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Abstract

We present a randomised polynomial time algorithm for approximating

the volume of a convex body K in n-dimensional Euclidean space. The

proof of correctness of the algorithm relies on recent theory of rapidly mixing

Markov chains and isoperimetric inequalities to show that a certain random

walk can be used to sample nearly uniformly from within K.

Introduction

In this paper we give an algorithm for approximating the volume of a

convex body in Euclidean space. Our algorithm is a randomised polynomial

time bounded algorithm. In other words, suppose we are given a convex

body K, determined by a membership oracle (see Grötschel, Lovász and

Schrijver [1988]) and a relative error bound ǫ. Then, our algorithm takes

time bounded by a polynomial in n, the dimension of the body K and 1/ǫ.

With probability at least 3/4, it finds an ǫ approximation to the volume of K.

(Here, as usual, we count unit time per call to the oracle. Observe that we

can make the failure probability as small as we like by repeatedly running the

algorithm and taking the median value as output. See [Karp and Luby 1983]
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and [Jerrum, Valiant and Vazirani 1986].) Our result should be contrasted

with results of Elekes [1986], Bárány and Füredi [1986], and Dyer and Frieze

[1988]. In particular the first two of these references show that with such an

oracle it is not possible to approximate the volume of a convex set within

even a polynomial factor in deterministic polynomial time. In fact Bárány

and Füredi showed that the best one could do was to get within a factor of

the volume which is exponential in n. Grötschel, Lovász and Schrijver [1988]

had already given such an approximation algorithm. Furthermore Dyer and

Frieze [1988] show that if K is a polyhedron, given either by a list of its facets

or its vertices then it is # P-hard to compute the volume of K exactly. By

comparing our results with these, we see that here is a case where randomness

gives a super-polynomial speed-up in computing power.

We remark that one consequence of our algorithm is that the number of

linear extensions of a partial order can be similarly approximated. See, for

example, [Lovász, p. 61].

Our algorithm is based on a scheme for sampling nearly uniformly from

within K. To do this, we place a grid consisting of cubes of side O(1/n5/2)

and do a random walk over the cubes in the grid that intersect a slightly

smoother enlargement of K. For this random walk, it is not difficult to show

that eventually it “settles down” to being nearly uniform. What is much

more difficult to show is that the time taken to settle down is polynomial.

To do this we use results on the theory of rapidly mixing Markov chains.

In particular we employ an extremely useful result of Sinclair and Jerrum

[1988] which relates the rapid mixing property to structural properties of

the chain which are somewhat easier to establish. We note that Jerrum and

Sinclair [1988] have used this result to rigorously verify Broder’s algorithm

[1986] for approximating dense permanents. These methods are likely to
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yield further interesting results. See Aldous [1981] for an expository paper

on other methods for establishing the rapid mixing property. The key step

in the Sinclair-Jerrum approach is to establish an isoperimetric inequality

for the graph underlying the random walk. To do this we use a result from

differential geometry, i.e. the isoperimetric inequality of Bérard, Besson and

Gallot [1985] which generalises the more classical inequality of Lévy-Gromov

(see Milman and Schechtmann [1980]) on the volume of the boundary of

subsets of smooth Riemannian manifolds with positive curvature.

In the next few sections we will make these arguments more precise. In

§1, we describe the random walk and the algorithm. In §2 we will show

that the algorithm has the claimed properties under the assumption that the

conductance [Sinclair and Jerrum 1988] of our Markov chain is at least 1/q(n)

where, q(·) is a polynomial. In §3, we will verify this claim. The final section

contains some technical Lemmas.

Notation and values used throughout

n ≥ 3 is the dimension of the body whose volume is to be approximated,

and 0 < ǫ < 1 is the desired degree of approximation.

δ =
1

20n5/2

α = 12
√

2n3/2δ α′ = δ/(2
√

n).

r =
√

n(n + 1)

ρ = 1 − (1/n) k = ⌈log1/ρ r⌉

m = ⌈700k2

ǫ2
log 8k⌉

τ = ⌈1017n19 log(
(

3r

δ

)n 300k

ǫ
)⌉
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β = ⌈log2(
900kδn3/2

ǫ
)⌉ η = 2−βδ

All logarithms are to the base e unless otherwise specified.

B is the unit ball in Rn with the origin as center, and σn denotes its

surface area.

By a “convex body” we mean a closed, bounded convex set of non-zero

volume.

For any convex set K and non-negative real number α, we denote by αK

the “dilation” of K by a factor of α, i.e. αK = {αx : x ∈ K}.
If T ⊆ S ⊆ Rm, we denote the “boundary” of T with respect to S by

∂ST . This is the set of points x in the closure of T such that any ball in Rm

with x as center intersects S \ T . Usually, the context will make clear what

S is, so we will denote ∂ST as ∂T .

