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Abstract

We describe a very general model of a random graph process whose proportional degree
sequence obeys a power law. Such laws have recently been observed in graphs associated with
the world wide web.

1 Introduction

At the present moment there is considerable research into the structure of large-scale real networks,
and in modeling these networks as the outcomes of discrete random processes. A general introduction
to this topic can be found in Hayes [16] or Watts [26]. In particular, there is a strong interest in the
structure of the Internet and World Wide Web (www). Experimental studies by, Albert, Barabasi
and Jeong [1], Broder et al [7] and Faloutsos, Faloutsos and Faloutsos [15] of the structure of the
www have demonstrated an inverse power law for the proportion of vertices with a given degree.

To model such structures, we require a graph process which (a) evolves randomly by the addition of
new vertices and/or edges at each time step ¢ and (b) whose expected proportional degree sequence
follows a power law. Such random graph process are referred to as web graphs, or scale-free graphs.
These processes differ from the more traditional models of random graphs introduced by Erdés and
Rényi [13], [14] where the number of vertices remains fixed, and the proportion of vertices of a given
degree is Poisson distributed, and hence the degree sequence drops off exponentially in the upper
tail.

One method of producing graph processes with a power law degree sequence is to introduce an
element of preferential attachment (or copying) into the way that a new vertex attaches its edges to
the existing graph. There is a long history of such models, outlined in the survey by Mitzenmacher
[23]. We will use the preferential attachment model to generate our random graph. The preferential
attachment random graph has been the subject of recently revived interest. It dates back to Yule
[27], and Simon [25]. It was proposed as a model for the web by Barabdsi and Albert [2], and their
description was elaborated by Bollobas, Riordan, Spencer, and Tusnady [3] who proved that the
degree sequence does follow a power law distribution. Bollobas and Riordan [4] obtained several
additional results regarding the diameter and connectivity of such graphs.

If we may briefly summarize models which generalize the work of [2], then they are of the following
form. A new vertex is added at each step, which directs a fixed number of edges to the existing
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graph. The terminal vertices of these edges are chosen either by copying or by a mixture of copying
and uniform (uar) selection. There are two main methods for choosing a terminal vertex by copying:
(a) Select a vertex directly with probability proportional to degree,

(b) Represent each vertex degree by points in a configuration model and select uniformly over points.
Details of the configuration model approach can be found in [3], [5]. The processes associated with
these two methods are called respectively, web graphs and scale-free graphs. Processes studied by
Cooper and Frieze [9], Kumar et al [20], [21], are web graphs. Those studied by Bollobds and
Riordan [3], [4], Buckley and Osthus [8], Dogorovtsev, Mendes and Samukhin [11], and Drinea,
Enachescu and Mitzenmacher [12] are scale-free graphs. See the recent survey by Bollobds and
Riordan [5] for further details.

The broad brush structure of these models can be summarized by their power law parameter x;
that is, the proportion of vertices of degree k is asymptotically proportional to k~*. Here z is
a fixed constant whose precise value is dependent on the precise mixture of copying and uniform
selection when choosing a terminal vertex. The sampling method (a) or (b), makes no difference to
the parameter x once the exact mixture of copying and uniform selection has been decided.

The aim of this paper is to obtain the degree distribution of a general web graph process which
allows as much choice as possible at each step. In particular we allow the insertion of additional
edges between existing vertices. Without this development, it seems that the power law parameter x
must always be at least 3, whereas if edges can be inserted between existing vertices, the parameter
z can take any value greater than 2. We were also interested to see, if by varying the details of the
model sufficiently, we could move away from a power law result for the degree sequence. However,
as we show, this is not the case, as long as some element of copying (however small) is permitted.

Our results are presented in terms of Dg(t), the number of vertices of degree k. We prove the
following: For all £ > 1 and all ¢ > 1 the random variable Dy (t) is concentrated about the expected
value Dy(t). As t — oo this expected value is itself well approximated by tdy, where dj is the
solution of a certain difference equation. We show that, with some minor exceptions, the solution
of this difference equation is of the form dy ~ Ck™%, as k — oo, for an explicitly determined value
x.

We refer to our model as undirected, although, in fact, directed variants are easily obtained. We
consider the general undirected web model to be intrinsically interesting, aside from applications
to the www. Moreover, although the edges of a typical www graph are directed, the idea of an
undirected model has many attractions, not least its simplicity. One particular example which
supports the use of an undirected model is as follows.

The Google search engine [6] holds a partial model of the www which it is continuously updating.
Once a node is added to the search engine database, a list is maintained of pages in the database
with forward links to this node. For a given node with url node-url, these links can be found by
entering the link: node-url query to Google. Thus the model of the www held by this search
engine is equivalent to an undirected web graph in the sense that one can find all links pointing to
a node.

Results for directed web graphs corresponding to the Hub-Authority model of the www, as proposed
by Kleinberg [19] are given in [10]. They are similar to the results given here.

We now pass to a more detailed description of our general web graph model.



2 Undirected web graph model: Definitions and results

We describe the evolution of a random multi-graph G(t) which is an example of the type of model
referred to as a web graph. Our model is more general than previous models, but its degree sequence
is still amenable to analysis (in most cases) and we find the seemingly ubiquitous power law. By
specialising the parameters we obtain models equivalent to many of the previously defined models.
In the model of [2], as clarified by various authors, a new vertex is added at time ¢ and this vertex
chooses m random neighbours, with probability proportional to their current degree. We generalise
this in the following ways: we allow (a) new edges to be inserted between existing vertices, (b)
a variable number of edges to be added at each step and (c) endpoint vertices are chosen by a
mixture of uniform selection and copying. This results in a large number of parameters, which we
will describe below. We first give a precise description of the process.

