s in the subgraph induceq

ertices which has at least

y in (5.2) just shown, this
it )

n-1) n
-2> —
s| —n| 2/1s]

orem 5.2 it is enough to
and M edges contains a
= logn/log(2M /n) [see
icorem VI.3.1 in Bollobas

demic, New York.
New York.

). On the structure of edge

ON SMALL SUBGRAPHS OF
RANDOM GRAPHS* |

AraN FRIEZE
Camegie Mellon University

6.1. INTRODUCTION

Let H be some fixed graph with r > 3 vertices and s edges. H is

- assumed to be strictly balanced, that is,

s u(H')
r - v(H')
for all nontrivial subgraphs H’' of H, H' # H, where p(H') and w(H")
are the numbers of vertices and edges in H', respectively. (From now
on H' c H will always mean such subgraphs.) Note that this implies
H is connected.
Consider now the random graph G, , chosen uniformly from
& = {graphs with vertex set [n] = {1,2,...,n} and m edges} and

n, m

let X, denote the number of copies of H in G, ,. Supposc now
m = iwn?""/5, where w = w(n). Erd8s and Rényi (1960) showed that

Pr(X, =0)=1-o(l), ifw—0,
Pr(X, #0)=1-0(1), if @ .

*Research supported in part by NSF grant CCR-89-00112.
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Here, as usual, we consider limits and so forth as n — o, Using
a(n) ~ b(n) to stand for a(n) = (1 — o(1)b6(n), we remark that

5

[}
E(X,) ~ - = A, say,

where « denotes the number of automorphisms of H,
Erdds and Rényi’s result has been refined in mainy ways. In particu-
lar, Bollobds (1981) and Karofski and Rucifiski (1983) independently

showed that if @ tends to a constant and k is a fixed nonnegative
integer, then

/\k
Pr(X, =k) ~e"‘F. , (6.1)
The aim of this paper is to show that the Poisson expreésion (6.1) is

good for w — o sufficiently slowly. In particular we prove the follow-
ing theorem.

Theorem 6.1. Let H be strictly balanced and A be as previously

defined. Then there exists a positive real constant 6 = 8(H) such that
if @ = o and w = o(n?), then

k
Pr(XH=k) NE_AF forall) < k < (1 + €;)A, (6.2)
where

Al(iog n)r/(ng 1)
€ = PNy =y for some constant 4, > 0.

Pr(X=Fk)> e 7 forall (1+e,)A <k<Alogn (6.3)

where €, = A, (log n/A1=%/7)" /%1 for some constant A, > 0, pro-
vided €, < 1. [The notation a(n) = b(x) is used for a(n)/b(n) - =]

Remarks

1. We could also allow @ tends to a constant, but this is the well
known case we are extending.

2. We are not able to obtain the largest possible values for 6(H)
although we hope to refine our analysis for particular graphs, for
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example, triangles. It is possible that the largest value coincides
with that for Poisson convergence; sce Rucifiski (1988).

3. Observe that e,A > A/2 and so (6.2} is valid into the tails of the
Poisson distribution.

4. A somewhat stronger result for k = 0 and G, , has been proved
independently by Boppana and Spencer (1989) and Janson,
Fuczak, and Rucifiski (1990). Janson (1991) has extended this
result to estimate Pr(X,, < k) for k < E(Xy). See also Suen
(1991). 7

5. See Rucifiski (1991) for a recent survey on the distribution of the
aumber of copies of small subgraphs of random graphs.

6.2. PROOF OF THEOREM 6.1

We will not specify #(H) immediately, but upper bounds for it will be
derived along with the proof. We will use A, A, Ay, ... to denote
absolute constants whose values may or may not be explicitly stated.
Throughout the paper, stated inequalities are only claimed to hold for

n sufficiently large.
We distinguish between isolated copies of H and nonisolated copies.

‘Here a copy of H in G, ,, i8 isolated if it shares no edge with any

other copy of H.
Now let

L4

7. = Pr(G, ,, contains exactly k isolated and
! nonisolated copics of H)

and

7., = Pr(G, ,, contains exactly / nonisolated copies of H),

s

q, =

=
I
=]

=

pp = L ™1 = Pr(G, ,, contains exactly k copics of H).

o~
[
o

The main work involved in the proof is to justify the following
inequalities:

nA < g < n~4, 2 <1< h=|A(log n)'l,  (6.4)

Pr(G, ,, contains at least A, isolated copies of H) = o{e™™) (6.5)
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and more importantly

Ty, 1

A : }
=(1+fk,1)E, Oﬁk_l,ISAO, (6.6)
Tr—1,1

where |e, ;| = o(A;1).

