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Abstract

We consider the parallel greedy algorithm of Coppersmith, Ragha-
van and Tompa [CRT] for finding the lexicographically first maximal
independent set of a graph. We prove an Ω(log n) bound on the ex-
pected number of iterations for most edge densities. This complements
the O(log n) bound proved in Calkin and Frieze [CF].
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1 Introduction

In this note we consider the problem of finding the lexicographically first max-
imal independent set (LFMIS) in a random graph. Coppersmith, Raghavan
and Tompa [CRT] describe a parallel version of the standard greedy algo-
rithm for this problem:
Suppose we are given a graph G = (V,E), V = [n] = {1, 2, . . . , n}. For
Z ⊆ V we let

Γ+(Z) = {x 6∈ Z : xz ∈ E for some z < x, z ∈ Z},

and
Γ−(Z) = {x 6∈ Z : xz ∈ E for some z > x, z ∈ Z}.

Note that we have implicitly oriented the edges from low to high.

algorithm PARALLEL GREEDY (G);
begin

GIS ← ∅;
until G has no vertices do

begin

let S = {a : Γ−(a) = ∅};
GIS ← GIS∪S;
remove S ∪ Γ(S) from G

end

output GIS
end

It is easy to see ([CRT], Lemma 2.1 ) that GIS is the LFMIS. Cook [C]
showed that the problem of computing the LFMIS of a graph is complete
for P and so is not in NC unless NC=P. PARALLEL–GREEDY can be
implemented on a CRCW PRAM in O(1) time per iteration if one processor
is allocated to each edge of G.

Coppersmith, Raghavan and Tompa showed that if T (n, p) denotes the
expected number of iterations τ = τ(G) when G = Gn,p then T (n, p) =

O( (log n)2

log log n
). (Gn,p is the random graph with vertex set [n] where each edge

occurs independently with probability p = p(n).).
They conjectured that T (n, p) = O(log n) and subsequently Calkin and

Frieze [CF] proved

2



Theorem 1

(a) α log n
4 log log n

≤ T (n, p) for 1
n
≤ p ≤ 1

nα where 0 < α ≤ 1 is constant

(b) T (n, p) = O(log n).
The hidden constant in (b) is independent of p.

Note that our inequalities are only claimed for n large.
The upper bounds and lower bounds in Theorem 1 are slightly different.

It leaves open the possibility that T (n, p) = O( log n
log log n

) throughout. The aim
of this paper is to shed more light on this problem, and to prove

Theorem 2 Assume 0 ≤ α < 1, α constant.
(a) T (n, p) ≤ 3 log n

(1−α) log log n
for p ≤ (log n)α

n
,

(b) T (n, p) = Ω(log n) for α ≥ p ≥ 1
nα ,

where the hidden constant in (b) depends on α.

Proof:

(a) Let G = G1 ⊇ G2 ⊇ G3 ⊇ . . . denote the sequence of graphs produced
by each iteration of the algorithm.

For v ∈ V (Gt) and t ≥ 1 let α(t, v) = the length of the longest directed
path in Gt which ends at v (a path (v1, v2, . . . vk, is directed if v1 < v2 <
. . . vk.)

Clearly, if v ∈ V (Gt+1) then α(t + 1, v) ≤ α(t, v)− 2.
Hence

τ(G) ≤
1

2
max{v ∈ V (G) : α(1, v)}.

Thus

Pr(τ(Gn,p) ≥ k) ≤ E(# of directed paths of length 2k)

=

(

n

2k

)

p2k−1

≤ n
(

nep

2k

)2k−1

≤ n

(

e(log n)α

2k

)2k−1

.
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Hence, with k0 = ⌈ 2 log n
(1−α) log log n

⌉,

T (n, p) =
n
∑

k=1

Pr(τ(Gn,p) ≥ k)

≤ k0 + n
n
∑

k=k0+1

(

e(log n)α

2k

)2k0−1

≤ k0 + 2n

(

e(log n)α

2k0

)2k0−1

≤ k0 + 2n

(

A log log n

(log n)1−α

)2k0−1

where A = e(1− α)/4,

= k0 + o(1).

