \frac{s}{r}\right)\nu(K')\right) + r\theta_1 > 0$$

by induction.

It is always more pleasant to do computation in the independent model $G_{n,p}$, p=m/N, $N=\binom{n}{2}$. We quote the following simple results [see Bollobás (1981), Section 1.1]. Let $\mathscr A$ be any property of graphs. Then

$$\Pr(G_{n,m} \in \mathscr{A}) \le 3m^{1/2} \Pr(G_{n,p} \in \mathscr{A}) \tag{6.11}$$

and if \mathcal{A} is monotone, then

a.e.
$$G_{n,p} \in \mathscr{A} \to \text{a.e. } G_{n,m} \in \mathscr{A}.$$
 (6.12)

Lemma 6.2. If

$$\theta < \theta_1 r^2 / (s^2 + \theta_1 r s), \tag{6.13}$$

then $q_0 = 1 - o(1)$.

Proof. If $G_{n,m}$ has a pair of edge intersecting copies of H, then it contains a set of $r \le k \le 2r - 1$ vertices which span at least $\left\lceil k(s/r + \theta_1) \right\rceil$ edges. Now this property is monotone and

 $Pr(G_{n,p} \text{ contains a pair of edge intersecting copies of } H)$

$$\leq \sum_{k=r}^{2r-1} {n \choose k} 2^{\binom{k}{2}} p^{k(s/r+\theta_1)}$$

$$\leq \sum_{k=r}^{2r-1} 2^{\binom{k}{2}} \omega^{k(s/r+\theta_1)} n^{-k\theta_1 r/s}$$

$$= o(1).$$

Now use (6.12). \square

 $\left| (\nu(K') - r) \right|$ $\frac{s}{r} |\nu(K')| + r\theta_1 > 0$

computation in the independent We quote the following simple 1.1. Let \mathscr{A} be any property of

$$^{/2}\Pr(G_{n,p}\in\mathscr{A}) \tag{6.11}$$

$$e. G_{n,m} \in \mathscr{A}. \tag{6.12}$$

$$+ \theta_1 rs), \qquad (6.13)$$

tersecting copies of H, then it vertices which span at least ty is monotone and

intersecting copies of H)

6.3. PROOF OF (6.4) AND (6.5)

The upper bound in (6.4) follows fairly easily from Lemma 6.1. Indeed suppose $G_{n,m}$ contains exactly l nonisolated copies of H. Let K denote the graph induced by the union of these copies. If K has ρ vertices then, by Lemma 6.1, it has at least $\tau \rho$ edges where $\tau = \theta_1 + s/r$. Note that

$$l^{1/r} \le \rho \le rl \le r\lambda_0,$$

where the lower bound on ρ is from $(\rho)_r \ge l$. Hence, on using (6.11),

$$q_{l} \leq 3m^{1/2} \sum_{\rho=l^{1/r}}^{rl} {n \choose \rho} {\rho \choose 2 \choose \tau \rho} p^{\tau \rho}$$

$$\leq 3m^{1/2} \sum_{\rho=l^{1/r}}^{rl} {ne \choose \rho}^{\rho} {\rho^{2}ep \choose 2\tau \rho}^{\tau \rho}$$

$$\leq 3m^{1/2} \sum_{\rho=l^{1/r}}^{rl} {A\rho^{(\tau-1)^{+}}\omega^{\tau} \choose n^{\tau r/s-1}}^{\rho} \left[(\tau-1)^{+} = \max\{0, \tau-1\} \right]$$

$$\leq 3m^{1/2} \sum_{\rho=l^{1/r}}^{rl} {A'\omega^{s(\tau-1)^{+}} + \tau_{(\log n)} 4(\tau-1)^{+} \choose n^{r\theta_{1}/s}}^{\rho}$$
(6.14)

and the upper bound in (6.4) follows provided l is sufficiently large and

$$\theta(s(\tau-1)^+ + \tau) < r\theta_1/s.$$

For small l one can use the proof of Lemma 6.2.

It is convenient to stop and prove a similar inequality which is needed later. Let $\lambda_1 = \left\lfloor \omega^{rs} (\log n)^{4r+1} \right\rfloor$. It follows from (6.14) that provided

$$\theta(rs(\tau-1)^+ + \tau) < r\theta_1/s, \tag{6.15}$$

$$\sum_{l=\lambda_1}^{2\lambda_1} q'_l = o(e^{-2\lambda_0}), \tag{6.16}$$

where q'_l is the probability that $G_{n,2m}$ contains precisely l nonisolated

copies. Furthermore, if $G_{n,2m}$ contains more than $2\lambda_1$ nonisolated copies of H, then we can choose λ_1 of them. For each chosen copy of H that does not share an edge with another chosen copy we choose a further copy that does share an edge. In this way we build a linked collection of between λ_1 and $2\lambda_1$ copies. It then follows by (6.16) that

$$\sum_{l=2\lambda_1+1}^{\infty} q'_l = o(e^{-2\lambda_0}), \quad \text{also.}$$
 (6.17)

To prove the lower bound of (6.4) we consider the probability of the existence of a collection of disjoint complete subgraphs of specific sizes. Thus let $\sigma_t = \binom{t}{r}r!/\alpha$ for $t \geq r$ and observe that K_t contains σ_t distinct copies of H. For a given a define $\tau = \tau(a)$ by $\sigma_{\tau+1} > a \geq \sigma_{\tau}$. Next let $l_1 = l$ and $l_{i+1} = l_i - \sigma_{\tau(l_i)}$ and $T_i = \sum_{j=1}^i \tau(l_j)$ for $i = 1, 2, \ldots, k$, where $l_k \geq (r+1)!/\alpha > l_{k+1}$.