We devote the remainder of this section to showing how our
theorem follows from (6.4)—(6.6), and we prove these inequalities
later on. :

Suppose now that 0 < I < A, Ii follows from (6.6) that

l\i R
Tl = (]‘ + 0(1))17-0,.[ i—', 0<i< AO, : (67)
and so
_ Ao N .
g = (1 +0o(1)m, XL 5T 2 T
=0t >y

= (1 + o(1))m, (e* — ofe ™)) + o(e ™)
on using (6.5). Hence
mo, = (1 + 0(1))(qr - O(BW\"))eﬂ\
and, by (6.7),
by X
=1 +o())ge ™ = + o(i—'e'“*“), 0<ic<Ah,.
i! !
Thus
. k k—1
po=0+0o()) Y ge ™t ——— +ole™), 0=<k=<a,
1=0 (k = 1)!
Now
Pz (1 4+ o0(1))ge™ + o(e™)

— 2/r — - :
= n A e=h 4 (7)) > e7ho, since 7 2 3,
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ﬁk— 1’151\0, (6.6)

ection to showing how our
we prove these inequalities

vs from (6.6) that

0<i<Ay, (6.7)

Z T

i>Xg

e ) + o(e M)

ofe™*))e*

—A — .
r(e ") > e, since r = 3,
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and so

k Ak#[
i~ ey, R —
pe~ L4 )

=0
E (kY ,
( )q,], _ (6.8)

(0"«5 k <Ay

Ak

k! N

=2

where (k), = k(k =1 -k =1+ 1).
To proceed from here we need to show g, = 1 — o(1). Assume this
for the moment so that we can verify Theorem 6.1. With this done we

will prove g =1 — o(1). _
. Suppose first that 0 < k < A. Then for 6 sufficiently small,

ko (k)i o
1-o(l)<dqo+ X 7 Gg<dt rasl (6.9)
=2 1=2

‘Now let k= + e where 0 <€=<¢= AQog )/ =D/

A—~D/Cr=1_ Then, using (6.4),

i
W, o)
A

ul = Al

. 12
< Zexp{el T — AV log n}

Case 1

I'> 3eA (and hence € < 3).

- ¥4
u, < 20~

Case 2
I < 3eA.

u, < 2exp{l/ (el 1" = Ay log n))

<2 exp{ll/’(?‘l/’ez*l/’/\l' /7 — 4,log n)}

< 2expll!/" log n(3' VATV - A}
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So if we make A, small enough so that 4 4+ = 442, then we have
V u[ —<—- ZH—A%[V"

which is also valid for Case 1.
Hence if A <k < (1 + €;)A and 4 is sufficiently small
k k z 2ptsr
L{\,—)[q,s 1+2Y nA4Y
-2

I1-0(l) <gq,+
1=2
=1+ o(1).

This together with (6.9) proves the first part of the theorem.
Suppose now that £ = (1 + €)A where

l>e>e, =Az(logn/AI—Z/r)r/Z(r—l).
Then by (6.8),

e Ak k'
b ( 1 )2(1_0(1))5%“"““’ |

k.

> A i eAn~A3(s,\+1)2/'
€A

> Aeszz\/finﬁZAJ(e/\)z/’
e’ '
=A CXD(-3—(1 — 6.4,/ 7 2)2/ 11 g n)}

€A
>A exp{—~3—(l - 6A3A%/’“2)}.

Now €”A — ® and we are free to choose A, so that

1 - 64,4577 <

1
2
and the result is proved for this case.
When k = 2\ we use
(k+ 1)1 k!
>
Ak +1 - s)!qs Xk - s)!q‘

to reduce to the previous case.

We of course have to prove that gy = 1 — o(1). To prove this we
need a lemma on the edge density of intersecting copies of H. We
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) that A, > 442, then we have

—A?I'/’
’

L & is sufficiently small

\1 )
~q; <1 +2Y p-Aa7”
I=2

first part of the theorem.
where :

n//\l_z/,)r/z(r—l)
k!
EIPYERLEYY

S(eh +1y377

A)Z/r
- 6452/ T2\ og n)}
: 6A3A§/r-2)}.

choose A4, so that

—2

Mo

k!

= 1 - o0(1). To prove this we
intersecting copies of H, We
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need a general version of this to prove (6.4) and we prove this here.
Let

2s — u{H' $
6, = min #(,) - —=>0.
wcH | 2r — v(H') F
Note that 8, > 0 follows from the fact that H is strictly balanced. A
collection H,, H,,..., H, of copies of H in G, ,, is said to be linked
if for each i there is j # i such that H,, H; share an edge.