This completes the proof of (a).
(b) This is somewhatless trivial.
Let

Vt = V (Gt)

= { vertices remaining at the start of round t}

St = Set S found in round t

= { sources found in round t} ,

Nt = Γ(St) ∩ Vt

= { neighbours of St deleted in round t }.

Suppose i ≥ 2 and At, Bt, 1 ≤ t ≤ i− 1 is some disjoint collection of subsets
of V . Then we have St = At, Nt = Bt for 1 ≤ t ≤ i− 1 if and only if
(2a) v ∈ At implies Γ−(v) ⊆

⋃t−1
s=1 Bs and Γ−(v) ∩Bt−1 6= ∅, 1 ≤ t ≤ i− 1

(when t = 1, drop the second condition)
(2b) v ∈ Bt implies Γ−(v) ∩

⋃t−1
s=1 As = ∅ and Γ−(v) ∩ At 6= ∅, 1 ≤ t ≤ i− 1

and

v ∈ C = V −
i−1
⋃

t=1

(At ∪Bt) implies

(3a) Γ−(v) ∩
⋃i−1

t=1 At = ∅,
(3b) Γ−(v) ∩ (Bi−1 ∪ C) 6= ∅.
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Suppose now that we choose sets At, Bt, 1 ≤ t ≤ i− 1 satisfying (2) and
condition on the event

E = {St = At, Nt = Bt, Vi = C : 1 ≤ t ≤ i− 1}.

It is important to establish the conditional distribution of the sets Γ−
i (v) =

Γ−(v)∩Vi, v ∈ Vi, i ≥ 2. For v ∈ Vi let Ri
v = [v−1]∩(Vi∪Bi−1) and rv = |Ri

v|.
Claim 1

(i) The sets Γ−
i (v), v ∈ Vi are stochastically independent,

(ii) Γ−
i (v) is a random subset of Ri

v chosen through rv Bernoulli trials condi-
tioned on the occurence of at least one success, i. e.
(4) Pr(|Γ−

i (v)| = k) =
(

rv

k

)

pk(1− p)rv−k/(1− (1− p)rv), 1 ≤ k ≤ rv

and each k-subset is equally likely.
Proof (of Claim) To prove (i) simply observe that condition (3) on v ∈ C
only involves edges directed into v, and that the conditions in (2) only involve
edges directed into V − C.

Now consider (ii). v ∈ V2 if and only if Γ−
i (v) 6= ∅ and Γ−

i (v) ∩ S1 = ∅
and these conditions are equivalent to (ii). We can now proceed induc-
tively. Fix v ∈ Vi. If v 6∈ Si ∪ Ni then we learn (a) Γ−

i (v) ∩ Vi 6= ∅, then
(ii) Γ−

i (v) ∩ Si = ∅ and so finally that

Γ−
i (v) ∩ (Vi − Si) = Γ−

i (v) ∩Ri+1
v 6= ∅.

Thus (4) continues to hold.
End of proof (of claim). We now continue with the proof of our Theorem.

Choose β, α < β < 1. Now choose i ≤ τ = ⌈ (1−α) log n
10

⌉ and assume that
Vi = {x1 < x2 < . . . < xs}. Partition Vi into X1, X2, Y where X1 =
{x1, x2, . . . xa}, a = ⌈log n/p⌉, X2 = {xa+1, xa+2, . . . xb}, b = ⌈(log n)2/p⌉,
and Y is the rest of Vi. We will show that a good proportion of Y is likely
to remain in Vi+1, when Vi is large enough so that the above partition is
actually possible.

Observe first that the proof of Claim 1 implies that if r = |Bi−1∩ [xj−1]|
then
(5) Pr(x = xj ∈ Si) = (1− (1− p)r)(1− p)j−1/(1− (1− p)rx)

≤ (1− p)j−1.
(At least one success is required in the r trials corresponding to Bi−1∩ [xj−1]
and no further successes.)
So if Ai = {Si ∩ (X2 ∪ Y ) = ∅} then
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(6) Pr(Āi) ≤
∑

j>a(1− p)j−1 = (1−p)a

p
≤ 1

np
.

Let

Bi = {Γ−(y) ∩X2 6= ∅,∀y ∈ Y }

It follows from Claim 1(ii) that if y ∈ Y then

Pr(Γ−(y) ∩X2 = ∅) ≤ (1− p)b−a

≤ n−(1−o(1)) log n

and so
(7) Pr(B̄i) ≤ n−(1−o(1)) log n.
Note that (6), (7) can be taken as true even if Y = ∅.