Now let & denote the event that

$$G_{n,m}$$
 contains complete subgraphs with vertex set $[T_1], [T_2] \setminus [T_1], \ldots, [T_k] \setminus [T_{k-1}]$ (6.18a)

and

 l_{k+1} copies of H containing the edge $\{1,2\}$ but otherwise disjoint from all other copies. We assume some single choice among the many possibilities for (6.18b) our choice of l_{k+1} possibilities. Let their vertices belong to $[T] \setminus [T_k]$ where $T - T_k = (r-2)l_{k+1}$

and

there are no other edges in [T] (this assumption simplifies the calculations but may be a bit drastic!) (6.18c)

and

there are no other nonisolated copies of H is $G_{n,m}$. (6.19)

Thus if $\mathscr E$ occurs, then $G_{n,m}$ contains exactly l nonisolated copies of H. We can write

$$\Pr(\mathscr{E}) = \pi_1 \pi_2,$$

wh

Bu

wh

So

sir

an

.

m th

W

π

77

other chosen copy we choose a In this way we build a linked s. It then follows by (6.16) that

$4a$
), also. (6.17)

consider the probability of the emplete subgraphs of specific ad observe that K_t contains σ_t are $\tau = \tau(a)$ by $\sigma_{\tau+1} > a \ge \sigma_{\tau}$. and $T_i = \sum_{j=1}^i \tau(l_j)$ for i = 1.

hs with vertex set (6.18a)

ne edge $\{1,2\}$ but copies. We assume any possibilities for (6.18b)Let their vertices = $(r-2)l_{k+1}$

(6.18c) (this assumption be a bit drastic!)

pies of H is $G_{n,m}$. (6.19)

exactly l nonisolated copies

where

$$\pi_1 = \Pr((6.18))$$
 and $\pi_2 = \Pr((6.19)|(6.18))$.

But

$$\pi_1 = \binom{N - \binom{T}{2}}{m - u} / \binom{N}{m} = \left(\frac{m}{N}\right)^u \left(1 - O\left(\frac{mT^2}{N} + \frac{u^2}{m}\right)\right),$$

where

$$u = \sum_{i=1}^{k} {\tau(l_i) \choose 2} + (s-1)l_{k+1}.$$

So

$$\pi_1 = \left(\frac{\omega}{n^{r/s}}\right)^u \left(1 - O\left(\frac{mT^2}{N} + \frac{u^2}{m} + \frac{u}{n}\right)\right)$$
$$= \left(\frac{\omega}{n^{r/s}}\right)^u (1 - o(1)), \tag{6.20}$$

since we show later that

$$\sum_{i=1}^{k} \tau(l_i)^x = O(l^{x/r}) \quad \text{for any fixed positive integer } x, \quad (6.21)$$

and we assume

$$\theta < \min\left\{\frac{r(2s-r)}{4s^2}, \frac{r^2}{2s^2}\right\}. \tag{6.22}$$

We show next that $\pi_2 = 1 - o(1)$. Note that (6.19) given (6.18) is monotone and so we can use the $G_{n,p}$ model to estimate π_2 . Now by the FKG inequality

$$\pi_2 \geq \pi_2' \pi_2'',$$

where

 π'_2 = Pr(there are no nonisolated copies of H which have no edge in [T])

and

 $\pi_2'' = \Pr(\text{there are no extra copies of } H \text{ which share an edge with those defined in (6.18)}).$

Now $\pi'_2 = 1 - o(1)$ if (6.13) holds and

 $\pi_2'' \ge 1 - E$ (number of such copies of H)

$$\geq 1 - \sum_{H' \subset H} (n)_{r-\nu(H')} \binom{r}{2} s - \mu(H') p^{s-\mu(H')} \left(\sum_{i=1}^{k} (\tau(l_i))_{\nu(H')} + O(1) \right)$$

$$= 1 - O\left(\sum_{H' \subset H} n^{r-\nu(H')} \frac{\omega^{s-\mu(H')}}{n^{r-(r/s)\mu(H')}} l^{\nu(H')/r} \right)$$

on using (6.21) to simplify the second summation

$$=1-o(1)$$

provided

$$\theta < \min_{H' \subset H} \frac{\nu(H') - (r/s)\mu(H')}{s - \mu(H') + \nu(H')(s/r)}.$$
 (6.23)

The proof of (6.4) is completed once we have proved (6.21). For then (6.20) implies

$$\pi_1 \geq \left(\frac{\omega}{n^{r/s}}\right)^{O(l^{2/r})} (1 - o(1)).$$

Proof of (6.21). When $a \ge \sigma_r = r!/\alpha$ is large we have, where $\tau = \tau(a)$,

$$a - \sigma_{\tau} \le \sigma_{\tau+1} - \sigma_{\tau}$$
$$= r(\tau)_{r-1} \alpha^{-1}$$
$$\le r\tau^{r-1}$$

But

$$a \ge \sigma_{\tau} \to \begin{pmatrix} \tau \\ r \end{pmatrix} \le a$$

$$\to \left(\frac{\tau}{r}\right)^{r} \le a$$

$$\to \tau \le ra^{1/r} \tag{6.24}$$

79

copies of H which share an edge with those defined in (6.18).

u

(H)

$$p^{s-\mu(H')} \left(\sum_{i=1}^{k} (\tau(l_i))_{\nu(H')} + O(1) \right)$$

 $-l^{\nu(H')/r}$

summation

$$\frac{(r/s)\mu(H')}{+\nu(H')(s/r)}. (6.23)$$

we have proved (6.21). For then

$$(1-o(1)).$$

s large we have, where $\tau = \tau(a)$,

$$\sigma_{\tau}$$

$$_{r-1}\alpha^{-1}$$

1

$$\leq a$$

$$r$$
 (6.24)

and so

$$a - \sigma_\tau \le r^r a^{1 - 1/r}.$$

Recalling that $l_1 = l$ and $l_{i+1} = l_i - \sigma_{\tau(l_i)}$ we see that

$$l_{i+1} \le r^{ir} l^{(1-1/r)^i}, \qquad 1 \le i \le k.$$
 (6.25)

Now let $i_0 = \lceil r \log r \rceil$ and assume first that $i_0 \le k$ (6.21). Then (6.25) implies

$$l_{i_0} \le A l^{1/r},\tag{6.26}$$

where $A = r^{i_0 r}$.

