
Separator Based Parallel Divide and Conquer

in Computational Geometry

Alan M. Frieze∗

Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

Gary L. Miller†

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Shang-Hua Teng

Xerox Corporation
Palo Alto Research Center

Palo Alto, CA 94304

May 22, 2006

Abstract

An O(log n) time, n processor randomized algorithm for computing the k-nearest

neighbor graph of n points in d dimensions, for fixed d and k is presented. The method

is based on the use of sphere separators. Probability bounds are proved using the

moment generating function technique.

1 Introduction

In a series of papers Miller, Teng, Thurston, and Vavasis developed methods for finding

separators for graphs “nicely” embedded in d dimensions, [?, ?, ?, ?]. In this paper we make

significant use of these tools in designing parallel algorithms for computational geometry.

In particular, we present an O(log n) time parallel algorithm using n processors for

finding the k nearest neighbors for each of n points in d dimensional space and k fixed.

Thus our algorithm uses no more work than the best sequential algorithm of Vaidya, [?].

Our algorithm uses randomization and assumes a unit time scan or prefix sum operation.

Thus, given n points in d dimensions we construct the k-nearest neighbor graph, a “nicely”

embedded graph in d dimensions.

∗Research supported in part by National Science Foundation Grant CCR-089-00112.
†Research supported in part by National Science Foundation Grant CCR-87-13489.

1

Definition 1.1 The k-nearest neighborhood graph of the points P = {p1, . . . , pn} in

Rd, is a graph with vertex set P , and edges

E = {(pi, pj) | pi is a k-nearest neighbor of pj or pj is a k-nearest neighbor of pi}.

The best previous published result is due to Cole and Goodrich. They gave an O(logd−1 n)

time and n processor algorithm, [?]. An O(log2 n) time and n processor algorithm appears

in Teng [?] and an announcement appeared in FOCS 1991, [?] without proof. This paper

includes a proof of this result and our stronger result.

The Cole-Goodrich algorithm uses the multi-dimensional divide and conquer technique

developed by Bentley [?]. Bentley divides the problem into two subproblems using hyper-

planes. Cole and Goodrich give an improved 2-dimensional algorithm which is then used

in Bentley’s algorithm for any recursive calls to 2-dimensional problems. Bentley picks the

hyperplane by translating a fixed hyperplane until the points are divided in half. The disad-

vantage of using a hyperplane for partitioning is that the number of edges from the k-nearest

neighbor graph that cross the hyperplane may be as large as Ω(n). Thus combining the so-

lution from the two subproblems may be quite expensive.

Our approach will be to use spheres instead of hyperplanes to do the partitioning. We

will use the fact that the k-nearest neighbor graph has a small sphere separator, [?, ?, ?].

That is given a set of points P and its associated k-nearest neighbor graph G there exists a

sphere S such that the number of points interior to S is approximately equal to the number

exterior to S, and there is a o(n) size subset of vertices W such that every edge crossing S

has one end point in W .

At one level all we do is divide and conquer using sphere separators instead of cutting

planes. However, there are several complications that one encounters when trying to get this

high level idea to work. First of all, we are not given the graph–the goal is to find it. Thus,

we do not know how to determine quickly if a given sphere produces a small separator in

the graph. We can however quickly determine if it partitions the points properly. Secondly,

the candidate spheres that we produce usually give good separators but not with enough

reliability to make the obvious methods work. Finally, Bentley’s technique of “gluing” the

recursively computed solutions together by working in one less dimension does not seem

to work since we are working with spheres. Even if we knew how to reduce the number

dimensions with each recursive call we still do not see how to get an optimal work algorithm.

Thus our algorithm is a recursive divide and conquer where the separator at each level

is chosen randomly from an appropriate distribution. Each separator partitions the problem

into two subproblems, each of which is solved recursively. Upon returning from a recursive

call one may find that the chosen sphere is not actually a good separator. It is now “too late”

to restart and instead we will “punt” i.e., we will fall back on a slower algorithm. Surprisingly

this only leads to a constant factor increase in the running time. This approach, “run-A-

first-if-unlucky-then-run-B”, is often used in expected case design. But to the best of our

knowledge this is its first application to worst-case analysis.

Algorithms presented in this paper use a data-parallel machine model, the parallel vector

model (Blelloch [?]). Parallel vector models can be efficiently mapped onto a broad variety

2

of parallel architectures [?]). This model uses SCAN as a primitive operation. We choose

it not only because we can derive tight bounds for our application of geometric separator

theorems but also because adding the SCAN primitive makes theoretical models such as the

PRAM closer to their practical counterparts such as the Connection Machine [?]. We will see

that SCAN as a primitive greatly simplifies the description of the parallel algorithm. This is

another illustration that SCAN as primitive provides a better way to specify various degrees

of parallelism at a high level. If we use more complicated constructions including random

permuting, integer sorting, and selection, then all the algorithms presented in the paper can

be implemented on a CRCW PRAM with only an extra O(log log) factor increasing in time.

2 Sphere Separators

A d-dimensional neighborhood system B = {B1, . . . , Bn} is a finite collection of balls in Rd.

Let pi be the center of Bi (1 ≤ i ≤ n) and call P = {p1, . . . , pn} the centers of B. For any

integer k, B is a k-neighborhood system if for all 1 ≤ i ≤ n, the interior of Bi contains no

more than k points from P . For each point p ∈ Rd, let the ply of p, denoted by plyB(p), be

the number of balls from B that contains p. B is a k-ply neighborhood system if for all p,

plyB(p) ≤ k.