Let us now consider the size of Si. Let δj = 1 if xj ∈ Si and δj =
0 otherwise. It follows from Claim 1(i) that δ1, δ2, . . . , δs are independent
random variables. Also

E(|Si|) =
s
∑

j=1

Pr(δj = 1)

≤
s
∑

j=1

(1− p)j−1

≤
1

p
.

Note that we have Pr(δj = 1) ≤ (1−p)j−1 regardless of the history of the
algorithm to this point. It follows that |S1| + |S2| + . . . + |Si| is dominated
by the sum of independent random variables each of which is the sum of a
large number of independent 0-1 random variables. It follows from Theorem
1 of Hoeffding [H] that if

Ci = {|S1|+ |S2|+ . . . + |Si| <
(1− α) log n

2p
}

then

Pr(C̄i) ≤

(

2ei

(1− α) log n

)(1−α) log n/2p
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(Hoeffding proves that if Z1, Z2, . . . , Zm are independent random variables
with 0 ≤ Zj ≤ 1, j = 1, 2, . . . ,m and E(Z1 + Z2 + · · ·+ Zm) = mµ then

Pr(Z1 + Z2 + · · ·+ Zm ≥ m(µ + t)) ≤





(

µ

µ + t

)µ+t (
1− µ

1− µ− t

)1−µ−t




m

.

So if t = (θ − 1)µ

Pr(Z1 + Z2 + · · ·+ Zm ≥ θmµ) ≤
(

θ−θeθ−1
)mµ

<
(

e

θ

)θmµ

.

We use this inequality with mµ = i
p

and θmµ = (1−α) log n)
2p

.)
Note that Cτ ⊆ Cτ−1 ⊆ · · · ⊆ C1 and

(8) Pr(C̄τ ) ≤ n−(1−α) log(5/e)/2α.
Consider the size of Y ∩Vi+1. Using Claim 1(ii) we see that, given Ai∩Bi,

the edges joining X1 to Y are unconditioned. So, by another use of [H],

(9) Pr(|Vi+1| ≤
(

1− 1
(log n)2

)

|Y |(1−p)|Si| | Ai∩Bi, |Si|) ≤ exp
{

− |Y |(1−p)|Si|

2(log n)4

}

since if y ∈ Y then Pr(y ∈ Vi+1 | Ai ∩ Bi, |Si|) = (1− p)|Si|.
Now let

Di =







|Vi| >

(

1−
2

(log n)2

)i−1

n(1− p)|S1|+|S2|+...+|Si−1|







.

Then we have
(10) Pr(D̄i+1) ≤ Pr(Āi ∩ B̄i ∩ C̄i ∩ D̄i) + Pr(D̄i+1 | Ai ∩ Bi ∩ Ci ∩ Di).
Now if Ci ∩ Di occurs then

|Vi|(1− p)|Si| ≥ n

(

1−
2

(log n)2

)i−1

(1− p)|S1|+|S2|+...+|Si|

≥ n

(

1−
2

(log n)2

)i−1

(1− p)(1−α) log n/2p

= (1− o(1))n1+ 1−α
2p

log(1−p)

and |Y | ≥ |Vi| −
(log n)2

p
≥ (1− 1

log n)2
)|Vi|.

Now, since Ci, Di refer to the history of the algorithm prior to the construction
of Y ∩ Vi+1 we may again argue as in (9) that

Pr(D̄i+1 | Ai ∩ Bi ∩ Ci ∩ Di) ≤ exp







−
(1− o(1))n1+ 1−α

2p
log(1−p)

2(log n)4







.
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Thus, from (6), (7), (8), (10) and the above

Pr(D̄i+1) ≤ Pr(D̄i) + o((log n)−1)

and so

Pr(D̄i+1) ≤ Pr(D̄1) + o(1)

= o(1).

since D̄1 = ∅.
Thus Pr(D̄τ ) = o(1). Combining this with Pr(Cτ ) = 1− o(1) we see that

Pr(Vτ = ∅) = o(1)

and this proves part (b) of the Theorem. 2
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