-Lemma 6.1. Let H,H,,...,H,, k =2, be a linked collection of

copies of H. Let K= U} ,H, Then '
: s
u(K) 2(61 + —)V(K).
s

Proof. Assume w.lo.g. that H, ¢ U, . H for i=12,...,k We
prove the result by induction on k. We- discuss the base case and the
inductive step in tandem. Let K’ = U % 'H.. Then
m(K) _ w(H) + w(K') = | E(H,) 0 E(K")]
W(K) ~ w(Hy) + v(K) —|V(H) 0 V(K]

(6.10)

Furthermore,
uv € E(H)NE(K') = u,v € V(H,) NV(K')
and so if H' = (V(H,)nW(K'), E(H,) N E(K'), then H' is a
nontrivial proper subgraph of H and, by (6.10),
w(K) s+ p(K') - p(H')
v(K) r+ (K'Y —v(H") "

Base case: k = 2

Here K' = H, and w(K)/v»(K) = 8, + s/r follows from the defi-
nition of 6,.

Inductive step

Write
p(K) 25 —p(H') + (0(K') - 5)

v(K) C2r - v(H") + (v(K') — r)
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and observe that
(w(K) =) = [0, + > )w() = 1)
= (M(K’) — (91 + ;)V(K’)) +r6, >0

by induction. O

It is always more pleasant to do computation in the independent
model G, ,, p=m/N, N= (;) We quote the following simple
results [sce Bollobds (1981), Section 1.1]. Let .7 be any property of
graphs. Then '

Pr(G, ,, € /) < 3m'/? Pr(G, , € &) (6.11)
and if &7 is moﬁotone, then -7
ae. G, , € ¥—>ae.G,, €. (6.12)
Lemma 6.2, If |
0 < 0,72/(s> + 0,rs), (6.13)
then g, = 1 — o(1).

Proof. It G, ,. has a pair of edge intersecting copies of H , then it
contains a set of r <k <2r —1 vertices which span at least
[k(s/r + 8,)] edges. Now this property is monotone and

Pr(G, , contains a pair of edge intersecting copies of H }
2r—1

<Y (z)z(’;)pk(s/r-kﬂl)

k=r
2r—1

< E 2(’2‘)wk(s/r+6,)n~k81r/s
k=r

= o(1).
Now use (6.12). O
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63. PROOF OF (6.4) AND (6.5)

The upper bound in(6.4) follows fairly easily from Lemma 6.1. Indeed
suppose G, ,, contains exactly ! nonisolated copies of H. let K
denote the graph induced by the union of these copies. If K has p
vertices then, by Lemma 6.1, it has at least 7p edges where 7= 6, +
s/r. Note that

V" <p<r <rhg,

Where the lower bound on p is from (p), = /. Hence, on using (6.11),

g, < 3m'/? Zl‘, (E)[(g) P

p=I1r T
{ pi 2 i
< 3ml/? rz ﬁ) (p 4
p=I/r Y 27p
' A [ Ap D e\ .
= 3m1/2 Z n'rr/s—l [(T - 1) = IIlaX{O,T . 1}]
p=[]/r
A A%V 4+ 1, dr—1 "\’
<3m7? ¥ r‘;‘l’g/s’( ) ) (6.14)
p=[|/r n

and the upper bound in (6.4) follows provided ! is sufficiently large
and

(st — 1)+ +7) <r8,/s.

For small / one can use the proof of Lemma 6.2.
It is convenient to stop and prove a similar inequality which is

needed later. Let A, = lw”(log n)4r+1]. It follows from (6.14) that
provided

o(rs(r — 1) + 1) <rby/s, O (6.15)
24
Y a; = o(e™*™), | (6.16)
=2

where g is the probability that G, », contains precisely ! nonisolated
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copies. Furthermore, if G, ,, contains more than 2A; nonisolated
copies of H, then we can choose A; of them. For each chosen copy of
H that does not share an edge with another chosen copy we choose a
further copy that does share an edge. In this way we build a linked
collection of between A, and 21, copies. It then follows by (6.16) that

o

Y. g, =o0(e "), also. (6.17)

I=2x+1

To prove the lower bound of (6.4) we consider the probability of the
‘existence of a collection of disjoint complete subgraphs of specific

sizes. Thus let o, = (;)r! /a for t = r and observe that K, contains o,
distinct copies of H. For a given a define r = r(a)by o,,, > a = o,.
Next let I, =/ and [, ;=1 — 0, and T,=El_;7(})) for i=
L2, k,where [, 2 (r + Dl/a > [ .
Now let & denote the event that