The following lemma relates the above two definitions. A proof of the lemma can be

found in [?, ?]:

Lemma 2.1 (Density Lemma) In Rd, each k-neighborhood system B = {B1, . . . , Bn}

is τdk-ply, where τd is the kissing number in d dimensions, i.e., the maximum number of

nonoverlapping unit balls in Rd that can be arranged so that they all touch a central unit ball

[?].

2.1 A geometric separator theorem

Suppose B = {B1, . . . , Bn} is a neighborhood system in Rd. Each (d−1)-dimensional sphere

S partitions B into three subsets (see Figure 1): BI(S), BE(S), BO(S), those ball that are

in the interior of S, in the exterior of S, and intersect S, respectively.

Figure 1: A sphere separator

3

The cardinality of BO(S) is an important cost of S. This number is called the intersection

number of S, denoted by ιB(S).

Notice that the removal of BO(S) splits B into two subsets: BI(S) and BE(S), such that

no ball in BI(S) intersects any ball in BE(S) and vice versa. In analogy to separators in

graph theory, BO(S) can be viewed as a separator of B.

Definition 2.1 (Sphere Separators) A (d − 1)-sphere S is an f(n)-separator that δ-

splits a neighborhood system B if ιB(S) ≤ f(n) and |BI(S)|, |BE(S)| ≤ δn, where f is a

positive function and 0 < δ < 1.

Miller, Teng, and Vavasis proved the following separator theorem, [?]:

Theorem 2.1 (Sphere Separator Theorem) Each k-ply neighborhood system B = {B1, . . . , Bn}

has a sphere separator S with intersection number O(k
1
d n

d−1
d) that d+1

d+2
-splits B.

In this paper, we will use an algorithm of Miller-Teng-Thurston-Vavasis [?, ?]. The

algorithm finds an O(k
1
d
+ǫn

d−1
d

+ǫ)-sphere separator of splitting ratio (d+1
d+2

+ ǫ) in random

constant time, using n processors, with probability of success 1 − 1
n
, where ǫ < 1

d+2
is a

constant depending only on d. Further more, the algorithm only uses the centers of the

neighborhood system. We will refer the algorithm as Unit Time Separator Algorithm.

3 Separator Based Divide and Conquer

At a high level, the separator based divide and conquer is very simple and intuitive. Given

a neighborhood system B (explicitly or implicitly), it finds a sphere separator of a low

intersection number and partitions B into two subsets of roughly equal size, those in the

interior and exterior, respectively, and then recursively (sequentially or in parallel) solves

the problem associated with the two sub-systems; the solutions for the two sub-systems are

then combined to a solution to the whole problem.

To illustrate the main idea, we use the following query problem as our first example.

The algorithm for this query problem will be used as a subroutine in the parallel algorithm

for computing the nearest neighborhood graph. The algorithm has been presented in [?].

However, the proof of the parallel time complexity presented here is simpler and new.

3.1 Neighborhood query problem

The neighborhood query problem is defined as: given a k-ply neighborhood system B =

{B1, . . . , Bn} in Rd, preprocess the input to organize it into a search structure so that

queries of the form “output all neighborhoods that contain a given point p” can be answered

efficiently.

Like any other geometry query problem, there are three costs associated with the neigh-

borhood query problem: the query time Q(n, d) required to answer a query, the space S(n, d)

4

required to represent the search structure in memory, and the preprocessing time T (n, d) re-

quired to build the search structure.

To our knowledge, there are no prior results on this problem. Nevertheless, as noted in

[?], it is relatively straightforward to use multi-dimensional divide and conquer to build in

T (n, d) = O(n logd−1 n) time a search structure with Q(n, d) = O(k + logd n) and S(n, d) =

O(n logd−1 n).

In contrast, the separator based divide and conquer constructs in T (n, d) = random O(n log n)

expected time a search structure with Q(n, d) = O(k + log n) and S(n, d) = O(n).

By saying an algorithm runs in random t(n) time, we mean that the algorithm never

yields a wrong output but may terminate without producing any output. The probability

of success – it produces a correct output in t(n) steps – is at least 1 − 1
nΩ(1) . Moreover, our

construction can be optimally parallelized. To simplify the discussion, we assume that the

ply k is a constant. All algorithms can be easily generalized to handle a non-constant k.

3.2 A separator based search structure

Given a k-ply neighborhood system B, we build a binary tree of height O(log n) to guide the

search in answering a query. Associated with each leaf of the tree is a subset of balls in B,

and the search structure has the property that for all p ∈ Rd, the set of balls covering p can

be found in one of the leaves.

In the following construction, any sublinear separator with a constant splitting ratio can

be used. The asymptotic complexity is the same. All that matters is that µ, δ are constants

depending only on the dimension d with the properties that 0 < µ < 1, 0 < δ < 1. If no

further specified, we use µ = d−1
d

+ ǫ and δ = d+1
d+2

+ ǫ for a constant 0 < ǫ < 1
d+2

.

Let S be a sphere separator with intersection number nµ that δ-splits centers of B. Let

B0 = BI(S) ∪ BO(S) and B1 = BE(S) ∪ BO(S) where BE(S),BI(S),BO(S) are defined in

Section 2.1. Clearly |B0|, |B1| ≤ δn + nµ, and |B1|+ |B2| ≤ n + nµ. We store the information

of S, its center and radius, in the root of the search tree, and recursively build binary search

trees for B0 and B1, respectively. The roots of the tree for B0 and B1 are respectively the left

and right children of the node associated with S. The recursive construction terminates when

the subsets has cardinality smaller than m0, for a parameter m0 satisfying mµ
0 ≤

(

1−δ
2

)

m0,

to be specified later.