For any set K in Rm and a non-negative real number λ, we denote by

K(λ) the set of points at distance at most λ from K. If K is convex, it is

easy to see that K(λ) is too.

All our convex bodies will be given a so-called “well-guaranteed member-

ship oracles” – i.e. we will be given a sphere containing the body, a sphere

contained in the body, both of non-zero radius (this is called the “guaran-

tee” – see Grötschel, Lovàsz and Schrijver [1988] for a discussion of why

many problems are meaningless without these guarantees) and a black box,

which presented with any point x in space, either replies that x is in the

convex body or that it is not. Grötschel, Lovàsz and Schrijver [1988] show

that from such an oracle, we may construct (in polynomial time) a so-called

weak separation oracle (see their §4.4.) For convex bodies presented by a

weak separation oracle, they also show that we can find in polynomial time a

(nonsingular) affine transformation so that, on applying the transformation,
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the body is “well-rounded”, i.e. the body contains the unit ball with the

origin as center and is contained in a concentric ball of radius r =
√

n(n+1)

where n is the dimension of the body. (Polyhedra of positive volume fit this

category. Polyhedra of zero volume can be detected in polynomial time by

the ellipsoid algorithm.)

1. A random walk

Throughout we assume that space (Rn) is divided into cubes of side δ,

i.e. cubes of the form {x : miδ ≤ xi ≤ (mi + 1)δ for i = 1, 2, . . . , n} where

the mi are integers. Note that the cubes are defined as closed sets.

Suppose K is any well-rounded convex body. Central to our algorithm

will be the following random walk through the cubes which intersect K(α).

(Reminder : see notation section for the value of α.) The random walk starts

at any cube intersecting K(α), for example the cube containing the origin.

At each step, it stays in the present cube or it moves from the present cube to

one of its adjacent cubes (a cube that shares an (n− 1) dimensional face) as

follows : it chooses a facet of the present cube each with probability 1/(2n).

If the cube across the chosen facet intersects K(α), the random walk moves

to that cube, else it stays in the present cube. The random walk gives us a

Markov chain with the states corresponding to the cubes. The underlying

undirected graph (containing edges corresponding to the transitions of non-

zero probability) is connected as the following argument shows : if a cube C

intersects K(α) and x is in C∩K(α) the line joining x to the origin of course

lies inside K(α). The sequence of cubes intersected by the line gives us a

path from our cube to the cube containing the origin : if the line “passes”
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from a cube C1 to a cube C2 through an (n − i) dimensional face shared by

C1, C2, then there is obviously a path of length i from C1 to C2 in the graph.

We will later refer to the random walk described here as the natural random

walk4 on K, although we really walk over the cubes that intersect K(α). The

reason for walking over the cubes that intersect K(α) rather than the cubes

that intersect K is that K(α) is a little “smoother” than K ; in particular,

for any point x ∈ K(α), there is a sphere of radius α which contains x and

is contained in K(α). This fact will be used in our proofs. Note also that

K(α) is “close” to K, in fact it will be easy to see (cf. Proposition 1 of §4)

that (1 + α)K contains K(α). Thus, at least intuitively, we see that we may

replace K by K(α) for purposes like computing the volume approximately.

We will be given K by an oracle, and this will not let us decide precisely

whether a particular cube intersects K(α). We will therefore modify the

natural random walk so that the set of cubes over which the random walk

is executed includes all of those that intersect K(α) plus some other cubes

each of which intersects K(α + α′) where α′ = δ/(2
√

n), as defined earlier.

The modification is as follows : it is easy to see that for any cube C, there is

a membership oracle for C(α+α′).5 Using this, and the separation oracle for

K, with the well-known techniques of Grötschel, Lovász and Schrijver [1988]

based on the ellipsoid algorithm, we have a deterministic polynomial time

algorithm that terminates with either

(i) a point x ∈ C(α + α′)∩K whence we know that C ∩K(α + α′)
is nonempty.

or

4For technical reasons, we will have to modify the natural random walk.
5The nearest point in a cube from an exterior point can be found by “rounding ” the

coordinates of the point on to the cube.
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(ii) an ellipsoid of volume at most (α′)nσn−1n
−2( 2

π
)n−2r−n+1 contain-

ing C(α + α′) ∩ K,

whence we will show (cf. Proposition 5, §4) that C(α) ∩ K is empty or

equivalently C ∩ K(α) is empty. (See notation section for σn−1.)