Initially, at step t = 0, there is a single vertex vyg. At any step t = 1,2,...,T), ... there is a birth
process in which either new vertices or new edges are added. Specifically, either a procedure NEW
is followed with probability 1 — «a, or a procedure OLD is followed with probability .. In procedure
NEW, a new vertex v is added to G(t — 1) with one or more edges added between v and G(t — 1).
In procedure OLD, an existing vertex v is selected and extra edges are added at v.

The recipe for adding edges at step ¢ typically permits the choice of initial vertex v (in the case of
oLD) and of terminal vertices (in both cases) to be made from G(¢ — 1) either u.a.r or according to
vertex degree, or a mixture of these two based on further sampling. The number of edges added to
vertex v at step ¢ by the procedures (NEW, OLD) is given by distributions specific to the procedure.

At this point a question arises about our model: Should we regard the edges as directed or undirected
in relation to the sampling procedures used in NEW, OLD? We note that the edges have an intrinsic
direction, arising from the way they are inserted, which we can ignore or not as we please. We
consider the following specific models:

(i) Undirected model: Sampling procedure based on vertex degree.
(ii) Directed out-model: Sampling procedure for out-edges based on out-degree.

(iii) Directed in-model: Sampling procedure for in-edges based on in-degree.

The process allows multiple directed edges, and self-loops can arise from the OLD procedure. The
NEW procedure, as described, does not generate self-loops, although this could easily be modified.

‘We prove for these models, that provided some copying occurs the proportion of vertices of degree
k is whp asymptotic (for large k) to Ck~*, where x > 2 is an explicit function of the parameters
of the model. See (3, 40, 41) for the precise functional form of z. We devote most of the paper to
the analysis of the undirected model. The other models can easily be formulated as variants of the
undirected case, and are covered briefly in Section 6.

2.1 The parameters of the undirected model

Our undirected model G(t) has sampling parameters «, 3,7, §, p, ¢ whose meaning is given below:

Choice of procedure at step t.
a: Probability that an OLD node generates edges.
1 — a: Probability that a NEW node is created.
Procedure NEW
p = (p; : ¢ > 1): Probability that the new node generates ¢ new edges.



(B: Probability that choices of terminal vertices are made uniformly.

1 — B: Probability that choices of terminal vertices are made according to degree.
Procedure OLD

q = (g; : © > 1): Probability that the old node generates i new edges.

0: Probability that the initial node is selected uniformly.

1 — §: Probability that the initial node is selected according to degree.

~: Probability that choices of terminal vertices are made uniformly.

1 — «: Probability that choices of terminal vertices are made according to degree.

The models we study here require oo < 1 and pg = g9 = 0. It is convenient to assume a finiteness
condition for the distributions {p;}, {g;}. This means that there exist jo, j1 such that p; =0, j > jo
and g; =0, j > j1 Imposing the finiteness condition helps simplify the difference equations used in
the analysis.

The model creates edges in the following way: An initial vertex v is selected. If the terminal vertex
w is chosen u.a.r, we say v is assigned uniformly to w. If the terminal vertex w is chosen according
to its vertex degree, we say v is copied to w. In either case the edge has an intrinsic direction (v, w),
which we may choose to ignore. We note that sampling according to vertex degree is equivalent to
selecting an edge u.a.r and then selecting an endpoint u.a.r.

At this point in the discussion, it is appropriate to say a few words about alternative definitions
of copying. The papers [20], [21] introduce a copying model in which a new vertex v chooses an
old vertex w and selects (copies) a randomly chosen set of out-neighbours of w to be its own out-
neighbours. The occurrence of a large number of small complete bipartite subgraphs is a feature
found in trawls of the web. The above copying method leads to a larger number of small complete
bipartite subgraphs than would be obtained by other models.

Our focus is on degree sequence and, as we now show, the construction of [20], [21] does not lead
to fundamentally different results on degree sequence. The precise definition of copying in [20] now
follows. A new vertex u of out-degree i is added at each step. The choice of out-edges of u is made
as follows. Firstly ¢ provisional vertices are selected u.a.r. Now, independently for each of these ¢
provisional vertices the following choice is made. With probability 5 vertex v is retained and the
edge (u,v) inserted. Or, with probability 1 — 8 a copied edge (u,w) is inserted instead, where w is
the terminal vertex of a uniformly selected out-edge of v. This process of copying is equivalent in
terms of expected degree sequence, to the version of copying we propose above for (the in-directed
variant of) our model, namely selecting the terminal vertex of a random edge. For, in our model

d-
Pr(w is the terminal vertex of a u.a.r edge) = |é1|v),
and in the copying model
d~ 1
Pr(w is selected by copying an edge ) = —|‘(/l|v) o

where |E| =1i|V]|.
For directed copying models (in the sense of [20], [21]), it is a result of those papers that the expected

proportion of vertices of in-degree k is asymptotic to Ck~1=2. The equivalent in-directed variant
of our model gives the exactly the same result for the expected proportion of vertices of in-degree
k. The parameter (2 — 3)/(1 — 8) in our model is obtained from z~ in (41), by putting o = 0 and
Up = 1%, as a new vertex with exactly ¢ new edges is added at each step.