To answer a query when given a point p ∈ Rd, we first check p against S, the sphere

separator associated with the root of the search tree. There are three cases: (1) If p is in the

interior of S then recursively search on the left subtree of S; (2) If p is in the exterior of S

then recursively search the right subtree of S; (3) If p is on S then recursively search on the

left subtree of S. When reaching a leaf, we then check p against all balls associated with the

leaf and output all those that cover p.

The correctness of the search structure and the above searching procedure can be proved

by induction: if p is in the interior (exterior) of S, then all balls that cover p must intersect

either S or the interior (exterior) of S, and hence are in the left (right) subtree of S. The

time complexity to answer a query is bounded by O(h(n) + m0), where h(n) is the height of

5

the search tree, given by the following recurrence.

h(m) ≤
{

1 if m ≤ m0
h(δm + mµ) + 1 if m ≥ m0.

The total space required is bounded by m0s(n) + O(s(n)), where s(m) is a bound on the

number of leaves in a search tree for m neighborhoods, given by the following recurrence.

s(m) ≤
{

1 if m ≤ m0
s(δ1m + mµ) + s((1 − δ1)m) if m > m0,

where δ1 ≤ δ. It has been shown in [?] that

Lemma 3.1 For a sufficient large constant m0 depending only on d, δ, and µ, (1) h(n) =

O(log n) and (2) s(n) = O(n/m0).

Consequently, Q(n, d) = O(log n + m0) and S(n, d) = O(n). Using the random linear

time sphere separator algorithm of Miller-Teng-Thurston-Vavasis, such a search structure

can be computed in random O(n log n) time sequentially [?].

3.3 A parallel construction

The following parallel algorithm computes an O(log n) query time, O(n) space search struc-

ture for the neighborhood query problem.

Parallel Neighborhood Querying

1. If m ≤ m0, output a tree of a single node storing all balls;

2. Otherwise,

Iteratively apply Unit Time Sphere Separator Algorithm until finding a good

sphere separator S;

3. Let B0 = BI(S) ∪ BO(S) and B1 = BE(S) ∪ BO(S);

4. Call Parallel Neighborhood Querying to recursively construct the search structure

T0 for B0 and T1 for B1 in parallel;

5. Construct a tree with root storing S and left subtree T1 and right subtree T2;

Theorem 3.1 With probability 1 − 1
nΩ(1) , Parallel Neighborhood Querying terminates in

O(log n) time using n processors.

Proof: Let P = v1, . . . , vm be a path in the search tree constructed by Parallel Neighborhood

Querying from a leaf v1 to the root vm. Associated with this path is a sequence of calls to Unit

Time Sphere Separator Algorithm. The parallel time complexity of Parallel Neighborhood

Querying is thus the length of the longest sequence so induced. We label a call ‘head’ if it

returns a good sphere separator and ‘tail’, otherwise. The total number of heads along P is

exactly m. Notice that each call at node vi succeeds (turns ‘head’) with probability at least

6

1 − 1
2i ≥

1
2
. Because calls are independent of each other, we can view the random sequence

of calls as a Bernoulli trials with probability at least 1
2

as ‘head’. Therefore,

Pr

(

m
∑

i=1

xi > 3m

)

≤ 2−2m

Notice, m = log n in our setting, and the total number of such paths are n. Hence the

algorithm terminates with probability 1 − 1
nΩ(1) . Clearly, it uses n processors. 2

In comparison, the multi-dimensional divide and conquer takes O(logd n) time to build

its search structure.

4 The Punting Lemma for Probabilistic Divide and

Conquer

In this section, we present a useful technique for devising and analyzing probabilistic parallel

divide and conquer algorithms. This technique applies to the following scenario: Suppose

we have two probabilistic algorithms A and B to do dividing and/or combining such that

algorithm A is faster yet its probability of success is relatively low, while algorithm B is

relatively slower but has higher probability of success. We will show that if B is at most

log n factor slower than A, then the “run-A-first-if-unlucky-then-run-B” hybrid partition

and/or combination procedure yields a parallel divide and conquer algorithm which is as

fast as if only algorithm A is used, while with probability of success as high as if algorithm

B is used.

To analyze the “run-A-first-if-unlucky-then-run-B” approach, we study the following

class of probabilistic trees. Suppose a and b are a pair of integer functions. A probabilistic

(a, b)-tree of size n (a power of 2) is a complete binary tree with n leaves whose internal nodes

are weighted according to the following rule: a node v whose subtree contains m leaves has

weight a(m) with probability 1 − 1
m

and b(m) with probability 1
m

. The weighted depth of a

leaf in T is the sum of weights of the nodes on the path from the leaf to the root of the tree.

Lemma 4.1 (Punting Lemma) Let RD(n) be the random variable which is equal to the

largest weighted depth among leaves in a probabilistic (0, log m)-tree T of size n. Let ρ =
√

e
2

and A = eρ/(1−ρ). Then

Pr(RD(n) > 2c log n) ≤ nAe−c log n,

Proof: Let v1, . . . , vm be the path from a leaf v1 to root vm (where m = log n). Let Xi be

the weight of vi. By the definition of the weight, Pr(Xi = 0) = 1− 1
2i and Pr(Xi = i) = 1

2i .