The random walk will go to cubes for which the alternative (i) occurs and

will not go to those for which (ii) occurs. We will show (cf. Proposition 11

(proof), §4) that any cube for which alternative (i) occurs must in fact either

itself intersect K(α) or one of its adjacent cubes must, so this walk does not

“stray” too far from the original, a fact that will be useful later. If (i) is the

result of the algorithm, we say that the cube C weakly intersects the convex

body K(α). A further technical modification is needed. In order to apply

the theorem of Sinclair and Jerrum, we need to be sure that at each step,

the walk has probability at least 1/2 of staying in the same cube. This is

achieved as follows : at each step, with probability 1/2, the walk makes no

attempt to change cubes. With probability 1/(4n) each it picks one of the

facets of the current cube and moves accross to an adjacent cube if it weakly

intersects K(α). Thus, in the interior of K, the probability of staying put

is precisely 1/2 and at the boundary, it is at least 1/2. We call the random

walk thus obtained the technical random walk.

We wish to show that, after a polynomial number of steps, the steady state

probabilities of the (technical) Markov chain will be approximated with an

exponentially small error. More precisely, suppose N is the number of states

of the Markov chain and let the states be numbered 1, 2, . . . , N . Let pij

be the probability of transition from state i to state j. The pij ’s assume

values 0 or at least 1/(4n). Let P be the matrix with the pij as entries

and for any natural number t, we denote by p
(t)
ij the entries of the matrix

P t, the t th power of P which represents the t step transition probabilities.
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It is easy to see that our Markov chain is “irreducible”, i.e. for each pair

of states i, j, there is a natural number s such that p
(s)
ij is nonzero. This

follows since the graph of the natural random walk is connected, and each

cube in the technical random walk is either included in the natural random

walk or is adjacent to such a cube. Also the Markov chain can be seen to

be aperiodic, i.e. gcd{s : p
(s)
ij > 0} = 1 for all i, j. This follows from the

facts that the graph is connected and each cube has a self-loop. Hence,

the chain is “ergodic” [Feller 1968] and there exist “stationary” probabilities

π1, π2, . . . , πN > 0 such that

lim
s→∞

p
(s)
ij = πj ∀i, j.

The vector π of πj ’s is the unique solution to the equations πP = π and
∑

πj = 1. In our case, since P is symmetric, it is easy to see that all

the πj ’s are equal. Thus also, the Markov chain is “time-reversible” : i.e.

pijπi = pjiπj (∀i, j).

Our approach is as follows : we will use a result from Sinclair and Jerrum

[1988] on time-reversible ergodic Markov chains to show that our Markov

chain is “rapidly mixing”, i.e. we will prove the following :

Theorem 1 For any i, j, and t, we have

|p(t)
ij − πj| ≤

(

1 − 1

1017n19

)t

.

Thus, when t is a sufficiently large, yet polynomial function of n, (namely

t = τ - see notation) the p
(t)
ij are approximately equal. Roughly speaking,

this gives us the ability to pick a random cube intersecting the convex body

with uniform distribution in polynomial time. Using this, we will argue in

the next section that the following algorithm does the job.
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1. Let K be the convex body in Rn whose volume is to be found. Trans-

form the body so that it is now well-rounded, i.e. now we have B ⊆
K ⊆ rB where r =

√
n(n + 1). The determinant of the linear trans-

formation gives the factor by which the volume is changed. We keep

track of this.

2. Let ρ = 1 − 1
n
. Let k = ⌈log 1

ρ
r⌉ and for i = 0, 1, 2, . . . , k, let ρi =

max{ρir, 1}. The algorithm will find for i = 1, 2, . . . , k an approxima-

tion to the ratio
Voln(ρiK ∩ rB)

Voln(ρi−1K ∩ rB)
.

The ratio will be found by a sequence of “trials”. In each trial, we

first do the technical random walk on Ki−1 = ρi−1K ∩ rB for τ steps.

(The states of the random walk will be the cubes that weakly intersect

Ki−1(α).) Suppose we are in cube C = {x : qiδ ≤ xi ≤ (qi + 1)δ} after

τ steps. We pick randomly (uniformly and independently) integers

γ1, γ2, . . . , γn each from {0, 1, 2, . . . , γ} where γ = 2β − 1. Let x0 =
(

(q1 + γ1

γ
)δ, (q2 + γ2

γ
)δ, . . . , (qn + γn

γ
)δ
)

.

If x0 ∈ Ki−1 then we declare the trial a proper trial and check to see

if x0 ∈ Ki. If it does we declare the trial a success. This completes

the trial. We repeat until we have made m proper trials and we keep

track of the ratio of the number of successes to m. We will later show

that with high probability, the ratio will be a good approximation to

the ratio of volumes that we want to compute.

Clearly this together with the fact that Kk = K and the volume of

K0 = rB is known in closed form gives us the volume of K, as required.

Note that Ki contains ρKi−1, so each of the ratios to be computed is
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at least ρn which is known to be at least 1/4. This fact will be required

later.

Remark We conjecture that Theorem 1 can be considerably strengthened

– i.e. the polynomial O(n19) in that Theorem is not optimal. Whether this

is true or not, a heuristic method would be to run the random walk above

for many fewer than τ steps. See also Remark 8 of §5.