Now $\tau(l_1) \le r l^{1/r}$ and τ is monotone increasing and so

$$\sum_{i=1}^{i_0} \tau(l_i)^x \le i_0 r^x l^{x/r}. \tag{6.27}$$

When $i_0 > k$ we may replace i_0 by k in (6.27) to obtain (6.21). We may thus assume $i_0 \le k$ for the remainder of the proof of (6.21). On the other hand, it is easy to see that

$$\sigma_r \ge \tau$$
 for $\tau \ge r + 1$

and thus

$$\begin{split} l &= (l_1 - l_2) + (l_2 - l_3) + \dots + (l_k - l_{k+1}) + l_{k+1} \\ &= \sigma_{\tau(l_1)} + \sigma_{\tau(l_2)} + \dots + \sigma_{\tau(l_k)} + l_{k+1} \\ &\geq \tau(l_1) + \tau(l_2) + \dots + \tau(l_k) \end{split}$$

and so replacing l by l_{i_0} above

$$\tau(l_{i_0+1}) + \cdots + \tau(l_k) \leq l_{i_0+1}.$$

Hence

$$\sum_{i=i_0+1}^{k} \tau(l_i)^x \le \left(\sum_{i=i_0+1}^{k} \tau(l_i)\right)^x$$

$$\le l_{i_0+1}^x$$

$$= O(l^{x/r}) \text{ by (6.26)}. \tag{6.28}$$

(6.21) follows from (6.27) and (6.28) and this completes the proof of (6.4). \Box

We now turn to the proof of (6.5). For positive integer t,

$$\Pr(\exists \ t \text{ isolated copies of } H \text{ in } G_{n, p}) \leq \frac{1}{t!} \binom{n}{r}^t \left(\frac{r!}{\alpha}\right)^t p^{ts}$$

$$\leq \left(\frac{e}{t} \cdot \frac{n^r}{r!} \cdot \frac{r!}{\alpha} \cdot p^s\right)^t$$

$$\leq \left(\frac{3\omega^s}{t\alpha}\right)^t.$$

Now put $t = \lambda_0$ and apply (6.11). The same argument gives

 $Pr(G_{n,2m} \text{ contains at least } \lambda_1 \text{ isolated copies}) = o(e^{-2\lambda_0})$ (6.29)

and so, using (6.16) and (6.17), we find

 $Pr(G_{n,2m} \text{ contains } 2\lambda_1 \text{ or more copies of } H) = o(e^{-2\lambda_0}).$ (6.30)

6.4. PROOF OF (6.6)

This section contains the main ideas of the proof of Theorem 6.1.

Let $\mathscr{A}_{k,l} = \{G \in \mathscr{G}_{n,m}: G \text{ has } k \text{ isolated copies and } l \text{ nonisolated copies of } H\}$. Let $a_{kl} = |\mathscr{A}_{k,l}|$ so that (6.6) is actually concerned with the ratio $a_{k,l}/a_{k-1,l}$.

Now for k > 0, $l \ge 0$, let $BP_{k,l}$ denote the bipartite graph with vertex partition $\mathscr{A}_{k,l}$, $\mathscr{A}_{k-1,l}$ and edge set $\mathscr{E}_{k,l}$ where $G_1G_2 \in \mathscr{E}_{k,l}$, $G_1 \in \mathscr{A}_{k,l}$, $G_2 \in \mathscr{A}_{k-1,l}$ if the edge sets of G_1, G_2 are related by

$$E(G_2) = (E(G_1) \setminus \{e\}) \cup \{f\},\$$

where e is an edge of some isolated copy of H in G_1 and f is some edge which does not create a new copy of H when added to G_1/e .

and this completes the proof of

For positive integer t,

$$\sum_{n,p} \leq \frac{1}{t!} \binom{n}{r}^t \left(\frac{r!}{\alpha}\right)^t p^{ts} \\
\leq \left(\frac{e}{t} \cdot \frac{n^r}{r!} \cdot \frac{r!}{\alpha} \cdot p^s\right)^t \\
\leq \left(\frac{3\omega^s}{t\alpha}\right)^t.$$

lated copies) =
$$o(e^{-2\lambda_0})$$
 (6.29)

i

opies of H) = $o(e^{-2\lambda_0})$. (6.30)

of the proof of Theorem 6.1. colated copies and l nonisolated t (6.6) is actually concerned with

lenote the bipartite graph with ge set $\mathscr{E}_{k,l}$ where $G_1G_2 \in \mathscr{E}_{k,l}$, sets of G_1, G_2 are related by

$$\setminus \{e\}) \cup \{f\},$$

copy of H in G_1 and f is some by of H when added to G_1/e .

If $G \in \mathscr{A}_{k,l} \cup \mathscr{A}_{k-1,l}$, let d(G) denote its degree in $BP_{k,l}$. Then

$$G \in \mathscr{A}_{k,l} \text{ implies } ks(N-m-\xi(G)) \le d(G) \le ks(N-m),$$

$$\xi(G) = \sum_{H'} a_{\xi}(H'). \tag{6.31}$$

The sum here is over all copies in G of graphs H' of the form H-x, $x \in E(H)$. $a_{\xi}(H')$ is the number of different ways of adding an edge to H' (without adding vertices) to create a copy of H. [For example, if $H=K_4\setminus e$ and $H'=C_4$, then $a_{\xi}(H')=2$.]

This is because we have ks choices for edge e in an isolated copy of H. Then of the N-m possible edge replacements f there are at most $\xi(G-e)-1$ choices which create a new H when added. Finally observe that $\xi(G-e)-1 \leq \xi(G)$.