We remark that the copying model of [20] does not generalize naturally to the case where the



out-degree is not a constant value 7. For

1
0

1
Pr(w is selected on copying from u) = m
vEN~ (w

which seems a difficult quantity to deal with, especially if there is correlation between the in-degree
of w and the out-degree of v. However, our approach of selecting the terminal vertex of a random
edge remains an easily accessible sampling procedure of an equivalent nature.

Notation '
Let pp = D721 jPjs Bq = Y_jeq j¢j and let 6 = 2((1—a)up+ap,). To simplify subsequent notation,
we introduce new parameters as follows:

_ oY fhg ad
@ = 1+ﬂup+1—a+l—oz’
y _ (1=0)1- By all=u, , al1-8)
0 0 0
- oy iq
c = ﬁl‘p+1_a>
s~ 0=0)0=Buy | all—uy
0 0
_ ad
C T 1w
_ a(1-9)
f 9 *
We note that
ct+te=a—landb=d+ f. (1)

Now define the sequence (dy, dy, ..., dg, -..) by dg =0, and for k > 1

k—1

di(a+bk) = (1 — a)p + (c+d(k — 1))d_1 + Z(e + f(k = 5))gjdk—;- (2)

For convenience we define dr = 0 for k¥ < 0. Since a > 1, this system of equations has a unique
solution.

Statement of results
The main quantity we study is the random variable Di(t), the number of vertices of degree k at
step t. We let Dy (t) = E(Dg(t)). We prove that, as t — oo, for small k, Dy (t) = djt.

Theorem 1. There exists a constant M > 0 such that almost surely for all t, k > 1

|Dr(t) — tdi| < Mt/?logt.
We show in (5), that the number of vertices v(t) at step ¢ is whp asymptotic to (1 — a)¢. It follows
that the proportion of vertices of degree k is whp asymptotic to

_ ds,
dp = o

The next theorem summarizes what we know about the sequence (dy) defined by (2).

Theorem 2. There exist constants C1,Cs,C3z,Cy > 0 such that



(i) Ci1k¢ < dg < Comin{k!,k=%/92} where ¢ = (1 +d+ fuq)/(d+ f).
(ii) If j1 =1 then dy ~ C3k—(1+1/(d+f))_
(iii) If f = 0 then dy ~ Cyk~ (/).

(iv) If the SOLUTION CONDITIONS given below hold then

w-c(wo ()

1
d+ fug

where C is constant and

z=1+ (3)

We say that {g; : j = 1,...,51} is periodic if there exists m > 1 such that g; = 0 unless j €
{m,2m,3m,...}.

Let

; d . , )
b =y - (Lot By 4]

Our SOLUTION CONDITIONS are:

S(i) f > 0 and either (a) d+ g1 f > 0 or (b) {g;} is not periodic.
S(ii) The polynomial ¢;(y) has no repeated roots. O
We do not suppose the SOLUTION CONDITIONS are necessary. Also, S(i) is not very restrictive, as
the case f = 0 is given by (iil) above.
We also prove some concentration results.
Theorem 3. For 1 <k < k; =t'/?" and for some sufficiently large M,

Pr(|Dy(t) — Di(t)| > Mt3/*) < ¢—2lost),
In a restricted process, the decisions as to whether or not to add a new node and how many edges
to add at each step are not random, although they may depend on ¢. Thus the number of vertices
and edges in G(t) is deterministic. The precise vertex or vertices chosen by an edge is still random,

and thus the structure of the process is not fully determined. The processes considered in [2], [3],
[21] and [8] are all of the restricted type.

Theorem 4. If the process is restricted, then for any u > 0,

Pr(|Di(t) — Di(t)] > u) < eXp{_g_T}

where T is the (deterministic) number of edges in G(t).

Theorem 2 suggests that the maximum degree A(t) of G(t) should satisfy A(t) = O(t'/*). This is
certainly not the case in some circumstances and indeed may never be the case.

Theorem 5. Ifd+ fuq > % then whp
Cut?Hra < A(t) < CstdtTHa (4)

for some constants Cy,Cs > 0.



3 Evolution of the degree sequence of G(t)

Let v(t) = |V ()| be the number of vertices and let n(t) = |2E(¢)| be the total degree of the graph
at the end of step t. Ev(t) = (1 — )t and En(t) = 6t. The random variables v(t), n(t) are sharply
concentrated provided ¢ — co. Indeed v(t) has binomial distribution B(t,1 — «) and so by the
Chernoff bounds,

Pr(jv(t) — (1 — a)t| > t/21ogt) = Ot~ ¥) (5)

for any constant K > 0.

Similarly, n(t) has expectation ¢ and is the sum of ¢ independent random variables, each bounded
by max{jo, j1}. Hence, by Hoeffding’s theorem [17],

Pr(|n(t) — 0t| > t'/*logt) = Ot~ %) (6)

for any constant K > 0.
These results are almost sure in the sense that they hold for all ¢ > to with probability 1—O(t; ).
Thus we can focus on processes such that this is true.

We remind the reader that Dy(t) is the number of vertices of degree k at step ¢ and that Dy(t) is
its expectation. Here D;(t) =0 for all j <0,t >0, D1(0) =1, Dy(0) =0, k > 2.