2. Proof of correctness of the algorithm

Consider the i th step of our algorithm. We first estimate the probability

that a trial is declared proper. Let W be the set of cubes that weakly intersect

Ki−1(α). Observe that |W | ≤ (3r/δ)n. Then

Pr(proper trial) =
∑

C∈W

Pr(proper trial|walk ends in C) Pr(walk ends in C)

Consider a fixed C ∈ W and let aC = Voln(C ∩ Ki−1)/δ
n. We imagine C

divided into subcubes of side η = 2−βδ and our sample point x0 is equally

likely to be the corner of any one of these subcubes.

Let now NB
C be the number of “border” subcubes (i.e. which meet Ki−1,

but are not fully contained in Ki−1) and NC = 2βn. Then with

πC = Pr(proper trial|walk ends inC),

we have

|aC − πC | ≤ NB
C

NC
= ζC (say).

Now ζ =
∑

C∈W ζC is (η/δ)n times the total number of subcubes which meet

Ki−1, but are not fully contained in it. Using Proposition 3 of §4, ζ is at

most 3n3/2ηVoln(Ki−1)/δ
n.

10



Now, using Theorem 1,

Pr(proper trial) ≤
∑

C∈W

(aC + ζC)

(

1

|W | +
(

1 − 1

1017n19

)τ
)

≤ Voln(Ki−1)

δn
(1 + 3n3/2η)

(

1

|W | +
ǫ

300k

(

δ

3r

)n)

,

using the fact that 1 + x ≤ ex∀ real x

≤ Voln(Ki−1)

|W |δn
(1 +

ǫ

300k
)2

≤ Voln(Ki−1)

|W |δn
(1 +

ǫ

100k
).

Similarly,

Pr(proper trial) ≥ Voln(Ki−1)

|W |δn
(1 − ǫ

100k
) ≥ 0.33,

using Proposition 4 and the bounds on ǫ and k.

Observe that this lower bound is independent of the starting point of

the random walk and so the number of proper trials occuring in s walks

stochastically dominates the Binomial Bin(s, 0.33). Thus, with probability

close to one, at least a quarter of any large number of trials will be proper.

We now consider the probability of success. By an identical argument to

that above, we obtain

Voln(Ki)

|W |δn
(1 − ǫ

100k
) ≤ Pr(success) ≤ Voln(Ki)

|W |δn
(1 +

ǫ

100k
).

So, if p = Pr(success | proper trial) and ν = Voln(Ki)/Voln(Ki−1), we have

ν(1 − ǫ

100k
)(1 +

ǫ

100k
)−1 ≤ p ≤ ν(1 +

ǫ

100k
)(1 − ǫ

100k
)−1

which implies 1
5
≤ (1 − ǫ

49k
)ν ≤ p ≤ (1 + ǫ

49k
)ν.
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Let m̂ be the number of successes after there have been m proper tri-

als. It is a standard result from probability theory (for example, an easy

consequence of Theorem 1 of Hoeffding [1963]), that for any positive λ < 1,

Pr

(

|m̂
m

− p| ≥ λp

)

≤ 2e−λ2mp/3.

Hence, Pr

(

|m̂
m

− ν| ≥ λν

)

≤ Pr

(

|m̂
m

− p| ≥
(

λ − ǫ

20k

)

p

)

So with λ = ǫ
5k

we have

Pr

(

|m̂
m

− ν| ≥ ǫ

5k
ν

)

≤ 2e−
1

3
(3ǫ/20k)2mp ≤ 2e−

3

5
(ǫ/20k)2m

Now we must make k volume estimates and so assuming that we compute

Voln(K0) to within 1± ǫ
2

we see that the above algorithm computes an esti-

mate v satisfying

(1 − ǫ

2
)(1 − ǫ

5k
)k ≤ v

Voln(K)
≤ (1 +

ǫ

2
)(1 +

ǫ

5k
)k

with probability at least

1 − 2ke−
3

5
(ǫ/20k)2m

The reader may check, with the constants given in the notation section,

that v turns out to be within 1±ǫ of Voln(K) with probability at least 3
4

as

required.

The running time of the algorithm is that needed to solve

O(kmτ) = O(n23(log n)5ǫ−2 log(
1

ǫ
)) convex programs .

3. The Markov chain is rapidly mixing
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Let M be an ergodic Markov chain with states {1, 2, . . . , N} , transition

probabilities pij and stationary probabilities π1, π2, . . . , πN . Sinclair and Jer-

rum define, for any subset S of states, the capacity CS of S to be
∑

i∈S πi and

the ergodic flow out of S to be

∑

i∈S,j /∈S

pijπi.

They also define the conductance ΦS of S to be the ergodic flow out of S

divided by the capacity of S. Finally, they define the conductance of the

whole chain to be

Φ = min
S:CS≤1/2

ΦS.