Also

$$G \in \mathscr{A}_{k-1,l} \text{ implies}$$

$$(m - s(k+l) - \zeta'(G))(\xi(G) - s(k+l) - 2\zeta(G) - \zeta''(G))$$

$$\leq d(G) \leq m\xi(G),$$

$$\zeta(G) = \sum_{H'} a_{\zeta}(G).$$

$$(6.32)$$

Here we sum over all copies in G of graphs H' of the form $(H_1 \cup H_2) - x$ where H_1 , H_2 are distinct copies of H which have at least one edge in common and $x \in E(H_1) \cup E(H_2)$, and a_{ζ} is defined analogously to a_{ξ} . $\zeta'(G) = s\xi(G)$ if s > r and 0 otherwise and $\zeta''(G) = 0$ if s > r and $sr!\Delta(G)^{r-1}$ otherwise.

To see this we overestimate the number of choices of f by m and the number of choices of e by $\xi(G)$. To underestimate d(G) we underestimate the number of choices of f by $m - s(k + l) - \xi'(G)$ since we do not wish to touch a copy of H and for a further reason to be explained. The number of choices δ_f for e, given f is

$$|\{e \notin E(G): h_e(G-f) \ge 1 \text{ and adding } e \text{ creates no new intersecting pair } H_1, H_2\}|,$$

where $h_e(G-f)$ = the number of copies of H created when adding e to G-f. Now $h_e(G) \ge 1$ implies $h_e(G-f) \ge 1$ unless f belongs to some copy of H-x in G and x=e. When s>r we eliminate such f by subtracting $\xi(G)$. When $s\le r$ we underestimate δ_f by subtracting an upper bound $(sr!\Delta(G)^{r-1})$ on the number of possible

xs in copies of H-x that contain f. So

$$\begin{split} \delta_f & \geq \left| \left\{ e \notin E(G) \colon h_e(G) \geq 1 \right\} \right| - \zeta(G) - \zeta''(G) \\ & \geq \xi(G) - s(k+l) - \sum_{e \notin E(G)} \max\{0, h_e(G) - 1\} - \zeta(G) - \zeta''(G) \\ & \left[\text{since } \xi(G) \leq \sum_{e \notin E(G)} h_e(G) + s(k+l) \right] \\ & \geq \xi(G) - s(k+l) - \sum_{e \notin E(G)} \binom{h(G)}{2} - \zeta(G) - \zeta''(G) \\ & \geq \xi(G) - s(k+l) - 2\zeta(G) - \zeta''(G) \end{split}$$

and the lower bound follows.

The equation

$$\sum_{G \in \mathscr{A}_{k,l}} d(G) = \sum_{G \in \mathscr{A}_{k-1,l}} d(G),$$

(6.31) and (6.32) lead to

$$\frac{\left(m - s(k+l) - \bar{\zeta}'_{k-1,l}\right)\left(\xi_{k-1,l} - s(k+l) - 2\bar{\zeta}_{k-1,l} - \bar{\zeta}''_{k-1,l}\right)}{ks(N-m)}$$

$$\leq \frac{a_{k,l}}{a_{k-1,l}} \leq \frac{m\bar{\xi}_{k-1,l}}{ks(N-m-\bar{\xi}_k)}, \tag{6.33}$$

where $\bar{\xi}_{k,l}$, $\bar{\zeta}_{k,l}$, $\bar{\zeta}_{k,l}'$ and $\bar{\zeta}_{k,l}''$ denote the expectations of $\xi(G)$, $\zeta(G)$, $\zeta'(G)$ and $\zeta''(G)$ over $\mathscr{A}_{k,l}$. It only remains now to estimate these quantities. Let $\mathscr{N}(G) = \{e \in E(\overline{G}): h_e > 0\}$ and $\eta(G) = |\mathscr{N}(G)|$ $[h_e = h_e(G)]$. Let λ_1 be as prior to (6.15).

Lemma 6.3. Let $G = G_{n,m}$.

- (a) $\Pr(\exists e \in E(\overline{G}): h_e^{n,m} \ge 2\lambda_1) = o(n^2 e^{-2\lambda_0}).$
- (b) $\Pr(\eta(G) \ge n^{r/s} \lambda_1 \log n) = o(e^{-2\lambda_0}).$
- (c) $\Pr(\Delta(G) \ge \lambda_0) = o(e^{-2\lambda_0})$ for $s \le r$.

Proof. Let \mathscr{E} denote the event $\{G_{n,2m} \text{ has at least } 2\lambda_1 \text{ copies of } H\}$. Think of $G_{n,2m}$ as $G_{n,m}$ plus m random edges.

 $\sin f.$ So

$$\zeta(G)-\zeta''(G)$$

$$\max\{0,h_e(G)-1\}-\zeta(G)-\zeta''(G)$$

$$\begin{aligned} \xi(G) &\leq \sum_{e \notin E(G)} h_e(G) + s(k+l) \\ \binom{h(G)}{2} - \zeta(G) - \zeta''(G) \\ - \zeta''(G) \end{aligned}$$

$$=\sum_{G\in\mathscr{A}_{k-1,l}}d(G),$$

$$\frac{1-s(k+l)-2\bar{\zeta}_{k-1,l}-\bar{\zeta}_{k-1,l}''}{(l-m)}$$

$$\overline{\overline{\xi}_k}$$
, (6.33)

the expectations of $\xi(G)$, $\zeta(G)$, and remains now to estimate these \overline{G} : $h_e > 0$ and $\eta(G) = |\mathcal{N}(G)|$ o (6.15).

$$o(n^2e^{-2\lambda_0}).$$

$$(e^{-2\lambda_0}).$$
If $s \le r$.

 $h_{n,2m}$ has at least $2\lambda_1$ copies of H}. Indom edges.

(a) Let
$$\mathscr{E}_a = \{ \exists \ e \in E(\overline{G}) \text{ s.t. } h_e \ge 2\lambda_1 \}$$
. Then

$$\Pr(\mathscr{E}) \ge \Pr(\mathscr{E}|\mathscr{E}_a)\Pr(\mathscr{E}_a)$$
$$\ge \frac{m}{N}\Pr(\mathscr{E}_a).$$

Part (a) now follows from (6.30).