G, .. contains complete subgraphs with vertex set (6.18a)
[T, LITINIT, . [T N (T ) '

and

l,., copies of H containing the edge {1,2} but
otherwise disjoint from all other copies. We assume

some single choice among the niany possibilities for (6.18b)
our choice of [, ., possibilities. Let their vertices

belong to [T']\ [T, ] where T — T, = (r — 2)I, .,

and
there are no other edges in [T] (this assumption
simplifies the calculations but may be a bit drastic!) (6.18¢)
and
there are no other nonisolated copies of H is G, ,,.  (6.19)

Thus if & occurs, then G, ,, contains exactly / nonisolated copies

of H. We can write

- Pr(&) = mym,,

wh

wh

So

Sin

arn




iRAPHS

s more than 2A; nonisolated
them. For each chosen copy of
sther chosen copy we choose a
In this way we build a linked
. It then follows by (6.16) that

), also, (6.17)

onsider the probability of the
mplete subgraphs of specific
d observe that K, contains o,
€T=r1(a)byo,,, >ax>0.
and T, =X ;7([}) for i=
I

hs with vertex set (6. 18a)

e edge {1,2} but

copies. We assurmne

ny possibilities for (6.18b)
Let their vertices

= (r - 2)l»!c+l

1 (this assumption
be a bit drastict)  (6-18¢)

ies of H is G, (6.19)

exactly / nonisolated copies _

PROOF OF (6.4) AND (6.5) 77

- where

m, = Pr((6.18)) and m, = Pr((6.19)|(6.18)).

() - (2] -0+

|

m-—u
where
L
u= 3, (T( E)] +{s =Dl
i1\ 2
So
@ ¥ mT? u? N u
Tr]:(n’/’) (1‘—0( N "wmth
- (7] = o), (60
nr/s

since we show later that
k .2 -
Y. 7(1,Y = 0(1*/7) for any fixed positive integer x, (6.21)
i=1 . . .
and we assume

r2s —r) r? } 622)

8 < mm{T, 2_82

We show next that @, = 1 —o(1). Note that (6.1.9) given (6.18) is
monotone and so we can use the G, , model to estimate 7,. Now by
the FKG inequality

! "
Ty = Wy,

where

75, = Pr(there are no nonisolated copies of H which
have no edge in [T'])
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and

= Pr{there are no extra copies of H which share an edge
with those defined in (6. 18)).

Now 7}, = 1 — o(1) if (6.13) holds and

73 2 1 — E (number of such copies of I }

X (n)euiary (;)

HcH 5 — ,_,,(H’)

D .
Z - u(H)___l w(H)/r

k
P MH)( ; (1)) ucsey + O(1)

al o/ su(H)
H'cH

on using (6.21) to simplify the second summation
=1-0(1)
provided

# < min V() - r/s)uH)
Heli s — w(H') + v(H')(s/r)

(6.23)

The proof of (6.4) is completed once we have proved (6.21). For then
(6.20) implies

S (%)OW 1 = o1)),

Proof of (6.21). When a > 0, = r!/a is large we have, where + = t(a),
| a_0-1-~<—0'7+1‘0-7
= ?‘(T)r_]ail

<rpr71
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copies of I which share an edge
with those defined in (6.18)).

4
- H)

k
pomH )( ;1 (7(1))uerm + O(1)
,.lv(H’)/r]

summation

+v(H )s/r)

ve have proved (6.21). For then

(6.23)

(1~ o(1)).

s large we have, where 7 = 7(a),

A

r—1a'_1

1

g (6.24)
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and SO

Recalling that I, = [ and [, = [, — 0,,, we sce that

1<i<k (6.25)

I, < pirpa=1/ry

Now let iy = [rlogr] and assume first that i, <k (6.21). Then
(6.25) implies

[, <A, (6.26)

where A = r’’,
Now 7(l,) < rI'/" and 7 is monotone increasing and so

Y1) < igrtl*. (6.27)

i=1

When i, > k we may replace i, by k in (6.27) to obtain (6.21). We
may thus assume i, < k for the remainder of the proof of (6.21). On

the other hand, it is easy to see that

g, z27 forr=r+1
and thus

l= (11 - lz) + (12 - 13) + o +(lk - lk+1) + i
=0y T Oyt Foy T Lisa
> r(l) +1(l,) + o +1(h)

and so replacing [ by /; above
T(li0+1) + - +'T(lk) = liu+1'
Hence

k k *
h T(li)xﬁ( p "'(li))

i=ig+1 i=ig+1

X
< If i

— O(I*/7) by (6.26). (6.28)
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(6.21) follows from (6.27) and (6.28) and this completes the proof of
(6.4). O