Intuitively, Φ measures the minimum relative connection strength between

subsets of the states and we expect that if Φ is relatively high, the random

walk will not “get stuck” in some subset S of states, thus it will “mix” rapidly.

The following is a direct consequence of their main Theorem.

Theorem 2 (Sinclair and Jerrum) For a time-reversible ergodic Markov

chain with all the πj ’s equal, and pii ≥ 1/2 for all i,

|p(t)
ij − πj| ≤

(

1 − Φ2

2

)t

∀i, j.

We will show that the conductance of our Markov chain cannot be too

small. First, we work on the natural Markov chain whose states are precisely

the cubes that intersect K(α). (We should of course talk about Ki(α), but

we will drop the subscript for clarity). We then extend the result to the

technical version whose states are all cubes that weakly intersect K(α).

For any subset S of states (of the technical Markov chain), we denote

by S̄ the complementary set of states and by (S, S̄) the set of edges in the
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underlying transition graph from a vertex of S to a vertex of S̄. Since all the

πj ’s are equal, and for any edge (i, j) in the graph, pij = 1/(4n), we have

ΦS =
γ(S)

4n
where γ(S) =

|(S, S̄)|
|S| .

So a lower bound on Φ will follow from a lower bound on the minimum of

γ(S). We start first with the natural Markov chain. In Lemma 1 below,

γ(S) now refers to edges and vertices in the transition graph of the natural

Markov chain.

Lemma 1 γ(S) ≥ δ2

2400n7/2 for any subset S of states in the natural

Markov chain with CS ≤ 1
2
.

Proof : A “cube” means a cube that intersects K(α). A cube is called

a “border cube” if it intersects both K(α) and the complement of K(α) and

it is called an “inside cube” if it is wholly contained in K(α). We will also

look upon a subset S of states as the union of whole cubes corresponding to

the states. We let SB be the border cubes in S and SI be the inside cubes

in S. Now, by Proposition 10, for any subset S of states,

|SB| ≤ 2n|(S, S̄)| + 18|SI |.

We deduce that

Voln(S ∩ K(α)) ≥ |SI |δn = (|S| − |SB|)δn ≥ (|S| − 2n|(S, S̄)| − 18|SI |)δn

≥ (|S| − 2n|(S, S̄)|)δn − 18Voln(S ∩ K(α)).

Hence

Voln(S ∩ K(α)) ≥ 1
19

δn(|S| − 2n|(S, S̄)|).

Let S be an arbitrary subset of states with |S| ≤ N/2. This S will be fixed

for the rest of this proof. We need the following basic fact from analysis (for
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example, see Gilbarg and Trudinger §7.2 [1983]) : every convex body can be

approximated arbitrarily closely by a convex body containing it whose surface

forms a smooth (C∞) Riemannian manifold. Let KK be a convex body such

that ∂KK forms a smooth Riemannian manifold, K(α) ⊆ KK and the set

of cubes intersected by KK is precisely the set of cubes intersected by K(α).

(Since the cubes are defined as closed sets, the last condition can be ensured

by a sufficiently close approximation to K(α) .)

If γ(S) ≥ 1
4n

, then the Lemma is proved, so assume that γ(S) ≤ 1
4n

.

Then, letting T = S ∩ KK and T̄ = S̄ ∩ KK, we have

Voln(T ) ≥ Voln(S ∩ K(α)) ≥ Voln(S)

38
.

By the classical isoperimetric inequality, [Milman and Schechtman 1980, page

125]6

Voln−1(∂T ) ≥ nVoln(T )(cn)1/n

(Voln(T ))1/n
.

where cn = Voln(B).

But we know that Voln(T ) ≤ Voln(KK) ≤ cnr
n(1+α+δ

√
n)n ≤ 2.5cnr

n.

Substituting this for the denominator for the above expression, we get

Voln−1(∂T ) ≥ Voln(S)

100n1/2
.

Consider the set T1 = (∂T \ ∂KK). This set consists of the union of parts of

facets of cubes with the property that on one side of the facet is a cube in S

and on the other side is a cube in S̄. So we have |(S, S̄)| ≥ Voln−1(T1)/δ
n−1.

Thus if the volume of T1 is at least half the volume of ∂T , by the above

inequality on Voln−1(∂T ), we have a lower bound on γ(S), of 1
4000n3 . This

6This inequality states that the ball has the least surface area to volume ratio among
all (reasonable) subsets of R

m.
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would give us the Lemma. So assume that the volume of T1 is at most half

the volume of ∂T . Then, letting T2 = (∂T ) ∩ (∂KK), we have that

Voln−1(T2) ≥
Voln(S)

200n1/2
.