(b) Let
$$\lambda_2 = n^{r/s} \lambda_1 \log n$$
 and $\mathcal{E}_b = {\eta(G) \ge \lambda_2}$. Then

$$\Pr(\mathscr{E}) \ge \Pr(\mathscr{E}|\mathscr{E}_b)\Pr(\mathscr{E}_b)$$

and (b) follows if we show that $\Pr(\mathscr{E}|\mathscr{E}_b) \geq \frac{1}{2}$. But to see this observe that the expected number of copies of H created by adding the second m edges is at least $(m/N)\eta(G_{n,m})$ and

$$\frac{m}{N}\lambda_2 \approx \omega \lambda_1 \log n$$
$$\gg \lambda_1.$$

Note that we see now that the actual number added, given \mathscr{E}_b , majorizes a hypergeometrically distributed random variable with mean $\gg \lambda_1$.

(c) In $G_{n,p}$,

$$\Pr(\Delta \ge \lambda_0) \le n \binom{n}{\lambda_0} \left(\frac{\omega}{n}\right)^{\lambda_0} \\ \le n \left(\frac{e\omega}{\lambda_0}\right)^{\lambda_0}.$$

Now apply (6.11). \square

Let us now return to the consideration of (6.33). Suppose $l \le \lambda_0$. It follows from (6.4) and (6.5) that there exists $k_0 \le \lambda_0$ such that

$$\pi_{k_0, l} \ge n^{-A_3 l^{2/r}} (2\lambda_0)^{-1}.$$

We prove that

$$\pi_{k,l} \ge \left(1 - \frac{1}{\lambda_0}\right)^{|k - k_0|} n^{-A_3 l^{2/r}} (2\lambda_0)^{-1} \qquad (0 \le k \le \lambda_0)$$

$$\ge e^{-\lambda_0/10}. \tag{6.34}$$

This is true for $k=k_0$ and assume inductively that it is true for some $0 < k \le k_0$. $k > k_0$ will be dealt with subsequently and this is why we are assuming that $k_0 > 0$. We will be able to verify (6.6) as we proceed with the induction.

Prc

im

to

We will estimate $\bar{\xi}_{k,l}, \bar{\zeta}_{k,l}$ by similar methods, and to do this we let Γ denote a generic graph of the form H-x or $H_1 \cup H_2 - x$. For $G \in \mathscr{A}_{k,l}$ we let EH(G) denote the edges of G which lie in some copy of H contained in G. Let Γ_0 denote some fixed copy of Γ in K_n . For $X \subseteq Y \subseteq E_0 = E(\Gamma_0) = \{e_1, e_2, \dots, e_u\}$ we let

$$\mathscr{A}_{k,l,X} = \{ G \in \mathscr{A}_{k,l} \colon EH(G) \cap E_0 = X \text{ and } (E_0 - E(G)) \cap \mathscr{N}(G) = \emptyset \},$$

$$\mathscr{A}_{k,l,X,Y} = \{ G \in \mathscr{A}_{k,l,X} \colon Y \subseteq E(G) \}.$$

Observe now that if Z_{Γ} denotes the number of copies of Γ in G chosen randomly from $\mathscr{A}_{k,l}$, then

$$E_{k,l}(Z_{\Gamma}) = \binom{n}{\nu(\Gamma)} \frac{r!}{\alpha_{\Gamma}} \sum_{X \subseteq E_0} \frac{|\mathscr{A}_{k,l,X,E_0}|}{|\mathscr{A}_{k,l}|}, \tag{6.35}$$

where $E_{k,l}$ denotes expectation over $\mathscr{A}_{k,l}$ and α_{Γ} is the number of automorphisms of Γ .

For if $\Gamma_0 \subseteq E(G)$, then $G \in \mathscr{A}_{k,l,X,E_0}$ where $X = E_0 \cap EH(G)$. The following lemma deals with the relative sizes of these sets. Let

$$\theta_2 = \min_{H' \subset H} \left\{ \nu(H') - \frac{r}{s} \mu(H') \right\} > 0.$$

Lemma 6.4.

(a)
$$1 - \frac{2s\lambda_2}{N} \le \frac{|\mathscr{A}_{k,l,\varnothing,\varnothing}|}{|\mathscr{A}_{l,l}|} \le 1 - \frac{sk}{N}.$$

(b)
$$\frac{|\mathscr{A}_{k,l,X,Y}|}{|\mathscr{A}_{k,l,X,Y}|} = \frac{m}{N} \left(1 + O\left(\frac{m+\lambda_2}{N}\right) \right),$$

if $Y \supseteq Y'$ and |Y - Y'| = 1 and $|\bigcup_{Y} \mathscr{A}_{k,l,X,Y}| \ge e^{-\lambda_0} |\mathscr{A}_{k,l}|$.

(c)
$$n^{\nu(\Gamma)} \frac{|\mathscr{A}_{k,l,X,E_0}|}{|\mathscr{A}_{k,l}|} \le A \lambda_0^{2r} \omega^{2s-1} n^{r/s-\theta_2}$$

unless $X = \emptyset$ and Γ is of the form H - x.

ne inductively that it is true for alt with subsequently and this is will be able to verify (6.6) as we

r methods, and to do this we let m H-x or $H_1 \cup H_2 - x$. For edges of G which lie in some ote some fixed copy of Γ in K_n . $\{e_u\}$ we let

$$Y(G) \cap E_0 = X$$
 and

$$(G)) \cap \mathscr{N}(G) = \varnothing\},$$

$$C \subseteq E(G)$$
.

number of copies of Γ in G

$$\sum_{X \subseteq E_0} \frac{|\mathscr{A}_{k,l,X,E_0}|}{|\mathscr{A}_{k,l}|}, \tag{6.35}$$

 $\mathscr{A}_{k,l}$ and α_{Γ} is the number of

where $X = E_0 \cap EH(G)$. relative sizes of these sets. Let

$$\frac{r}{s}\mu(H')\Big\}>0.$$

$$\frac{|S|}{|S|} \leq 1 - \frac{sk}{N}.$$

$$O\left(\frac{m+\lambda_2}{N}\right)$$
,

$$\mathscr{A}_{k,l,X,Y}| \geq e^{-\lambda_0}|\mathscr{A}_{k,l}|.$$

$$\frac{2r}{0}\omega^{2s-1}n^{r/s-\theta_2}$$

-x.