We now turn fo the proof of (6.5). For positive integer ¢,

IA

1 vty
Pr(3 ¢ isolated copies of H in G, ) —( r) (—) p"

Now put ¢ = A, and apply (6.11).
The same argument gives

Pr(G,

n,2m

contains at least A, isolated copics) = o(e™?%) (6.29)
and so, using (6.16) and (6.17), we find

Pr(G, ,,, contains 2A; or more copies of H) = o(e™%"). (6.30) |

n,2m

6.4. PROOF OF (6.6)

This section contains the main ideas of the proof of Theorem 6.1.
Let o7 , ={G € 4, ,,: G has k isolated copies and / nonisolated
copies of H}. Let ay, = |97 ,| so that (6.6) is actually concerned with
the ratio a; ;/a;_, -
Now for k£ >0, I = 0, let BP,; denote the bipartite graph with
vertex partition &7, ,, &, ,, and edge set &; ; where GG, € & |,
G, € &, ;, G, € &, _,, if the edge sets of G,, G, are related by

E(G,) = (E(G)\{e}) v {f},

where e is an edge of some isolated copy of H in G, and f is some '
edge which does not create a new copy of H when added to G, /e.
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fGe, Y& let d(G) denote its degree in BPy ;. Then

G € o, , implies ks(N —m — £(G)) <d(G) < ks(N — m),
| £(G) = ;/:;ag(H’)- (6.31)

The sum here is over all copies in G of graphs H' of the form
H-x, x€EH). a [LH') is the number of different ways of adding
an edge to H' (without adding vertices) to creat¢ a copy of H. [For
example, if H =K \¢€ and H' = C,, then a,(H") = 2]

This is because we have ks choices for edge e in an isolated copy of
H. Then of the N —m possible edge replacements f there are at
most §(G —e)—1 choices which create a new H when added.
Finally observe that §G-e)—1= EG).

Also )

G € &, ., implies
(m — s(k + 1) = £(GN(E(G) — sl + 1) - 28(G) — §"(G))
< d(G) < m&(G), (6.32)
Z(G) = ga;(G)-

Here we sum over all copies in G of graphs H' of the form
(H, U H,) — x where H,, H, are distinct copies of H which have at
least one edge in common and x € ECH) U E(H,), and a; is defined
analogously to a,. ¢ (G =s&(G) If s>7 and 0 otherwise and
{"(G) = 0if s > r and srIA(G) ™! otherwise.

To see this we overestimate the number of choices of f by m and
the number of choices of e by £(G). To underestimate d(G) we
underestimate the number of choices of f by m —s(k + D — (G
since we do not wish to touch a copy of H and for a further reason to
be explained. The number of choices 8¢ for e, given f is

l{e & E(G): k(G — f) = 1 and adding e creates no new
intersecting pair H,, Hy}|»

where 1 (G — f ) = the number of copies of H created when adding

e to G — f. Now h(G) = 1 implies h(G —f) = 1 unless f belongs
to some copy of H —x in G and x =e. When s >r we eliminate
such f by subtracting £(G). When s <r we underestimate 8; by
subtracting an upper bound (sr!A(G)Y ') on the number of possible
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xs in copies of H — x that contain f. So

8; > |{e & E(G): h(G) = 1}] - (G) - "(G)
2§(G)—s(k+1)~ Y max{0,h(G) -1} - {G) - {"(G)

e&E(G)

[since £G)< X h(G)+s(k +1)

e E(G)

260) ~s(k+) - T | "(G)) — {(G) - ()

e & F(G) 2

2 £(G) ~ s(k +1) ~ 2{(G) - {"(G)

and the lower bound follows.
The equation

T dG)= ¥ 40),

Ged Gety_,,

(6.31) and (6.32) lead to

(m —s(k+1)— E;c—l,l)(gk—l,[ —s(k+1) - 2Ekw1,l - _f:mi,:)
ks(N — m) :

a. m&e 1.1
<

= — - >
Qr—i,1 kS(N —m - 'fk) -

(6.33)

where &, ,, £, ), £}, and {v ; denote the expectations of £(G), £(G),
{'(G) and "(G) over &7, ;. It only remains now to estimate these
quantities. Let A#(G) = {e € E(G): h,> 0} and #(G) = |A#(G)
[k, =h(G)]. Let A, be as prior to (6.15).