Using (5) and (6) we see that

Di(t+1) = Di(t) + (1 — a)pi + O(t~/?logt) (7)
L. (BiDe(t)  BiDk(t) (k=)D ()  jkDx(?)
+(1_°‘);W< oo a0 ﬂ)( T ))
(8)
6Di(t) (1 —0)kDy(t L 6Dk ;(t) (1 —68)(k—5)Dy_;(t)
_O‘<(1—ka)tJr ot - )+a2qf( k— + ot : )
(9)

o ( (B P (BBt T

Here (8), (9), (10) are (respectively) the main terms of the change in the expected number of vertices
of degree k due to the effect on: terminal vertices in NEW, the initial vertex in OLD and the terminal
vertices in OLD. Rearranging the right hand side, we find:

Di(t+1) = Dg(t) + (1 — a)pr + Ot~ /% log t)

Dk( ) (ﬂ " av_u; + 101501 n (1- a)(le—ﬁ)upk . a1 —av)uqk n a(l g 5)k)
n Dk;l(t) (ﬂp,,, n ?V_M; L - —aﬂ)up(k —1)  ae(- v)gq(k - 1))

J1 .
+Z%Dk j (1Ci5a+a(1_6e)(k_])>-



Thus for all £ > 1 and almost surely for all ¢ > 1,

Di(t+1) = Di(t) + (1 — a)pr + Ot~ 2 log t) (11)
+ % (1~ (a+bk))Di(t) + (c + d(k — 1)) D1 (t) + Z gj(e+ f(k — 7)) Dx—;(t)

The following Lemma establishes an upper bound on dj, given in Theorem 2(i).

Lemma 1. The solution of (2) satisfies dp < S2.

Proof We assume that k > kg, and thus py = 0. Smaller values of k£ can be dealt with by
adjusting C2. We proceed by induction on k. From (2),

Cy = , Cy
< —1 _ e
(a+bk)de < (c+dk—1)7— +j;(e+f(k M=
C
< Oyd+ )+ 2ete)
k-1
Ca(a—1
k-5
from (1). So
02 Cgb 02((1, — 1) 02
dp — —— < . - —
k a+bk  (k—ji)(a+dk) k
Caa—1)  Cha
(k—71)(a+bk) k(a+ bk)
< 0
O
We can now prove Theorem 1, which is restated here for convenience.
Theorem 6. There exists a constant M > 0 such that almost surely for t, k > 1,
|D(t) — tdi| < Mt/?logt. (12)

Proof Let Ag(t) = Dy(t) — tdy. It follows from (2) and (11) that

a+bk—1

Ag(t+1) = Ap(t) (1 ]

) + Ot~ Y2 1ogt)

£ [t d—0)aka 0+ e+ 70— Naes0) | - (13)

i=1

Let L denote the hidden constant in O(t~'/2logt). We can adjust M to deal with small values of ¢,
so we assume that ¢ is sufficiently large. Let ko(t) = 1=t |. If k > ko(t) then we observe that (i)

Dy (t) < tEdiedth — O(1) and (ii) tdy < 7585 = O(1) follows from Lemma 1, and so (12) holds

trivially.



Assume inductively that A, (1) < M7*/2log for k + 7 < k +t and that k < ko(t). Then (13) and
k < ko implies that for M large,

log t 1 L
Akt +1)] < L;%-FMtlﬂlogt 1+ c+dk+> (e+ fk)g; — (a+ bk —1)
i=1
log ¢
- L;%—i—Mtlﬂlogt

< M(t+1)Y2log(t + 1)

provided M > 2L. We have used (1) to obtain the second line.

This completes the proof by induction. O

3.1 Analysis of the difference equation (2)

Re-writing (2) we see that for k£ > jo, pr = 0 and then dj, satisfies

_ c+d(k e+ f(k—j)
dp = dp_y 2 +bk deu PR T (14)

which is a linear difference equation with rational coefficients [22].

In the cases where j; = 1 (an old vertex generates a single edge) or f = 0 (old initial vertices are
chosen u.a.r) a direct solution to (14) can easily be found, see Sections 3.3 and 3.4.

In general however, when d > 0 or d = 0 and {g;} is non-periodic, we use classical results on the
solution of Laplace’s difference equation, (of which (2) is an example) given in [22].

3.2 A general power law bound for d

The following lemma completes the proof of Theorem 2(i).
Lemma 2. Fork > jo we have,

(i) dr > 0.

(ii)

Cik~(Hd+fua)/b < g, < Oy~ (1Hd+fra)/bin

Proof

(i) Let & be the first index such that p, > 0, so that, from (2), d,, > 0. It is not possible for both ¢
and d to be zero. Therefore the coefficient of dx_; in (2) is non-zero and thus di > 0 for k > k.

(ii) For k > jo the recurrence (2) satisfies (14), that is

B c+d(k e+ f(k—j)
dy =dg—1—— 55— a+ bk +dejj a+bk

We let d; = 0 for ¢ < 0 to handle the cases where k£ — 7 < 0 in the above sum.