7

For all λ > 0 and t > 0,

Pr(X1 + · · · + Xm ≥ t) = Pr
(

eλ(X1+···+Xm−t) ≥ 1
)

≤ E
(

eλ(X1+···+Xm−t)
)

(

Pr(X ≥ a) ≤
E(X)

a

)

= e−λt
m
∏

i=1

E
(

eλXi
)

= e−λt

m
∏

i=1

[(

1 −
1

2i

)

+
1

2i
eλi

]

≤ e−λt

m
∏

i=1

(1 + ρi)

(

ρ =
eλ

2

)

≤ e−λt

m
∏

i=1

eρi

(1 + x ≤ ex, ∀x)

≤ e−λt+ρ+ρ2+ρ3+···

= e−λt+ ρ
1−ρ (assume ρ < 1)

Therefore, let λ = 1/2, we have,

Pr(X1 + · · · + Xm ≥ 2cm) ≤ Ae−cm.

Since there are n leaves, we have Pr(RD(n) > 2c log n) ≤ nAe−c log n. 2

Consequently,

Corollary 4.1 Suppose C is a constant positive integer. Let RD(n) be the random variable

which is equal to the largest weighted depth among leaves in a probabilistic (C, log m)-tree T

of size n. Then

Pr(RD(n) > 2(c + C) log n) ≤ nAe−c log n,

5 An O(log2 n) Time all-Nearest-Neighborhood Algo-

rithm

In this section, we present the random O(log2 n) time n processor algorithm of [?] for com-

puting the k-nearest neighborhood graph of a set of points. This algorithm will be used to

motivate the O(log n) time algorithm of the next section. We give a simpler proof of the

algorithm.

5.1 The Algorithm

Suppose P = {p1, . . . , pn} is a set of n points in Rd. For each i, Let Bi be the largest

ball centered at pi whose interior contains at most k − 1 points from P . Bi is called the

8

k-neighborhood ball of pi in P and {B1, . . . , Bn} is called the k-neighborhood system of P .

Given the the radius of each ball Bi it is not to hard to see how to construct the k-nearest

neighbor graph in O(log n) time using n processors. Thus, for the rest of the paper we will

restrict our attention to computing the k-neighborhood system for P .

We next reduce k-neighborhood system problem to the neighborhood query problem.

The reduction is very simple and works as follows:

Simple Parallel Divide-and-Conquer

1. Choose any hyperplane dividing the points P into two equal size subsets Pl and

Pr.

2. Recursively compute the k-neighborhood system Bl for Pl and Br for Pr in parallel;

3. Let Bi be the ball associated with point pi from the recursive construction. As-

sume pi ∈ Pl (Pr). There are two cases:

• Case 1: If Bi does not intersect h, then Bi is the k-neighborhood ball of pi

in P ;

• Case 2: If Bi intersects h, then Bi could be larger than the k-neighborhood

ball of pi in P because there might be points from Pr (Pl) in the interior of

Bi. In this case, correct the radius of Bi.

The key observation is that the correction step for Case 2 is just a neighborhood query

problem which can be solved in random O(log n) time. It is interesting to point out that the

correction step is where Bentley used the multi-dimensional reduction. He cannot simply stop

the recursive call. Instead, he reduces the problem to one lower dimension. The separator

based divide and conquer removes the necessity of a multi-dimensional recursive call and

hence improves the algorithm.

Lemma 5.1 Simple Parallel Divide-and-Conquer uses O(n) processors and terminates in

O(log2 n) time with probability at least 1 − 1
nΩ(log n) .

Proof: Simple Parallel Divide-and-Conquer induces a complete binary tree T of height

O(log n). Let P = v1, . . . , vm be a path in T from a leaf v1 to the root vm. At vi, let

Γl be the set of balls of Bl that intersect h. Clearly Γl is a k-neighborhood system. So we

can build a search structure for the neighborhood query problem of Γl. Using this search

structure, we can decide in O(log n) time for each p ∈ Pr (Pl) the set of balls in Γl (Γr)

whose interior containing p and we correct the radius of Bi accordingly.

In the construction of search structure for Γl, we use Parallel Neighborhood Querying

to build a search tree of height O(i). Hence the path P induces 21+2+...+m paths. Associated

with each such path is a sequence of calls to Unit Time Sphere Separator Algorithm. The

parallel time complexity of Simple Parallel Divide-and-Conquer is thus the length of the

longest sequence so induced. Each call has probability of success (turning head) at least 1
2
.

Each sequence has at most c(1 + 2 + ... + m) ‘head’s, for a constant c > 1 depending only

9

on d, the dimension of the space. Let L be the random variable which is equal to the length

of such a sequence. As a sequence of Bernoulli trials,

Pr(L > 3c(1 + 2 + ... + m)) ≤ 2−2c(1+2+...+m)

Since there are at most n21+2+...+m such paths and m = log n, we have Simple Parallel

Divide-and-Conquer terminates in O(log2 n) time with probability at least 1 − 1
nΩ(log n) . 2

6 An O(log n) Time Nearest Neighborhood Algorithm

Recall that the parallel algorithm presented in Section 5 first partitions the points by a

hyperplane, recursively solves the two subproblems, and then uses the parallel algorithm for

the neighborhood query problem to make the final correction. The disadvantage of using a

hyperplane for partitioning is that the number of balls intersecting the hyperplane may be

as large as Ω(n). We thus cannot bound the number of balls we need to correct after the

recursion. However, if we use a small cost sphere separator to do the first step partition,

then we would expect to correct only a small number of balls. Hopefully, we could use the

extra processors to do the correction step faster (with very high probability) – to obtain a

random O(log n) time n processor algorithm.

The basic idea is as follows: we use sphere separator to do the partition. If the sphere

separator at a node is good (with probability 1 − 1
m

) and the sphere separators associated

with the subtree induced by the node is well behaved (to be defined, also with probability

1− 1
m

), then we use a constant time linear processor parallel algorithm (to be described) to

do the correction. However, if we are not lucky at the node, then we ‘punt’ and instead use

Parallel Neighborhood Querying to do the correction. We will show that the probability of

success of Parallel Neighborhood Querying is at least 1− 1
n2 . Hence, by Punting Lemma 4.1,

the new algorithm runs in random O(log n) time using n processors.