Proof. (a) Note first that if $G \in \mathscr{A}_{k,l}$ and $\phi(G)$ is an isomorphic image of G (i.e., obtained by relabelling vertices), then $\phi(G) \in \mathscr{A}_{k,l}$ too. So if $\mathscr{A}'_{k,l} = \mathscr{A}_{k,l} - \mathscr{A}_{k,l,\phi,\phi}$, then

$$\Pr_{\phi}(\mathscr{E}_1) \leq \frac{|\mathscr{A}'_{k,l}|}{|\mathscr{A}_{k,l}|} \leq \Pr_{\phi}\left(\bigcup_{i=1}^{u} \mathscr{E}_i \cup \bigcup_{i=1}^{u} \mathscr{E}'_i\right),$$

where (i) \Pr_{ϕ} refers to randomly choosing a member G of $\mathscr{A}_{k,l}$ and then choosing a random permutation of the vertices (this does choose a random member of $\mathscr{A}_{k,l}$); (ii) $\mathscr{E}_i = \{e_i \in EH(\phi(G))\}$; (iii) $\mathscr{E}_i' = \{e_i \in \mathscr{N}(\phi(G))\}$. But since each edge of G is mapped, by ϕ , to a randomly chosen edge of K_n ,

$$\frac{sk}{N} \le \Pr_{\phi}(\mathscr{E}_i) \le \frac{s(k+l)}{N},$$

$$\Pr_{\phi}(\mathscr{E}_i') \le E_{k,l} \left(\frac{\eta(G)}{N}\right).$$

Thus

$$\frac{sk}{N} \leq \frac{|\mathscr{A}'_{k,l}|}{|\mathscr{A}_{k,l}|} \leq E_{k,l} \left(\frac{(2s-1)(\eta(G)+s(k+l))}{N} \right).$$

Now (6.34) and Lemma 6.4(b) imply $E_{k,l}(\eta(G)) \le \lambda_2 + o(Ne^{-\lambda_0})$ and (a) follows on tidying up.

(b) Consider the bipartite graph $BP = BP_{k,l,X,Y,Y'}$ with bipartition $\mathscr{A}_{k,l,X,Y'}$, $\mathscr{A}_{k,l,X,Y'}$ and an edge G_1G_2 for $G_1 \in \mathscr{A}_{k,l,X,Y}$, $G_2 \in \mathscr{A}_{k,l,X,Y'}$ if G_2 can be obtained from G_1 by deleting the unique $e \in Y - Y'$ and adding a new edge f. Using d to denote degree in BP we have

$$G \in \mathscr{A}_{k,l,X,Y}$$
 implies $N - m - \eta(G) \le d(G) \le N - m$. (6.36)

There are at most N-m choices for f which gives the upper bound. On the other hand, if $f \notin E(G) \cup \mathcal{N}(G)$, then $G-e+f \in \mathcal{M}_{k,l,X,Y'}$. To see this we first note that G+f has the same k+l copies of H as G. But this implies $e \notin \mathcal{N}(G-e+f)$ and then if $e' \in \mathcal{N}(G-e+f)$ for some $e' \in E_0 - Y$, we find that e' belongs to a copy of H in G+f and hence in G, which is disbarred by $G \in \mathcal{M}_{k,l,X'}$.

$$G \in \mathcal{A}_{k,l,X,Y'}$$
 implies $m - s(k+l) \le d(G) \le m$. (6.37)

There are at most m choices for f and if we choose to delete an f which is not in any copy of H, then G + e - f is in $\mathcal{A}_{k,l,X,Y}$. The latter fact following from $e \notin \mathcal{N}(G)$.

Hence we have, analogously to (6.33),

$$\frac{m - s(k+l)}{N} \le \frac{|\mathscr{A}_{k,l,X,Y}|}{|\mathscr{A}_{k,l,X,Y'}|} \le \frac{m}{N - m - \overline{\eta}_{k,l,X,Y}}, \quad |Y - Y'| = 1.$$
(6.38)

Our assumption on the size of $\bigcup_{X\subseteq Y\subseteq E_0}\mathscr{A}_{k,l,X,Y}$ implies the existence of $Y_0\supseteq X$ such that

$$|\mathscr{A}_{k,l,X,Y_0}| \geq \left(\frac{1}{2}\right)^{2s} e^{-\lambda_0} |\mathscr{A}_{k,l}|.$$

Now (6.38) implies that $|\mathscr{A}_{k,l,X,Y}|/|\mathscr{A}_{k,l,X,Y'}| \ge m/2N$ and so if $Y \supseteq Y_0$,

$$|\mathscr{A}_{k,l,X,Y}| \geq \left(\frac{1}{2}\right)^{2s} \left(\frac{m}{2N}\right)^{|Y-Y_0|} e^{-\lambda_0} |\mathscr{A}_{k,l}| \geq e^{-3\lambda_0/2} {N \choose m},$$

and hence we see from this and Lemma 6.3(b) that $\overline{\eta}_{k,l,X,Y} \leq 2\lambda_2$ for $Y \supseteq Y_0$. But this then implies that for $Y \supseteq Y_0$, |Y - Y'| = 1,

$$\left(1 - \frac{2s\lambda_0}{m}\right) \frac{m}{N} \le \frac{|\mathscr{A}_{k,l,X,Y}|}{|\mathscr{A}_{k,l,X,Y'}|} \le \left(1 + \frac{3(m+\lambda_2)}{N}\right) \frac{m}{N}.$$
(6.39)

But if $Y_0 \neq X$ and $|Y - \tilde{Y}| = 1$, we see from (6.38) that $|\mathscr{A}_{k,l,X\tilde{Y}}| \geq (N/2m)|\mathscr{A}_{k,l,X,Y}|$. This and Lemma 6.3(b) implies an upper bound of $2\lambda_2$ on $\overline{\eta}_{k,l,X,\tilde{Y}}$ and then substitution in (6.38) yields (6.39) for $Y = \tilde{Y}$. Clearly we can repeat this argument to show that (6.39) holds for $Y \supseteq X$, which completes the proof of (b).