Let y =1+ d+ fug, then

ctdk—1) e+ f(k—3j) y
a+ bk ;qﬂ a+ bk pay

and thus

Y . Y
(1 - at bk) mln{dk,l, ...,dk,jl} S dk S (1 - a,—l——bk) max{dk,l, ...,dk,jl}. (15)

It follows that

y L(k = jo)/J1] y
di, [ (1—a+bj) < dy <max{dy,da,...,d;,} 11 (1—m). (16)

Jj=Jjo+1 s=0

The LHS of (16) is proved by induction on k. It is trivial for k¥ = j, and for the inductive step we
have

di,

Y

y . : y
dig {1 — 1—
’°< a+bk>i:j§?.‘?k_1 jlll( a+bj>
=Jo
: y
= 4 I <1_a+bj)'

Jj=jo+1

The RHS of (16) is proved as follows: Let d;;, = max{dx_1,...,dx—j, }, and in general, let d;,,, =
max{d;,_1,...,d;,—j, }. Using (15) we see there is a sequence k —1 > i1 > iy > ---ip > jo > ipy1
such that |¢; — ;1| < jq for all ¢, and p > |(k — jo)/j1]. Thus

p
Y
e < iy 1] (l_ a+bit>’

and the RHS of (16) now follows.
We now consider the product in the LHS of (16).

k y k y 1 y 2
1— = — —_ = — ...
11 ( a—i—bj) Py D ( a+bj 2(a+bj> )

Jj=jo+1 Jj=jo+1

k
y
= expiO(1)— Y .
j2i et
= Cik7v/°.

This establishes the lower bound of the lemma. The upper bound follows similarly, from the upper
bound in (16). O

10



3.3 The case j; =1

We prove Theorem 2(ii). When ¢; =1, p; = 0,5 > jo = ©(1), the general value of di, k > jo can

be found directly, by iterating the recurrence (2). Thus

& = H#bk (de—1 (@ — 1) + b(k — 1))

1+0b
dr—1 (1—
kl( a—i—bk)

k
1+b
a1 <l_a+jb>'

Jj=jo+1

Thus, for some constant Cg > 0,
di, ~ Cs(a + bk)™®

where

3.4 The case f =0

We prove Theorem 2(iii). The case (f = 0) arises in two ways. Firstly if o = 0 so that a new vertex
is added at each step. Secondly, if & # 0 but § = 1 so that the initial vertex of an OLD choice is

sampled u.a.r.

Observe that b = d now, see (1).

We first prove that for a sufficiently large absolute constant A > 0 and for all sufficiently large k,

that

di 1+d £k

= 1 —_—
FA atdk T K2
where [£(k)| < As.

We first re-write (2) as

di _c+d(k—1)+jzl eqj ’“1:[1 di 1
dr_1 a+dk P a—+dk bk g1 d
(We assume here that k > jp, so that pp = 0.)
Now use induction to write
k—1 .
di—1 ) d+1 &, k)
11 =1+(-1) +2
r—kj 41 d; a—+dk k

where |£*(j, k)| < A3 for some constant A3 > 0. (We use the fact that j; is constant here.)
Substituting (19) into (18) gives

di c+dk—1) e e(ug —1)(d+1) & (k)

dp.1  a+dk a+dk (a+ dk)? (a+ dk)k?

where [£**(k)| < eAs.

11

(17)

(18)



Equation (17) follows immediately from this and ¢+ e = a — 1. On iterating (17) we see that for
some constant C7 > 0,

dy ~ Crl (1+3),

4 Analysis of the general undirected model

4.1 Linear difference equations with rational coefficients: The method of
Laplace

This section summarizes Chapter XV (pages 478-503) of The Calculus of Finite Differences by 1.
M. Milne-Thomson [22].

The equation (14) is an example of a linear difference equation with rational coefficients. It can
equivalently be written (for k > jo) as,

dela+58) — dy 2 (e d(k— 1)) — 3 dy_as(e+ 7k 3)) = 0. (20)

j=1
The values dy, ..., dj, are given by (2), and dy = 0 for k£ < 0.

Laplace’s difference equation is the name given to the equation in an unknown complex function
u : C — C whose coefficients are linear functions of a complex variable w and an integer [. The
general form of the homogeneous equation is

l
) [Aj(w+3) + Bjlu(w + 5) = 0. (21)

J

Thus (20) is a special case of (21) with w+1 =k, | = j; and di_j,+; = u(w+j), and with boundary
conditions u(j()) = djoa ...,’u(jo — ]1) = djo—jl'

A method of solving difference equations with rational coefficients in general, and equation (21) in
particular is to use the substitution

w(w) = fctwlv(t)dt.

to obtain
1100 - doBu(©)it =0,
¢
where
p1(t) = At + At 4+ At + A
$o(t) = Bit' + Bt + ... 4+ Bit + By,

and C is a suitable contour of integration. (¢;(t) is the characteristic equation.)

The function v(t) is then obtained as the solution of the differential equation
té1(t)v'(t) — do(t)v(t) = 0. (22)

The general method of solution requires (21) to be of the Normal type, namely:

12



N(i) Both A; and Ay are non-zero.
N(ii) The differential equation (22) satisfied by v(¢) is of the Fuchsian type, (defined next).

Let the roots of the characteristic equation be aq, ..., a; (with repetition). The condition that v(¢)
is of the Fuchsian type, requires that ¢o(t)/#1(t) can be expressed as a convergent power series of
t for some t > 0. Thus either the roots ai, ..., a; of the characteristic equation must be distinct, or
if a is repeated v times, then a is a root of ¢y(t) at least v — 1 times.