6.1 The Algorithm

We first make the following observation.

Lemma 6.1 Suppose P = {p1, . . . , pn} is a set of n points in Rd, and S is a d − 1-sphere

disjoint from P . If PI and PE are the sets of points of P in the interior or exterior of S,

and BI, BE, and B be their k-neighborhood system of PI , PE, and P , respectively, then

ιBI
(S) + ιBE

(S) = ιB(S).

Proof: For each B ∈ BI ∪ BE, suppose pi is the center of B and Bi is k-neighborhood ball

of pi in P . If B does not intersect S, then clearly B = Bi. If B intersects S then Bi also

intersects S. To see this, without loss of generality assume that pi ∈ PI . If Bi is completely

in the interior of S, the Bi is equal to B, a contradiction, and therefore the lemma holds. 2

10

Consequently, if we use a sphere S to partition the points, then we only need to correct

ιB(S) balls. We now show how to perform the correction step in constant expected time

with high probability.
For simplicity, in the following, we assume k = 1. The algorithm can be easily general-

ized to handle k > 1 and we will point out where to modify the algorithm.

Parallel Nearest Neighborhood

1. If m ≤ log n, deterministically compute the 1-neighborhood system in m time

using m processors by testing all pairs of points.

2. Otherwise, repeated apply Unit Time Sphere Separator Algorithm until a sphere

separator S that δ-splits P is found;

3. Let PI and PE be the sets of points of P in the interior and exterior, respectively,

of S;

4. Recursively construct the 1-neighborhood systems BI for PI and BE for PE , in

parallel;

5. Let TI and TE be the partition trees generated for PI and PE respectively;

6. Call Correction(BI , BE , S, P , T) to correct all those balls that intersect S to

obtain B;

Correction(BI , BE, S, P)

1. If ιBI
(S) + ιBE

(S) ≥ mµ, then call Parallel Neighborhood Query to correct balls

in BI ∪ BE ;

2. If ιBI
(S) + ιBE

(S) ≤ mµ then

• Call Fast Correction(BI , S, PE ,T);

• Call Fast Correction(BE , S, PI ,T).

We need only to describe the procedure for Fast Correction. throughout the discuss we

assume the input is (BI ,S,PE,T).

Let ΓI be the set of all balls of BI that intersect S. Let Tr be the right subtree of T . By

Lemma 6.1, we only need to correct balls in ΓI . To do this, we need to compute, for each

B ∈ ΓI , the set of points of PE that are in the interior of B. The basic idea is to “march”

balls of ΓI down the tree Tr: at each node, if a ball is contained in the interior (exterior)

of the sphere separator, then it moves down the left (right) subtree; If a ball intersects the

sphere separator, then it is duplicated and one copy moves down the left subtree and another

one moves down the right subtree. If the number of balls reaching a node is below a pre-

defined constant, then the process stops in that subtree and all balls at the node become

in-active.

Notice that there are O(m) processors but there are only mµ balls in ΓI . We will

show that the marching of the first (1 − µ) log m levels can be performed in constant time.

Moreover, if the number of active balls at each level is sublinear in m, then the overall

marching can be performed in constant time, because the height of Tr is O(log m). In

subsection 6.4, we will prove the following lemma.

11

Lemma 6.2 There is a constant 0 < η < 1, such that with probability (1 − 1
m

), the number

of active balls at all levels of Tr is at most m1−η.

When the number of active balls at some level is greater than m1−η (with probability

≤ 1
m

) then we use Parallel Neighborhood Query procedure to do the correction.

6.2 Fast Correction

Suppose T is a complete binary tree of spheres and the height of T is h. Let B be a ball in

Rd. We define the following notion of reachable by B recursively:

1. The root r of T is always reachable;

2. If an internal node v of T is reachable and Sv is the sphere associated with v then

• If B intersects Sv or its interior, then the left child of v is reachable;

• If B intersects Sv or its exterior, then the right child of v is reachable;

Lemma 6.3 The set of all reachable leaves in a divide and conquer tree T of height h can

be computed in constant time, using h2h processors 1.

Proof: For each internal node v, if B intersects Sv or its interior, then label lc(v) 1 otherwise

label lc(v) 0; if B intersects Sv or its exterior, then label rc(v) 1, otherwise label rc(v) 0.

Clearly, the above labeling process can be computed in constant time using 2h processors.

We make the following observation: a node v in T is reachable iff all nodes (including

v) on the path from v to the root r of T are labeled with 1. The observation can be easily

proved by induction on the level of the tree. Therefore, to recognize the set of all reachable

leaves, it is sufficient to compute for each leaf whether all nodes on the path from it to the

root of T are labeled with 1.

Notice that if we assign each leaf h processors, then we can assign one processor to each

node on the path from the leaf to the root. Using the SCAN primitive, it can be decided

in constant time, whether all nodes on the path are labeled with 1. Since there are at most

2h leaves in T , the set of reachable leaves of T can be computed in constant time, using h2h

processors. 2

Now, suppose at each level of the tree Tr, there are at most m1−η active balls. Using

the parallel algorithm of Lemma 6.3, we can compute for all B ∈ ΓI , the set of leaves in

Tr reachable by B, in constant time using m processors. By Lemma 2.1, for all p ∈ PE,

plyΓI
(p) ≤ τd. Thus,

|{(B, p) : B ∈ ΓI , p ∈ PE ∩ B}| ≤ τdm

1It is interesting to known whether the set of reachable leaves can be computed in constant time using

2h processors.