For notational consistency, we define T̄1 = (∂T̄ \∂KK)(= T1). If the volume

of T̄1 is greater than or equal to Voln(S̄)/(200n1/2), this would again imply

γ(S̄) ≥ 1
4000n3 . But γ(S) = γ(S̄)|S̄|/|S| ≥ γ(S̄), and so this would imply that

γ(S) ≥ 1
4000n3 . This would complete the proof of the Lemma. Assume this

fails. Then, letting T̄2 = (∂T̄ ) ∩ (∂KK), we have

Voln−1(T̄2) ≥
Voln(S̄)

200n1/2
.

Now one of the two sets T2, T̄2 must have at most half the (n− 1)-volume of

∂KK. We treat the two cases :

Case 1 : T2 has at most half the volume of ∂KK. Then by using the

inequalities of Bérard, Besson and Gallot [1985], (see Proposition 6), we have

that

Voln−2(∂T2) ≥
Voln−1(T2)

6n2
≥ δn|S|

1200n5/2
.

Now each point in ∂T2 belongs to a facet F with an S cube on one side and

an S̄ cube on the other. Thus ∂T2 is the union of (n− 2) dimensional pieces

of the form F ∩ ∂KK. By convexity, each such piece has (n − 2) volume

bounded above by the (n − 2) dimensional volume of ∂F which is less than

2nδn−2. Thus the number of such pieces (and therefore |(S, S̄)|) must be at

least δ2|S|/(2400n7/2), so we have the Lemma in this case.

Case 2 : In this case, arguing symmetrically, we have γ(S̄) ≥ δ2/(2400n7/2)

and since γ(S) ≥ γ(S̄), the proof of Lemma 1 is now complete.
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Now we extend the Lemma to the technical Markov chain.

Lemma 2 If S is any subset of states of the technical Markov chain with

CS ≤ 1
2

then we have

γ(S) ≥ δ2/(86400n7/2).

Proof Let S ′ be the cubes in S that actually intersect K(α) and let S̄ ′

be the cubes not in S that actually intersect K(α). Now by Proposition 11

|S| ≤ |(S, S̄)| + 18|S ′|.

If, |(S, S̄)| ≥ |S|/2, then clearly γ(S) ≥ 1
2
, so assume not. Then we have

|S ′| ≥ |S|/36. We may similarly assume, |S̄ ′| ≥ |S̄|/36. Lemma 1 yields :

|(S, S̄)| ≥ |(S ′, S̄ ′)| ≥ δ2(min{|S ′|, |S̄ ′|})/2400n7/2.

Lemma 2 now follows.

Theorem 1 follows now from Lemma 2, Theorem 2 and the fact that

ΦS = γ(S)/(4n), ∀S.

4. Technical Results

Proposition 1 Suppose K is a convex body in Rn such that B ⊆ K

and ǫ is a positive real. Then for any y in Rn \ (1 + ǫ)K, and z in K, we

have |z − y| > ǫ.
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Proof : Let the hyperplane v.x = (1 + ǫ) separate y from (1 + ǫ)K, i.e.

v ·y > (1+ǫ) and for all z in K, v ·(1+ǫ)z ≤ (1+ǫ). From the last inequality

it follows that v · z ≤ 1 and so we have v · (y − z) > ǫ. From the fact that K

contains B, we have |v| ≤ 1 and hence we must have |y − z| > ǫ.

Proposition 2 With the same hypothesis as before and ǫ ≤ 1, we have

y ∈ (1 − ǫ)K implies that the distance from y to the boundary of K is at

least ǫ.

Proof : If z is on the boundary of K, there exists a vector v such that

v · z = 1 and v · x ≤ 1 for all x in K. So we have v · (z − y) ≥ ǫ and again

|v| ≤ 1, so |z − y| ≥ ǫ.

Suppose K is a convex body in Rn such that B ⊆ K. Consider a division

of Rn into “cubes” of side η (i.e. cubes of the form {x : miη ≤ xi ≤
(mi + 1)η for i = 1, 2, . . . , n} where mi are integers) where η ≤ 1

900n3/2 . Let

KI be the set of cubes that are wholly contained in K and KB the set of

cubes that intersect both K and Rn \ K. Then,

Proposition 3

|KB| ≤ 3n3/2η|KI |.

Proof : Any point y in any cube in KB is at distance at most η
√

n from

K, so by Proposition 1, it is contained in (1 + η
√

n)K. Further, y is at

distance at most η
√

n from the boundary of K, so it is not in the interior
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of (1− η
√

n)K from Proposition 2 . These together imply that the cubes in

KB are all wholly contained in the closure of (1+η
√

n)K \ (1−η
√

n)K from

which it follows7 that their total volume is at most 2.5n3/2ηVoln(K) which

implies that |KB| ≤ 2.5n3/2Voln(K)/ηn−1. The cubes in KB, KI together in-

clude K, so we have |KB|+ |KI | ≥ Voln(K)/ηn and the Proposition follows.

Proposition 4 If K contains the unit ball, then the number of cubes

that weakly intersect K(α) is at most three times the number of cubes that

are fully contained in K.