Assuming the roots are distinct,

Y bl
v(t) te1(t)
_x A B

t t—a1+"'+t—a,’

and ¢@o(t)/¢1(t) has the required series expansion. The general solution is
v*(t) =t (t — a1)Pr.(t — )P

As long as there are no repeated roots, a system of fundamental solutions (u;(w), j = 1,...,1) is
given by
1
wj(w) = —,f =100 (4 _ g1 )i (= a)Pd,
27 C;
where C; is a contour containing 0 and a; but excluding the other roots. If 3; is an integer the
contour integral is replaced by the integral from 0 to a;.

A specific solution for u;(w), valid for R(w) > ag, can be obtained as

uj(w) = aj ZCmB

m=0

(w—a0+0—1

9 ,,Bj-i-m—i-l)

where B(p,q) = T'(p)I'(q)/T(p+ q)-

The variable § > 1 measures the angular separation, about the origin, of the root a; from the other
roots in the transformation ¢ = a;2'/% used to expand the transformed integral about z = 1 and
obtain the above solution.

Now using the fact that T'(z) = v2me~*2*~1/2(1 + O(z~')), we see that
uj(w) = a}”w_(l"'ﬂj)(l +O0(w™h)). (24)
4.2 Application of the technique

Considering the equation (20) we see that

d
by = o - (S 2l 0]
b b b
_ e (ctame i me o L ae
$o(y) = B ( P s +b>-

We assume that f > 0 so that N(i) is satisfied. Let the roots of the characteristic equation be
ordered in decreasing size so that |ai| > |ag| > - -+ > |a;|. Because of the SOLUTION CONDITIONS we
see from Lemma 3, given below, that

a; = 1

13



and all other roots are either negative or complex and satisfy |a|] < 1. Considering the partial
fraction expansion (23) we see that

$0(0) = —ao41(0),
so that ap = —e/f. Also
$o(1) = B1(1), (25)

where 9¥(y) = ¢1(y)/(y — 1) is given by

P@) =y T+ 1)y 2+ (1 -1 — a2y 2+ -+

l-ag——y2)y+(l—a1—---—a-1), (26)
where d+aqf f f
o1 = bql , Cw:%,...,a;:%.

Using b = d + f we see that ¥(1) = (d + fug)/b. Then using ¢ + e =a — 1 we see that ¢o(1) =1/b
and so (25) implies 81 = 1/(d + fpq). The other 3; require detailed knowledge of the roots of ¢ (t)
and are not relevant to the asymptotic solution.

The solutions u;(w) are valid for ®(w) > a9 = —e/f which includes all £ > 0.

Thus considering the root a; = 1 we see that

uy (k) = k~(1HAD) <1 40 <%>>

where 81 = ¢o(1)/9(1) = ﬁ, and 1 + fB; is the parameter x of our degree sequence.

For j > 2, we use (24), giving
u;(k) ~ akk=(1+83) 0,

faster than o(1/k), if |a;| < 1.
The specific solution for the sequence (di,ds, ..., dg, ...) is

di = blul(k') 4+ 4 blul(k),

where uq(w), ..., w;(w) are the fundamental solutions corresponding to the roots as,...,a;. We note
that b; # 0. Indeed from Lemma 2, we know dj obeys a power law, whereas if by = 0, then dy
would decay exponentially as |a|*.

Thus the error in the approximation of di is O(1/k) from the non-asymptotic expansion of u(w),
and we conclude

ap = ok (Fam) (14 0(1)).

In the case where ¢ (t) has other solutions |a;| =1, j = 2,...,5", j' <, then the asymptotic solution
di, will be a linear combination of k-th powers of these roots.

4.3 Roots of the characteristic equation

Lemma 3. Let a1 = (d+q1f)/(d+ f) and for 2 < j <1, let aj = q;f/(d+ f), and let
bp1(2) =2 —on2tl —a 2 - — .

Provided oy > 0 or {g;} is not periodic, then the solutions of ¢1(z) =0 are

14



i) An un-repeated root at z =1,

ii) | —1 other (possibly repeated) roots A satisfying |\| < 1.

Proof
We note the following (see Pdlya & Szegd [24] p106 16,17). A polynomial f(z) of the form

f(2)=2" —p12" ' —pa2™ 2 — o —pp_12 — D,

where p; > 0, i =1,...,n and p; + --- + p, > 0 has just one positive zero . All other zeros zy of
f(2) satisfy |2]| < ¢.

Now o; > 0 and ) a; =1, and so ¢1(1) = 0 and all other zeros, zq, of ¢1(z) satisfy |zo| < 1.

Let ¥(2) = ¢1(2)/(2 — 1) be as in (26). Now 9(1) is given by

d+ fuq

s (21)

1+(1—0é1)+(].—0él—ag)+"'+(1—011—"'—Oél_l)z

and thus (1) # 0, so that z = 1 is not a repeated root of ¢;.

Let z satisfy ¢1(2) =0, |2| =1, z # 1, and let w = 1/z; then ¢;(z) = 0 is equivalent to h(w) =1,
where
h(w) = aqw + asw?® + - + oqqut.

Suppose there exists w # 1, on the unit circle satisfying h(w) = 1. Let T = {w,w?, ...,w'}. Then
all elements of T are points on the unit circle. As w # 1, (w) < 1 and R(w?) <1, j =2,..,L

Now, by assumption S(i) of Theorem 2, either a; > 0 or oy = 0 but {g;} is not periodic.