Lemma 6.3. Let G = G, .
(a) Pr(3 e € E(G): h, = 21,) = o(n2e~2M),
(b) Pr(n(G) = n'/°A, log n) = o(e=2),
(©) Pr{A(G) = Ay) = o(e~?M) for 5 < r.

Proof. Let & denote the event {G, ,,, has at least 2A, copies of H).
Think of G, ,,, as G, ,, plus m random edges.
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in f. So
{G) - {"(G)
max{0, #,(G) ~ 1} - {(G) - {"(G)

§G)< X h(G)+s(k+1)

eEE(G)

h(G)) _
2

- {"(G)

4G) - "(G)

L d(G),

Gedd

(= s(k + ) - 251«—1,1 - Zi,c’—l,[)
[ ~ m) :

a? ‘ (6.33)

ote the expectations of £(G), {(G),
nly remains now to estimate these
G). h,>0} and %(G) = |.4(G)|
 (6.15).

0(n26_21\ﬂ).
(e 2h0),
rs<r.

-2 has at least 2A, copies of H).
ndom edges.

PROOF OF (66)  §3
(@) Let & = {2 e  E(G) s.t. h, = 2A,}. Then
Pr(&) = Pr(&1&,)Pr( &)
us vy
> — .
> = PH(&)
Part (a} now follows from (6.30).
(b) Let A, = n"/°A, log n and &, = {n(G) = A,}. Then
Pr(&’) z Pr(&1€,)Pi(&,)

and (b) follows if we show that Pr{#|&,) = ;. But to see this observe
that the expected number of copies of H created by adding the
second m edges is at least (m/N)n(G, ) and

mA Ayl
—A, = og H
N2 WA, 108
> Al
Note that we see now that the actual number added, given &,
majorizes a hypergeometrically distributed random variable with mean

> Ag
(c)In G, ,,

Pr(A > A,) < ”(fo)(%y

w Yo
<=Hl—] .
0

Let us now return to the consideration of (6.33). Suppose [ < A,. It
follows from (6.4) and (6.5) that there exists k, < A, such that

3]

Now apply (6.11). O

T = n (207

We prove that

1 |-"C*kn|
Ty = (1 — —) n BN )T (0 k < Ay)
e

“ho/10, (6.34)
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This is true for k = k; and assume inductively that it is true for
some 0 < k < k,. k > k; will be dealt with subsequently and this is
why we are assuming that k, > 0. We will be able to verify (6.6) as we
proceed with the induction. '

We will estimate £, ,, {, ; by similar methods, and to do this we let
I' denote a generic graph of the form H —x or H, U H, — x. For
G € &, ; we let EH(G) denote the edges of G which lie in some
copy of H contained in G. Let Iy denote some fixed copy of I in K,
For X cYCE,=E(ly) ={e,e,,...,e,} welet

A 1,x = {G € & ;: EH(G) N E, = X and
(Eo = E(G)) N #(G) = 2),
A1 x,y =G € 1 x: Y CE(G)}.

Observe now that if Z denotes the number of copies of ' in G

chosen randomly from .7, ,, then

E, (Zy) = (V(nr))r_' Y M

b
ay ycg, |9l

(6.35)

where E,; , denotes cxpectation over &7, , and « is the number of
automorphisms of I
For if I'y € E(G), then G € &, 1 x5, Where X = E; N EH(G).
The following lemma deals with the relative sizes of these sets. Let

6, = min {V(H') - EM(H')} > 0.

H'CcH
Lemma 6.4.
25h, |, 5ol sk
a 1-— < <] - —,
(a) N IMMI N
|7, ' om m+ A
®) kOLX Y _(1 4 O( 2))’
|2 xvl N N

if Y2V and [Y— Y| = 1and |Uy %, , x 4| = el |,

© > 1 x5
lmk,gl

< AA%r"JZs—lnr/s—Gz

unless X = & and T is of the form H — x.

im
fot
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e in.ductiveiy that it is true for
1t _W1th subsequently and this jg
will be able to verify (6.6) as we

r methods, and to do this we let
m H —x or H,UH, —x. For
~edges of G which lie in some
ote some fixed copy of T in K
, e, we let "
(G) N E, =X and

G)) N A(G) = 2},

"C E(G))}.

- number of copies of T in G

Z |"Q{k1 X’Eol

L Tl (6.35)
& ; and ar is the number of

£, Where X = E, N EH(G).
relative sizes of these sets. Let

gl-b(H')} > 0.