12

Notice that p ∈ B only if the leaf stores p is reachable by B. Therefore, we have just shown

how, under the condition that there are at most m1−η balls at each level of Tr, to compute

{(B, p) : B ∈ ΓI , p ∈ PE ∩ B}

in constant time using m processors.

To correct B ∈ ΓI , it is sufficient to find the point in {p : p ∈ PE ∩B} that is closest to

the center of B. This closest point can be computed in constant time with SCAN primitive

using |{p : p ∈ PE ∩ B}| processors.

It worthwhile to point out that for k > 1, the computation of the closest point

should be changed to the k closest points. The computation of the k closest points can

be computed in random O(log log k) time, with very high probability. Therefore for

k > 1, the parallel time complexity has an O(log log k) extra factor. It is an interesting

question whether this extra factor can be eliminated.

The Fast Correction can now be specified as below:

Fast Correction(BI , S, PE,T)

1. Compute ΓI ;

2. Using the constant time algorithm in Lemma 6.3 to march balls of ΓI down the

tree Tr to compute the set of reachable leaves for each B ∈ ΓI ;

3. If the marching is successful, namely, there are at most m1−η balls at each level

of Tr, correct balls in ΓI as discussed above;

4. Otherwise, call Parallel Neighborhood Querying to do the correction.

6.3 The overall parallel complexity

Theorem 6.1 The k-neighborhood system of a set of n points in Rd can be computed in

random O(log n) time, using n processors.

Proof: Let T be the partition tree induced by Parallel Nearest Neighborhood. For each node

v in T , we assign a weight: w(v) = 0 if its sphere separator is ‘good’ and both of its Fast

Corrections succeed. Otherwise, w(v) = log mv, where mv is equal to the size of the subtree

rooted at v. It follows from Lemma 6.2, with probability at least 1 − 1
mv

, w(v) = 0.

Let P = v1, . . . , vm be a path in T from a leaf v1 to the root vm. Let w(P) =
∑m

i=1 w(vi).

By Punting Lemma 4.1,

Pr(w(P) > 2c log n) ≤
1

nc
.

If w(vi) > 0 we use Parallel Neighborhood Querying to build a search tree of height O(i).

Otherwise, we do nothing. Hence the number of paths that P induces is O
(

2
Pm

i=1 w(vi)
)

≤ n2c

with probability at least 1
nc .

Associated with each such path is a sequence of calls to Unit Time Sphere Separator

Algorithm. The parallel time complexity of Parallel Nearest Neighborhood is thus linear in

13

the length of the longest sequence along all paths. Each sequence has at most c1(
∑m

i=1 w(vi))

‘head’s, for a constant c1 > 1 depending only on d. Let L be the random variable which is

equal to the length of such a sequence. As a sequence of Bernoulli trials,

Pr

(

L > 3c1(
m
∑

i=1

w(vi))

)

≤ 2−2c1(
Pm

i=1 w(vi))

Since there are at most n2c such paths and m = O(log n), we have Parallel Nearest

Neighborhood terminates in O(log n) time with probability at least 1 − 1
nΩ(1) . 2

6.4 The Probabilistic Analysis

The spheres generated by the Unit Time Sphere Separator Algorithm will be reused O(log n)

time. Each sphere will first be used to construct a partition tree for the input points P . They

will then be used O(log n) times, once for each level in the partition tree during the correction

phase. In the correction phase these spheres will used for an application for which they where

not intended. In particular, the sphere will not equally split the balls–unequal splits of the

balls will be OK. But, we do need that with high probability each sphere intersects o(n)

balls. The next lemma follows easily from the methods in [?, ?].

Lemma 6.4 Suppose d−1
d

< α < 1, β = α − d−1
d

, B ∈ Rd is a k-ply neighborhood system,

and P a set of points in Rd not necessarily related to B. If S is a (d − 1)-sphere generated

by the Unit Time Sphere Separator on input P then,

Prob (ιB(S) > nα) ≤
1

nβ
.

Recall the process of marching ΓI down the tree Tr. Initially, the root r has w = |ΓI | balls.

The total number of balls of the two children of r is equal to w plus the number of balls

duplicated during the marching. By Lemma 6.4, with probability 1 − 1
wβ , the number of

duplications is less than wα.

We introduce the following process on a complete binary tree T of height K. The process

constructs a subtree T ′ of T with the same root r, say, which is given a weight W . At a

vertex v ∈ T ′ of height k (in T) and weight w we proceed as follows:

• If k = 0 or w ≤ w̄ then v becomes a leaf of T ′ and is assigned a weight w. Here w̄ depends

only on d and α;

• Otherwise,

where β = α − d−1
d ,

– with probability w−β , assign weight w to both the left child lc(v) and right child lc(v)

of v, and recursively apply the random process on lc(v) and rc(v); otherwise

14

– generate a number w0 ≤ w (controlled by an adversary) and assign weight w0 to lc(v)

and

weight w − w0 + wα to rc(v).

From Lemma 6.4, it follows that number of balls at a level of Tr is bounded above by

the total weight at the same level in T if the same set of outcomes are used for the above

two random processes.

Let X(W,K) be a random variable which is equal to the total weight of the leaves of

T ′. It is not hard to prove that E(X(W,K)) = O(WK). We now estimate the probability

that X(W,K) is large.