If a; > 0, then
Za,-?R(wj) <aR(w)+as+---a; <1,

and the conclusion, that h(w) # 1 follows.

Suppose a; = 0. If 1 ¢ T, then the real part of w’ satisfies R(w’) < 1, contradicting h(w) = 1. If
1 € T then w = €>™"/™ for some integer m > 1. However, as {g;} is not periodic, the conclusion
that h(w) < 1 follows as before. O

The proof of Theorem 2 is now complete.

4.4 Concentration

Here we prove Theorems 3 and 4. Fix ¢t and condition on the following for each 7 < ¢: the choice
of procedure NEW or OLD and the number 7, of extra edges added at each step 7. Denote this
conditional event by A. (For restricted processes, A will be the whole space). For the moment we
will work entirely within the conditional space A. Given A, let T'=3"__, T, and let Y7,Y5,..., Y7
be the sequence of single choices of edges created. We let -

Z; = E(Di(t) | Y1,Y>,...,Y;, A) — E(Di(t) | Y1,Ys,...,Yi 1, A)

and prove that

7l <4, (28)
The Azuma-Hoeffding martingale inequality then implies that
Pr(Du() - Du(0] > u | A) <exp {5 }. (29)
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This is enough for the proof of Theorem 4.

Fix Y,Ys,...,Y; and let V; = (z,v), Y; = (&8). Of course & = x if Y; if the choice Y; is not
the begmmng of a time _step. Then for each complete outcome Y = Yl,Yg, .., Yr we define a
corresponding outcome Y = Y1,Ys,..., Y4, Y“ YT where for j > i, Y is obtalned from Y; as
follows: If Y} creates a new edge (w,v) by randomly choosing edge (z,v) arising from Y;, then in
Yj, (w,v) is replaced by (w, ), otherwise f’] =Y;.

The map Y — Y is measure preserving and in going from Y to Y only the degrees of =, &, v and ¥
change and so the number of vertices of degree k changes by at most 4 and (28) follows.

Continuing with the proof of Theorem 3, fix A € Ao and define oy = o A(t) to be the indicator for
an old node to generate edges at time ¢. Define S4,...,v4 similarly. Also define p; 4 = p; 4(t) to
be the indicator that exactly i edges are generated from a new node at time ¢ and define the g¢; 4
similarly. Next let v.4(t), n4(t) denote the number of vertices and edges at time ¢, given A.

Going back to (7) — (10) we can write

—A —A
Dy (t+1) = Dy (t) + (1 — aa)pk,a+

o jZOpM (ﬂAjD;“_1<t> _BaDE®) (4 (j(k ~1)Dy () jkﬁ?(t)))

va(t) va(t) na(t) nalt)

va(t) na(t) v4(t) na(t)

o (5,45;;‘(7:) . (1— 64)kDL (¢ ) MAZ%A (MDk i® (1_5A)(k_j)DkA—j(t)>

J1 —A —A —A —A
. Dk_1(t) . Dk (t) B (k B 1)Dk—1(t) _ ka (t)
+ou D it (“ ( va))  val® ) =) < ) mal) )) |

where D (t) = E(Di(t) | A).

Continuing this line we reach the following in place of (13): A{(t) = 5,;4(t) — td.

AR+ 1) = AA(@) (1 — W) +C(t)

2 Ceat datk = 1)ARL O + 3 eat Lalk— Do udd ;0] 60

j=1
where
(1 —oa)Bappa | caYAbgA | @Ada
= = ]_ 2 2
@A aa®) =1+ —= "% () | tua) o
k—1
() = (1—oaka)pra+t (catdalk—1)de1+ > (ea+ falk —3))gjadk—; — d(as+ bak)
j=1
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Now let s = /2! and for 7 > s let

B = Ao
€r) = (s+DAAT—5) = YAk -0
£=0

Then, using |A{(T — £) — AP (T — 5)| = di(s — £) + O(s) for 0 < £ < s, we see from (30) that

(s+)SA(r+1) = Af(r—5) 3 (1 _ 2t =) +balr = Ok = 1>—§(T)+Z C(r—)+0(s*k/7)
£=0

T
£=0

+% > ((CA(T — )+ (k= )da(r — )AL (T — 5) + i(eA(T — ) + (k= 5) falr — )¢5 A) A% (1 — 5)) -
£=0

j=1
(31)
Next let
A; = {A: lvalr) — (1 —a)r| < 7/%logt and |na(r) — 67| < 7'/2logt for T > t'/5}.
A = {A: iiﬂA(T—f)— (s +1)z| < s*/%logt, z = a,b,...,for 7 > t1/5}.
=0

It follows easily that
Pr(A ¢ AonA,) = Ot~ le)) (32)

Assuming that A € Ay N .A; we can deduce from (31) that

EkA(T—i—l) = AkA(T— s) (1 — a—l—bf— 1) - ff:)l +0(7‘71/210gt)

+ % ((c + (k= 1)d)AL (r— ) + Zl(e + (k— ) fg;) (7 — s))

= 27 (7) (1 - %) + O(r 2 1og t)+
2 ((a + (k= DT (1) + e+ (k- j)fq,azz‘_j(r)) (33)

We inductively prove the following inequalities for x < k; = t!/2! and for some sufficiently large M:

M721/4041/5 o < 48/9

34
M3/ 89 <r <t (34

|52 (7)] < {

This holds trivially for 7 < #1/5 and so assume inductively that (34) holds for some 7 > t1/5. We
write the RHS of (34) as M7Pt° to cover both ranges i.e. (p,o) = (21/40,1/5) or (3/4,0). Observe
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that at 7 = ¢3/9 the two expressions coincide. Then we have,

a+bk—1>

YA(r+1) < Mreee <1 +O(r™ Y% 1ogt) +

1 J1
P40 — — 4 .
+M7te | et (k 1)d+j;(e+(k )f4;)

M7t + O(r~?ogt)
M(T 4+ 1)Pt7,

A

for large enough M, completing the induction.