Proof : Using the same argument as in Proposition 3, this follows from

the fact that any cube that weakly intersects K(α), but is not contained in

K, is wholly contained in the set

(1 + α + α′ + δ
√

n)K \ (1 − δ
√

n)K.

Proposition 5 If

Voln(C(α + α′) ∩ K) < (α′)nσn−1n
−2(

2

π
)n−2r−n+1

then C(α) ∩ K = ∅.
Proof Suppose not and x ∈ C(α) ∩ K. Let θ be the angle between

the line joining x to the origin and any line through x tangent to B. Then

C(α + α′) ∩ K contains the intersection of a ball X of radius α′ centered at

7Observe that, if 0 ≤ y ≤ 1 ≤ x ≤ (1 + a/n), then xn − yn ≤ nea(x − y).
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x and a cone Y of half-angle θ > 1/r with vertex x whose extreme rays are

the tangents from x to B. The volume of X ∩ Y is

σn−1(α
′)nn−1

∫ θ

0
(sin φ)n−2dφ.

Using the lower bound sin φ ≥ 2φ/π, for 0 ≤ φ ≤ π/2 and integrating, we

get the Proposition.

Proposition 6 Let KK be as in the proof of Lemma 1. Let T be a

subset of ∂KK and suppose that Voln−1(T ) ≤ Voln−1(∂KK)/2. Then,

Voln−2(∂T ) ≥ Voln−1(T )

6n2
.

Proof : In the following m is a positive integer. Let ωm =
∫ π
0 (sin t)m−1dt.

Then from the relation ωm = m−2
m−1

ωm−2, m ≥ 3 and ω1 = π, ω2 = 2, we

deduce (inductively) that for m ≥ 2, ωm ≥ 1√
m−1

≥ 1√
m

and ωm ≤ π√
m

. Let

A = (1 + mωm)1/m − 1. It is easy to see that A ≥ log m/2m, from which it

follows that A ≥ 1/m for all m ≥ 1.

Let M be a Riemannian manifold without boundary of dimension m

with everywhere non-negative (Ricci) curvature and diameter d(M). Bérard,

Besson and Gallot show that if Ω ⊆ M is such that

Volm(Ω)

Volm(M)
= β, then

Volm−1(∂Ω)

Volm(M)
≥ Volm−1(∂B(β))

Volm(Sm)
· A

d(M)
,

20



where Sm is the unit sphere and B(β) is the spherical cap on Sm such that

Volm(B(β))

Volm(Sm)
= β.

We can rewrite the above inequality as

Volm−1(∂Ω)

Volm(Ω)
≥ Volm−1(∂(B(β))

Volm(B(β))

A

d(M)
.

Now we can show straightforwardly, that the ratio
Volm−1(∂B(β))

Volm(B(β))
decreases

with β, so for β ≤ 1/2, we get

Volm−1(∂B(β))

Volm(B(β))
≥
(

∫ π/2

0
(sin t)m−1dt

)−1

=
2

ωm
.

Thus,
Volm−1(∂Ω)

Volm(Ω)
≥ 2

ωm

A

d(M)
≥ 2

√
m

πd(M)m
.

We use this with M = ∂KK, m = n − 1, and Ω = T . Observe that

d(∂KK) ≤ π(
√

n(n +1) + α). A simple calculation now completes the proof

of the Proposition.

For the next Proposition we need to define a function φ : Rn → Rn as

follows: If x ∈ Rn let J = {j : |xj | > 1√
2n
} and ξ = ξ(x) =

∑

j∈J x2
j . Then let

φj(x) = x2
j/ξ if j ∈ J , and φj(x) = 0 otherwise.

Proposition 7

Let u1, u2, ...un be vectors in Rn with |ui| = 1(∀i) and |ui − uj| ≤ 2
3
√

2n

for 1 ≤ i, j ≤ n. Then
∑n

i=1 φi(ui) ≤ 18.

Proof : Observe first that ξ(ui) ≥ |ui|2 − n · 1
2n

= 1
2
, i = 1, 2, . . . , n.

Now for any i, j we have |ui,i| − |uj,i| ≤ 2
3
√

2n
and so if |ui,i| ≥ 1√

2n
then
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|ui,i| ≤ 3|uj,i| and hence φi(ui) ≤ 2u2
i,i ≤ 18u2

j,i. But if |ui,i| < 1√
2n

then

φi(ui) = 0 ≤ 18u2
j,i trivially. So

n
∑

i=1

φi(ui) ≤ 18
n
∑

i=1

u2
j,i = 18

Proposition 8

Let C ′ be any cube such that there exists x ∈ C ′ ∩ ∂K(α). Let q be

the closest point in K to x and let u = (x − q)/|x − q| = (x − q)/α. For

any k such that |uk| > 1/
√

2n and any l satisfying 2n ≤ l ≤ 20n, the cube

C = C ′ − lδ sign(uk)ek is wholly contained in K(α) (ek is the k th unit

vector.)