Lemma 6.5 For all 2d−1
2d

< α < 1 and β = α − d−1
d

so that α + β > 1, and for all ǫ > 0,

there exists a constant A > 0 such that

Pr [X(W,K) ≥ Ag(W) log W] = O

(

1

W 2

)

where g(W) = W + 2(1−α)k(1 + ǫ)kWα.

Proof: For all λ > 0 and t > 0, we have

Pr (X(W,K) ≥ t) = Pr
(

eλ(X(W,K)−t) ≥ 1
)

≤ E
(

eλ(X(W,K)−t)
)

(

Pr(X ≥ a) ≤
E(X)

a

)

= e−λtE
(

eλX(W,K)
)

Let θ > 0 be a small constant and let λ = θ
g(W)

.

We now prove the following inequality by induction :

E
(

eλX(w,k)
)

≤ eλg(w) (1)

where X(w, k) naturally refers to a generic vertex of weight w and height k in T .

Putting A = 2/θ and applying (1) we obtain the lemma.

Notice that when k = 0 or w ≤ w̄, then X(w, k) = w. So the base is correct. We thus

assume k ≥ 1 and w ≥ w̄.

By the definition of X(w, k), we have

X(w, k) =

{

X(w − w0 + wα, k − 1) + X(w0, k − 1) with probability 1 − 1
wβ

2X(w, k − 1) with probability 1
wβ

15

Therefore, using the independence of the process in the left and right subtrees of a

vertex, and assuming that w̄ is sufficiently large,

E
(

eλX(w,k)
)

=

(

1 −
1

wβ

)

E
(

eλX(w−w0+wα,k−1)
)

· E
(

eλX(w0,k−1)
)

+
1

wβ
E
(

eλX(w,k−1)
)2

≤

(

1 −
1

wβ

)

eλ(w0+2(1−α)(k−1)(1+ǫ)k−1wα
0 +(w−w0+wα)+2(1−α)(k−1)(1+ǫ)k−1(w−w0+wα)α)

+
1

wβ
e2λ(w+2(1−α)(k−1)(1+ǫ)k−1wα) (By Induction)

≤

(

1 −
1

wβ

)

eλ((w+wα)+2(1−α)(k−1)(1+ǫ)k−1[wα
0 +(w−w0+wα)α]) +

1

wβ
e2λ(w+2(1−α)(k−1)(1+ǫ)k−1wα)

≤

(

1 −
1

wβ

)

eλ((w+wα)+2(1−α)k(1+ǫ)k−1[w+wα]α) +
1

wβ
e2λ(w+2(1−α)(k−1)(1+ǫ)k−1wα)

[wα
0 + (w − w0 + wα)α ≤ 21−α(w + wα)α]

≤

(

1 −
1

wβ

)

eλ(w+wα+2(1−α)k(1+ǫ)k−1[1+ 2α

w1−α]wα) +
1

wβ
e2λ(w+2(1−α)(k−1)(1+ǫ)k−1wα)

≤

(

1 −
1

wβ

)

eλ(w+2(1−α)k(1+ǫ)k−1(1+ ǫ
2)wα) +

1

wβ
e2λ(w+2(1−α)(k−1)(1+ǫ)k−1wα)

To prove (1) it is sufficient to prove that the right hand side of the last inequality divided

by eλg(w) is at most 1. Denote this ratio by RHS. Let

X = λ2(1−α)k−1ǫ(1 + ǫ)k−1wα

Y = λw2(1−α)(k−1)+2(1 + ǫ)k−1

By a simple calculation, we have

RHS ≤

(

1 −
1

wβ

)

e−X +
1

wβ
eY

Recall that λ = θ
g(W)

and so both X and Y are small. Therefore, for a small constant δ > 0,

the following inequalities hold.

e−X ≤ 1 − (1 − δ)X

eY ≤ 1 + (1 + δ)Y

Using the above inequalities we have

RHS ≤

(

1 −
1

wβ

)

[1 − (1 − δ)X] +
1

wβ
[1 + (1 + δ)Y]

≤ 1 −

[

λwα2(1−α)(k−1)(1 + ǫ)k−1

(

(1 − δ)(1 −
1

wβ
)ǫ2−α −

4(1 + δ)

wβ+α−1

)]

≤ 1,

16

for w̄ sufficiently large. Thus (1) is proven and the lemma follows. 2

Choosing α very close to 1 and ǫ very close to 0, we obtain Lemma 6.2.

@stringSTOC11=”Proceedings of the 11st Annual ACM Symposium on Theory of Com-

puting” @stringSTOC12=”Proceedings of the 12th Annual ACM Symposium on Theory of

Computing” @stringSTOC13=”Proceedings of the 13th Annual ACM Symposium on The-

ory of Computing” @stringSTOC14=”Proceedings of the 14h Annual ACM Symposium on

Theory of Computing” @stringSTOC15=”Proceedings of the 15th Annual ACM Symposium

on Theory of Computing” @stringSTOC16=”Proceedings of the 16th Annual ACM Sym-

posium on Theory of Computing” @stringSTOC17=”Proceedings of the 17th Annual ACM

Symposium on Theory of Computing” @stringSTOC18=”Proceedings of the 18th Annual

ACM Symposium on Theory of Computing” @stringSTOC19=”Proceedings of the 19th An-

nual ACM Symposium on Theory of Computing” @stringSTOC20=”Proceedings of the 20th