O(m + A, ))
N 2
L1, x,vl = e M2

2 —
»Orwzs ]nr/s_HZ
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proof. (a) Note first that if Ge, and ¢(G) is an isomorphic
:mage of G (i.e., obtained by relabelling vertices), then HG) e

to0. So if &y ;= 1~ A 1, 4,4> thEN
7 u
)
i1

Pr, (&) < il <P (Cj@”U

r < —— < Pr :

o -, ¢ i=1

where (i) Pr, refers to randomly choosing a member G of & ; and
then choosing a random permutation of the vertices (this does choose
a random member of o7 ); (i) & = {e; € EH($(G)); (iii) &7 =
{e, € N (¢(G)}. But since each edge of G is mapped, by ¢, to a
randomly chosen edge of K,

sk Pr (& stk +1)
G
Pry(€7) < Ek,t(i(ﬁ)‘)-
Thus
sk 12 ((25 ~ 1)(n(G) + s(k +1)) )
- = < Ly :
N = |7 ’ N

Now (6.34) and Lemma 6.4(b) imply E.(n(G) <A, + o{( Ne %) and
(a) follows on tidying up.

(b) Consider the bipartite graph BP = BP, , x.v,y With bipartition
&y 1 x,v0 X x, v and an edge GG, for G,€ &, xyv, G2 €
Ay xy it G, can be obtained from G, by deleting the unigue
e € ¥ — Y' and adding a new edge f. Using d to denote degree in BP

we have
G € ¥, 1 x,v implies N-—m—n(G)<d(G) <N —m. (6.36)

There are at most N —m choices for f which gives the upper
bound. On the other hand, if f & E(G) U A(G),then G —e +f &

o, | xy- To see this we first note that G + f has the same k +1

copies of H as G. But this implies ¢ & MG — e + f) and then if
¢ e 4G — e+ f)for some ¢ € Eg — Y, we find that ¢’ belongs to
a copy of H in G+ f and hence in G, which is disbarred by

G e Ay x
G € ¥, x,y implies m — s(k +1) <d(G) =m. (6.37)
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There are at most m choices for f and if we choose to delete an f

which is not in any copy of H, then G + ¢ — fisin & . x,v- The
latter fact following from e ¢ 1 (G).
Hence we have, analogously to (6.33),
mIEAD 19l e
N , fM}c,J,X,Y'] N-m— e, x,y
(6.38)

Our assumption on the size

‘ of Uy ye £, 1 xy implics the exis-
tence of ¥, D X such that

JMA:,!, X, Y,,l = (%)zse—,\(,f%,!l‘

Now (6.38) implies that [,

,[,X,Yf/J%,i,X,Y'I ?._m/ZN and so if
Yoy,

1V m \Iv-¥ '
]"Q{k,l,X,YJ = (é‘) ( ) E‘Aole,I! > 6*3/\0/2(}?{)’

2N
and hence we sec from this and Lemma 6.3(b) that 77, , . < 24, for
Y 2 Y,. But this then implies that for ¥ > Yo, Y -Y'| =1,

25A,\ m |7, | 3(m+ A m
(1— 0)—5———"’[’X’Y _<_(1+ ( 2))—. (6.39)
m [N |21 5, vl N
But if ¥, # X and |y — ¥

=1, we see from (6.38) that |7,
= (N/Zm)[m}c,,,X,Y]. This and

k.1, X?l
Lemma 6.3(b) implies an upper bound

of 24, on 7, Lx,y and then substitution in (6.38) yields (6.39) for
Y=7. Clearly we can fepeat this argument to show that (6.39) holds
for Y 2 X, which completes the proof of (b).

(c) We use the extra randomization ¢ as in part (a). Let H’ denote
the subgraph of Iy induced by X. 1if X C EH(G), then ¢ must map

some v(H') vertices of the k + [ copies of H onto the vertices of A’
The probability of this happening is at most

(‘n)v(H’)

(s(k + 1)), Ag "
(s( ) cH)5A( 0) .
1

T() prove

We first
]'}(F) =r,
this case

The follo
Rucifiski.

For a .
r=H 1 U

Let H, -
H! N Hy,
fOH]) +
equalities
ties,

But
and

(6.42)—(6
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“we choose to delete an f

P
fisin &7 , x.v- The

— > IY'_ Y'l = ]_'
Mt x, v

(6.38)

7.1 x,y implies the exis-

e 1]

vyl =m/2N and so if

= e_3"0/2(

3=z

)

) that 77, , ., < 24, for
Y =Y =1,

3(m + As) ) m
N I~ (6.39)

om (6.38) that |27, | .5l
implies an upper bound
(6.38) yields (6.39) for
0 show that (6.39) holds

part (a). Let H' denote
[(G), then ¢ must map
onto the vertices of H'.