(c) We use the extra randomization ϕ as in part (a). Let H' denote the subgraph of Γ_0 induced by X. If $X \subseteq EH(G)$, then ϕ must map some $\nu(H')$ vertices of the k+l copies of H onto the vertices of H'. The probability of this happening is at most

$$\frac{\left(s(k+l)\right)_{\nu(H')}}{(n)_{\nu(H')}} \leq A\left(\frac{\lambda_0}{n}\right)^{\nu(H')}.$$

Since $\mu(F)$

To prove a bound f

We first $\nu(\Gamma) = r$, this case

The follow Ruciński.

For a $\Gamma = H_1 \cup$

Let $H_0 = H'_i \cap H_0$, $f(H'_i) + f$ equalities ties,

But

and

(6.42)-(6

we choose to delete an f e - f is in $\mathscr{A}_{k,l,X,Y}$. The

$$\frac{1}{\overline{\eta}_{k,l,X,Y}}, \quad |Y - Y'| = 1.$$
(6.38)

 $\mathcal{I}_{k,l,X,Y}$ implies the exis-

$$\mathscr{U}_{k,l}$$
.

 $|x, y'| \ge m/2N$ and so if

$$|x_{i,l}| \geq e^{-3\lambda_0/2} {N \choose m},$$

) that $\overline{\eta}_{k,l,X,Y} \le 2\lambda_2$ for |Y - Y'| = 1,

$$\frac{3(m+\lambda_2)}{N}\bigg)\frac{m}{N}. \quad (6.39)$$

om (6.38) that $|\mathscr{A}_{k,l,X\tilde{Y}}|$ implies an upper bound (6.38) yields (6.39) for o show that (6.39) holds

part (a). Let H' denote I(G), then ϕ must map onto the vertices of H'.

(H')

Since $\mu(H') = |X|$ we can apply part (b) to conclude that

$$\frac{|\mathscr{A}_{k,l,X,E_0}|}{|\mathscr{A}_{k,l}|} \le A \lambda_0^{2r} \omega^{2s-1} n^{-((r/s)(\mu(\Gamma)-\mu(H'))+\nu(H'))}. \tag{6.40}$$

To prove the inequality in the statement of (c) we must, by (6.40) find a bound for

$$\Delta = \nu(\Gamma) - \frac{r}{s}(\mu(\Gamma) - \mu(H')) - \nu(H').$$

We first consider the case where Γ is of the form H-x. Then $\nu(\Gamma) = r$, $\mu(\Gamma) = s-1$, and H' is a proper subgraph of H. Hence, in this case

$$\Delta = \frac{r}{s} - \left(\nu(H') - \frac{r}{s}\mu(H')\right)$$

$$\leq \frac{r}{s} - \theta_2. \tag{6.41}$$

The following proof of the last part of this lemma is due to Andrzej Ruciński.

For a graph G let $f(G) = \nu(G) - (r/s)\mu(G)$. Suppose now that $\Gamma = H_1 \cup H_2 - x$ and $K = H_1 \cup H_2$, so that

$$\Delta - \frac{r}{s} = f(K) - f(H').$$
 (6.42)

Let $H_0 = H_1 \cap H_2$, $H_i' = H' \cap H_i$, i = 1, 2, and $H'' = H_1' \cap H_2' = H_i' \cap H_0$, i = 1, 2. Then (i) $f(H_i') \geq 0$, i = 1, 2; (ii) $f(H_i' \cup H_0) = f(H_i') + f(H_0) - f(H_0'') \geq 0$; (iii) at least two of the above four inequalities are strict, by an amount θ_2 . Hence, adding these inequalities,

$$2(f(H_1') + f(H_2') + f(H_0) - f(H'')) \ge 2\theta_1. \tag{6.43}$$

But

$$f(H') = f(H'_1) + f(H'_2) - f(H'')$$
(6.44)

and

$$f(K) = f(H_1) + f(H_2) - f(H_0) = -f(H_0).$$
 (6.45)

(6.42)–(6.45) imply $\Delta - r/s \le -\theta_2$, as was to be shown. \Box

Let us now consider $\xi(G)$. Fix Γ of the form H-x. Let $\Omega=\{X: |\bigcup_{Y}\mathscr{A}_{k,l,X,Y}|\geq e^{-\lambda_0}|\mathscr{A}_{k,l}|\}$. Then $\varnothing\in\Omega$ and (6.35) and Lemma 6.4(a), (b) give

$$\begin{split} E_{k,l}(Z_{\Gamma}) &\geq \binom{n}{r} \frac{r!}{\alpha_{\Gamma}} \frac{|\mathscr{A}_{k,l,\varnothing,E_0}|}{|\mathscr{A}_{k,l}|} \\ &\geq \binom{n}{r} \frac{r!}{\alpha_{\Gamma}} \left(\frac{m}{N}\right)^{s-1} \left(1 - O\left(\frac{m + \lambda_2}{N}\right)\right) \\ &= \frac{\omega^{s-1} n^{r/s}}{\alpha_{\Gamma}} \left(1 - O\left(\frac{m + \lambda_2}{N}\right)\right). \end{split}$$