Annual ACM Symposium on Theory of Computing” @stringSTOC21=”Proceedings of the

21st Annual ACM Symposium on Theory of Computing” @stringSTOC22=”Proceedings

of the 22th Annual ACM Symposium on Theory of Computing” @stringFOCS16=”16th

Annual Symposium on Foundations of Computer Science” @stringFOCS20=”20th Annual

Symposium on Foundations of Computer Science” @stringFOCS21=”21th Annual Sympo-

sium on Foundations of Computer Science” @stringFOCS22=”22th Annual Symposium on

Foundations of Computer Science” @stringFOCS23=”23th Annual Symposium on Foun-

dations of Computer Science” @stringFOCS24=”24th Annual Symposium on Foundations

of Computer Science” @stringFOCS25=”25th Annual Symposium on Foundations of Com-

puter Science” @stringFOCS26=”26th Annual Symposium on Foundations of Computer

Science” @stringFOCS27=”27th Annual Symposium on Foundations of Computer Science”

@stringFOCS28=”28th Annual Symposium on Foundations of Computer Science” @string-

FOCS29=”29th Annual Symposium on Foundations of Computer Science” @stringFOCS30=”30th

Annual Symposium on Foundations of Computer Science” @stringFOCS31=”31st Annual

Symposium on Foundations of Computer Science” @stringFOCS32=”31nd Annual Sympo-

sium on Foundations of Computer Science” @stringPODC5=”5th Annual Symposium on

Principles of Distributed Computing” @stringPODC6=”6th Annual Symposium on Princi-

ples of Distributed Computing” @stringPODC7=”7th Annual Symposium on Principles of

Distributed Computing” @stringJCSS=”Journal of Computer and System Sciences” @string-

JACM=”Journal Assoc. Computing Machinery”

@articleBentley80, Author=”J. L. Bentley”, Title=”Multidimensional divide-and-conquer”,

Journal=”CACM”, Year=”1980”, Pages=”214–229”, Volume=”23”

@bookBlelloch90, Author=”G. E. Blelloch”, Title=”Vector Models for Data-Parallel

Computing”, Publisher=”MIT-Press, Cambridge MA”, Year=”1990”

@InProceedings(Clarkson83, Author=”K. Clarkson”, Title=”Fast algorithm for the All-

nearest-neighbors problem”, Organization=”IEEE”, BookTitle=FOCS24, Pages=”226–232”,

Year=”1983”)

@techreportCoGo88, Author=”Richard Cole and Michael T. Goodrich”, Title=”Optimal

Parallel Algorithms for Polygon and Point-Set Problems”, Institution=”Johns Hopkins Uni-

17

versity”, Year=”1988”, Type=”Depart. of Computer Science”, Number=”88-14”, Note=””

@Book(CS88, Author=”J. H. Conway and N. J. A. Sloane”, Title=”Sphere Packings,

Lattices and Groups”, Publisher=”Springer-Verlag”, Year=”1988”)

@Book(GR88, Author=”A. Gibbons and W. Rytter”, Title=”Efficient Parallel Algo-

rithms”, Publisher=”Cambridge University Press”, Year=”1988”)

@Article(LT79, Author=”R.J. Lipton and R.E. Tarjan”, Key=”Lipton Tarjan”, Ti-

tle=”A Separator Theorem for Planar Graphs”, Journal=”SIAM J. of Appl. Math.”, Vol-

ume=”36”, Pages=”177–189”, Month=”April”, Year=”1979”)

@Article(LT81, Author=”R.J. Lipton and R.E. Tarjan”, Key=”Lipton Tarjan”, Ti-

tle=”Applications of a Planar Separator Theorem”, Journal=”SIAM J. on Computing”,

Volume=”9”, Pages=”615–627”, Year=”1981”)

@Article(PV81, Author=”F. P. Preparata and J. E. Vuillemin”, Title=”The Cube-

Connected-Cycles: a versatile network for parallel computation”, Journal=”CACM”, Vol-

ume=”8”, Pages=”300–309”, Year=”1981”)

@inproceedingsMTV91, Author=”G. L. Miller and S.-H. Teng and S. A. Vavasis”, Ti-

tle=”An unified geometric approach to graph separators”, Booktitle=FOCS32, Year=”1991”,

Pages=”538–547”, Organization=”IEEE”

@inproceedingsMT90b, Author=”Gary L. Miller and William Thurston”, Title=”Separators

in Two and Three Dimensions”, Booktitle=STOC22, Year=”1990”, Organization=”ACM”,

Address=”Baltimore”, Pages=”300–309”, Month=”May”

@inproceedingsMV91, Author=”Gary L. Miller and Stephen A. Vavasis”, Title=”Density

Graphs and Separators”, Booktitle=”SODA”, Year=”1991”, Organization=”ACM”

@inproceedingsRS89, Author=”J. H. Reif and S. Sen”, Title=”Polling: a new random-

ized sampling technique for computational geometry”, Booktitle=STOC21, Year=”1989”,

Organization=”ACM”, Pages=”394-404”

@phdthesisTeng91, Author=”S.-H. Teng”, Title=”Points, Spheres, and Separators: a

unified geometric approach to graph partitioning”, School=”Carnegie-Mellon University”,

Year=”1991”, Address=”School of Computer Science”, Note=”CMU-CS-91-184”

@Article(Vaidya89, Author=”P. M. Vaidya”, Title=”An O(n log n) algorithm for the

All-nearest-neighbors problem” , Journal=”Discrete & Computational Geometry”, Volume=”4”,

Pages=”101–115”, Year=”1989”)

@unpublishedVaidya91, Author=”Pravin Vaidya”, Title=””, Note=”IMA Workshop on

graph theory and linear system.”, Month=”October”, Year=”1991”

@InProceedings(Yao83, Author=”F. F. Yao”, Title=”A 3-space partition and its appli-

cation”, Organization=”ACM”, BookTitle=STOC15, Pages=”258–263”, Year=”1983”)

18