(H")
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Since w(H’) = |X| we can apply part (b) to conclude that

M < AN @~ lp /XD pUIDHHD) - (6.40)
|7, it

To prove the inequality in the statement of (¢) we must, by (6.40) find
a bound for

A= u(I) = S(u() = w(H)) = v(H')

We first consider the case where I’ is of the form A —x. Then
o) = r, (T} =s — 1, and H' is a proper subgraph of H. Hence, in
this case

= - — 62- (6.41)

The following proof of the last part of this lemma is due to Andrzej
Rucinski.

For a graph G let f(G) = v»(G) — (r/s)u(G). Suppose now that
[=H,UH, —x and K = H, U H,, so that

A== = f(K) = f(H). (6.42)

Let Hy=H, NH,, H/=H NH, i=172 and H' = H N H; =

H N H, i =12 Then () f(H) =0, i=12 G) f(H UH)=
FOHD + f(HyY — f(H") 2 0; (ii) at least two of the above four in-
equalities are strict, by an amount 6,. Hence, adding these inequali-

ties,

2 f(H;) + F(H3) + f(Hy) — f(H")) = 26,. (6.43)
But

f(H') = f(H}) + f(H) — f(H") (6.44)

and

F(K) = F(H,) + F(H) - f(Hy) = —f(Hy).  (6.49)

(6.42)—(6.45) imply A — r/s < —@,, as was to be shown. DO
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Let us now consider £(G). Fix T of the form H — x. Let Q = {x:

Uy xvl = e | |}. Then @ € O and (6.35) and Lemma
6.4(a), (b) give '

rl |'97k,1,@,50| _

E, (Zy) = (’:);; B/

P)al%) (-0

@ " ln'/s m+ A,
I pfm)
ar N

v

I}

Conversely,
E, (Zy) _
_(n)r_! l‘%f[,ra,g‘,l + ¥ LM;::,X,EUl Y ]Mkfl,x,sﬂ'
" ay. |7, xen |9l xea |1l
X+9

<) lw) el

+ O(ATn/*7%) + O(n’e™™)

ws—lnr/s A%r
=—|1+0[—=]|.
ap n’?

Observe that if A ¢ denotes the set of possible T,

since we obtain all copies of graphs of the form H — x in K, by
taking all copies of H and deleting an edge. Thus we can write

Sw.s_l

fk,: =

nr/s

1+Q(:_E:))' (6.46)
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f the form H — x. Let O = {Xx-
J€Q and (6.35) and Lemma

a"{fc”:i’,X,Eu, ,%*I x el
Wl— + E — e

k! xzo 1l
)

ossible T,

sr!
= H

o

f the form H — x in K, by
dge. Thus we can write

0(2‘)) R
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- By a similar analysis we can deduce from Lemma 6.4(c) and (6.35)
that
{1 < ANy In /570, (6.47)

We can now go back to (6.33), which implies

ks\IN —m —
Ap-1,1 2= Qi s ( mE &, t) o (6.48)
k—1,1

But clearly §,_, , < n" and so, using (6.34), 7, , ,; = ¢~**/"°. With this
lower bound we can repeat the arguments above and prove (6 46) and
(6.47) with k replaced by k — 1. Furthermore, where r = s, this lower
bound and Lemma 6.3(c) shows

Lo, < 2sr1AgL (6.49)

But using these estimates now in (6.33) gives

G Ay 6.50
= —— + .
ak_],] k( Bk,!)’ ( )
where, 1B} = o(Ay ") provided
8 2 6.51
L —. .
(21’2 + 1)s ( )

Note that (6.50) = (6.6) and that this completes the inductive step
in the proof of (6.33) for k& < k,. For k > k, the only thing that
changes is that we replace (6.48) by

. . (m —s(k +1) - Z,’c,g)(é.?k,g —s(k+1) - ZZ]«,! - _r'c’,z)
k+1.0= ks(N — m)

Ay 1

which enables us to use (6.46), (6.47), and (6.49) with k replaced by
k + 1. The rest is as before. This completes the proof of (6.6) and the
theorem. 0O

Remark. We have identified five upper bounds: (6.13), (6. 15), (6.22),
(6.23), and (6.51). It turns out however that (6. 50) dominates the
others.
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