Thus (34) holds for all 7 < t, k < ki, provided A € AyN.A;. Now |A2(7) — Z4(7)| = O(s) and so
max{AL(7) : k<ky,7 <t} <max{ZA(r): k <k, 7 <t} +O(s)

and so Theorem 3 then follows from (29), (32). O

5 Maximum Degree

Here we prove Theorem 5. First observe that the degree of vertex 1 stochasically dominates the
degree of every other vertex.

Now let X; denote the degree of vertex 1 in G(t). We take Xy = 1. Then, after using (5) and (6)
we see that for ¢t > 1,

E(Xii1 | X,) = (1 + é) X, + Ot 1/2Int) (35)

where A =d + fu,. (Note that A < 1).

Let L be the hidden constant in (35). Then z; = E(X;) satisfies the recurrence: zp = 1 and for
t>1

A
0< 2441 < (1 + ?> zy + Lt~/ 1Int. (36)
We first argue that we can find K, Ko, 19 such that if (36) holds
1 2 K
KlA--- 2 )_1L o > 0.
? < 2 1n7'> Z A T=To (37)
Kit* — Kyr'?Int > =z, 1<7<7. (38)

To see this, first use induction to show that (36) implies
z, < (A+2L)r T>1. (39)

To satisfy (37,38) we will take

T0 —

Kll/(3/2_A).

So if K; is sufficiently large and K5 (A — 3) > 2(L + 1) then (37) will hold. On the other hand to
satisfy (38) we have only to choose K large enough so that

Ky > Ky + (A +2L0) K-/ 3/2=4)

and this is clearly possible.
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We next argue inductively that if (37,38) hold for some ¢ > 7 then they also hold for ¢ + 1. The
verification of (37) is trivial and we have from (36) that
1 < Kit? — Kot'/?Int + AK 1t — AKot™ Y2 Int + Lt~/?1nt
= Ki(t+1)A=Ko(t+1)Y2In(t+1) — ©,

where
O > Ki((t+1)* —t4) — AKit"™! — Ko((t+1)2In(t + 1) — tY/2Int) + (AK> — L)t~/ Int
K, 1 —1/2 -1/2
> _tA_2+(K2<A—§>—L>t 2nt — 2Kt~V
> 0

after using (37). So now we have proved that (38) holds for all ¢ > 1 and so the RHS of (4) holds
in expectation. A similar analysis yields the lower bound on the expectation.

To prove concentration we can use a martingale argument similar to that used in the proof of
Theorem 3.

6 Directed variants of the model

A curious phenomena of the directed models is that they are incomplete in the sense that the
sampling procedure for terminal vertices in the out-model (resp. initial vertices in the in-model)
does not need to be specified in order to estimate the proportion of vertices of out-degree k (resp.
proportion of vertices of in-degree k). Thus these are not models, but classes of models. For the
out-model, for example, terminal vertices can be picked according to any rule: assign, copy, direct
all edges to vertex 1 etc.

6.1 Sampling based on out-degree

Let 61 = (1 — a)pp + apg. The estimate (7-10) is replaced by

J1
Dy (t) = Df (t-)+(1-apute | 3 g (g (Diy — DL ) + 52 (k= 5)Di_, — kD5 ) )

j=1
+ Ot~ 1ogt).
Then for £ > 1 we obtain
J1
df(1+e+fk)=(1—a)p+ D di_;q;(e + f(k — 5)).
j=1
For large £ this is a rational difference equation with characteristic equation
01(y) =y — (v '+ +45)
Thus provided ¢1(y) has no repeated roots, and f > 0,

(1 —a)pp + apg

$+:1+1/(fﬂ'q):1+ a(l —d)p,

(40)

and .
d;’ ~CEkE™" .
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6.2 Sampling based on in-degree

Let = 0T as given above. For k < 0 let D, = 0. Then we have,

Di(t) = Dg(t—1)++0(t""?logt) + (1 - a)lr=o

D (1-B)jkD BiD, (1-8)j(k=1)D;_
1= (=S (25 TR 4 S (355 0

J1 _
D k k—1)D,
+ a qu [7( (1 a)t+f1ka)1t>+(1_7)< JDk+J( Gth 1>]
Jj=1

For k£ > 0 we find,

d= = (1—04)2
0 (1— )14 Bup) + ayig
_ c+dk—-1) _
= —-— > 1.
i T+ ctdk %1 k=1

The solution of this case is by direct iteration, and is similar in form to Theorem 2 (ii), with f =0,
giving

N (I —a)pp + apg
T T T )T B+ el g 1)
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