Conversely,

$$\begin{split} E_{k,l}(Z_{\Gamma}) &= \binom{n}{r} \frac{r!}{\alpha_{\Gamma}} \left(\frac{|\mathscr{A}_{k,l,\varnothing,E_{0}}^{*}|}{|\mathscr{A}_{k,l}|} + \sum_{\substack{X \subseteq \Omega \\ X \neq \varnothing}} \frac{|\mathscr{A}_{k,l,X,E_{0}}^{*}|}{|\mathscr{A}_{k,l}|} + \sum_{\substack{X \notin \Omega}} \frac{|\mathscr{A}_{k,l,X,E_{0}}^{*}|}{|\mathscr{A}_{k,l}|} \right) \\ &\leq \binom{n}{r} \frac{r!}{\alpha_{\Gamma}} \left(\frac{m}{N} \right)^{s-1} \left(1 + O\left(\frac{m + \lambda_{2}}{N} \right) \right) \\ &+ O\left(\lambda_{1}^{2r} n^{r/s - \theta_{2}} \right) + O(n^{r} e^{-\lambda_{0}}) \\ &= \frac{\omega^{s-1} n^{r/s}}{\alpha_{\Gamma}} \left(1 + O\left(\frac{\lambda_{1}^{2r}}{n^{\theta_{2}}} \right) \right). \end{split}$$

Observe that if Λ_{ξ} denotes the set of possible Γ ,

$$\sum_{\Gamma \in \Lambda_{\xi}} \frac{r! a_{\xi}(\Gamma)}{\alpha_{\Gamma}} = \frac{sr!}{\alpha},$$

since we obtain all copies of graphs of the form H-x in K_r by taking all copies of H and deleting an edge. Thus we can write

$$\bar{\xi}_{k,l} = \frac{s\omega^{s-1}}{\alpha} n^{r/s} \left(1 + O\left(\frac{\lambda_1^{2r}}{n^{\theta_2}}\right) \right). \tag{6.46}$$

of the form H - x. Let $\Omega = \{X: \emptyset \in \Omega \text{ and } (6.35) \text{ and Lemma} \}$

$$O\left(\frac{m+\lambda_2}{N}\right).$$

$$O\left(\frac{m+\lambda_2}{N}\right).$$

$$\frac{\mathscr{A}_{k,l,X,E_0}^*|}{|\mathscr{A}_{k,l}|} + \sum_{X \notin \Omega} \frac{|\mathscr{A}_{k,l,X,E_0}^*|}{|\mathscr{A}_{k,l}|}$$

ossible Г.

$$=\frac{sr!}{\alpha}$$
,

of the form H - x in K_r by edge. Thus we can write

$$-O\left(\frac{\lambda_1^{2r}}{n^{\theta_2}}\right). \tag{6.46}$$

By a similar analysis we can deduce from Lemma 6.4(c) and (6.35) that

$$\bar{\zeta}_{k,l} \le A\lambda_0^{2r}\omega^{2s-1}n^{r/s-\theta_2}.\tag{6.47}$$

We can now go back to (6.33), which implies

$$a_{k-1,l} \ge a_{k,l} \frac{ks(N-m-\bar{\xi}_{k,l})}{m\bar{\xi}_{k-1,l}}.$$
 (6.48)

But clearly $\bar{\xi}_{k-1,l} \leq n^r$ and so, using (6.34), $\pi_{k-1,l} \geq e^{-\lambda_0/10}$. With this lower bound we can repeat the arguments above and prove (6.46) and (6.47) with k replaced by k-1. Furthermore, where $r \geq s$, this lower bound and Lemma 6.3(c) shows

$$\bar{\zeta}_{k-1,l}'' \le 2sr!\lambda_0^{r-1}. (6.49)$$

But using these estimates now in (6.33) gives

$$\frac{a_{k,l}}{a_{k-1,l}} = \frac{\lambda}{k} (1 + \beta_{k,l}), \tag{6.50}$$

where, $|\beta_{k,l}| = o(\lambda_0^{-1})$ provided

$$\theta < \frac{\theta_2}{(2r^2+1)s}.\tag{6.51}$$

Note that (6.50) = (6.6) and that this completes the inductive step in the proof of (6.33) for $k \le k_0$. For $k > k_0$ the only thing that changes is that we replace (6.48) by

$$a_{k+1,l} \geq \frac{\left(m - s(k+l) - \bar{\zeta}'_{k,l}\right)\left(\bar{\xi}_{k,l} - s(k+l) - 2\bar{\zeta}_{k,l} - \bar{\zeta}''_{k,l}\right)}{ks(N-m)}a_{k,l},$$

which enables us to use (6.46), (6.47), and (6.49) with k replaced by k+1. The rest is as before. This completes the proof of (6.6) and the theorem. \square

Remark. We have identified five upper bounds: (6.13), (6.15), (6.22), (6.23), and (6.51). It turns out however that (6.50) dominates the others.

Acknowledgement. It is a pleasure to acknowledge the help given by Andrzej Ruciński. He pointed out many errors in an earlier draft and provided a proof for an inequality in Lemma 4.4.

REFERENCES

- Bollobás, B. (1981). Threshold functions for small subgraphs. *Math. Proc. Cambridge Philos. Soc.* **90** 197–206.
- Boppana, R. and Spencer, J. (1989). A useful correlation inequality. J. Combinatorial Theory A 50 305-307.
- Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. *Publ. Math. Inst. Hungarian Acad. Sci.* 5 17-61.
- Janson, S., Łuczak, T., and Ruciński, A. (1990). An exponential bound for the probability of nonexistence of a specified subgraph in a random graph. In *Random Graphs '87*. Wiley, New York, 73–87.
- Janson, S. (1990). Poisson approximation for large deviations. *Random Structures and Algorithms* 1 221–230.
- Karoński, M. and Ruciński, A. (1983). On the number of strictly balanced subgraphs of a random graph. *Graph Theory Lagów 1981. Lecture Notes in Mathematics* **1018** 79–83. Springer, Berlin.
- Ruciński, A. (1988). When are small subgraphs of a random graph normally distributed? *Probability Theory and Related Fields* **78** 1–10.
- Ruciński, A. (1991). Small subgraphs of random graphs (a survey). In *Random Graphs '87*. Wiley, New York, 283-303.
- Suen, W. C. (1991). A correlation inequality and strongly balanced subgraphs of random graphs. *Random Structures and Algorithms* 1.