Proof For l, k as above, let x′ = x − lδ sign(uk)ek. Then we have,

|x′ − q|2 = |x − q|2 −
(

(xk − qk)
2 − (xk − lsign(uk)δ − qk)

2
)

= α2−
(

2(xk − qk)lδsign(uk) − l2δ2
)

≤ α2−
(

2αlδ√
2n

− l2δ2

)

≤ (α−δ
√

n)2

where the last inequality uses the fact that 2n ≤ l ≤ 20n. From the above,

we see that a sphere of radius δ
√

n around x′ is contained in the sphere of

radius α around q which is contained in K(α). This implies that the whole

cube containing x′ is inside K(α) proving the Proposition.

Proposition 9

Fix θ > 0. Let x1, x2 ∈ ∂K(θ) and let q1, q2 be the points in K nearest to

x1, x2 respectively. Let ui = (xi − qi)/|xi − qi| for i = 1, 2. Then |u1 − u2| ≤
2|x1 − x2|/θ.
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Proof : Without loss of generality, move the origin to q1. So, now, q1 = 0

belongs to K. We have ui ·(y−xi) ≤ 0 for i = 1, 2 and y ∈ K(θ). (Otherwise,

we would have xi ∈ intK(θ).) Putting i = 1, y = x2 gives u1 · x2 ≤ θ and

i = 2, y = θu2 gives θ ≤ u2 · x2. Thus, u1 · x2 ≤ u2 · x2. Now,

|x2 − θu2|2 = |x2|2 − 2θu2 · x2 + θ2 ≤ |x2|2 − 2θu1 · x2 + θ2 = |x2 − θu1|2.

Hence |x2 − θu2| ≤ |x2 − θu1| = |x2 − x1|.

Now θ|u2−u1| = |(x2−θu1)−(x2−θu2)| ≤ |x2−θu1|+|x2−θu2| ≤ 2|x2−x1|.

Proposition 10 : If S is any set of cubes meeting K(α), with SI the

subset of cubes in S that are wholly contained in K(α) and SB = S \SI , we

have,

|SB| ≤ 2n|(S, S̄)| + 18|SI |

Proof : Let C ′ be any border cube and let x ∈ C ′ ∩ ∂K(α) ; let q be the

nearest point of K to x. Let u = (x − q)/|x − q|. Now, let J = {j : |uj| >

1/
√

2n}, let e′j = sign(uj)ej for j ∈ J . Then, we know by propostion 8 that

Cj = C ′ − 2nδe′j ⊆ K(α). Suppose first that some Cj, j ∈ J is not in S.

By convexity, the whole “stack” of cubes between Cj and C ′ meets K(α),

and thus there is an (S, S̄) facet F somewhere between Cj and C ′. In this

case, we will associate all the volume of C ′ with one such facet F . Note that

any one facet may only “receive” the volume of a stack of 2n cubes by this

process. If Cj is in S for all j ∈ J , we do the following : for each j ∈ J , we

associate φj(u) = u2
j/(
∑

i∈J u2
i ) of the volume of C ′ with Cj.

Now any (S, S̄) facet receives volume at most 2nδn. Thus the volume

mapped onto all (S, S̄) facets is at most 2nδn|(S, S̄)|.

23



Now consider an inside cube C. This is mapped onto by border cubes

C(k) ,using a direction ±ek, for k ∈ A ⊆ {1, 2, ..., n}. We use superscript (k)

to refer to quantities associated with C(k).

Now |x(k) − x(l)| ≤ δ
√

2(2n + 1)2 + n − 2 ≤ 4nδ. Thus, by Proposition

9, we have

|u(k) − u(l)| ≤ 2

3
√

2n

But, the total volume mapped onto C is

δn
∑

k∈A

φk(u
(k)) ≤ 18δn by Proposition 7

Thus the total volume mapped onto inside cubes is at most 18δn|SI |.

Proposition 11

Let K be a convex body containing the unit ball and let S be a set of

cubes that weakly intersect K(α). Let S ′ ⊆ S be those cubes which actually

intersect K(α). Then

|S| ≤ |(S, S̄)| + 18|S ′|.

Proof : Let C ∈ S−S ′. Then there exists x ∈ C∩∂K(α+α′). Let y ∈ K

be the nearest point to x in K and u = x−y
|x−y| . Then α < |x − y| ≤ α + α′ .

Now let J = {j : |uj| ≥ 1√
2n
} and observe now that if j ∈ J then the point

x − sign(uj)δej is at distance at most α from y and so is in K(α). Hence

for every j ∈ J the neighbouring cube C ′
j across the face Fj in the direction

-sign(uj)ej meets K(α). If there exists j ∈ J such that C ′
j /∈ S then we map

all of the volume of C onto any such Fj. Otherwise we share out the volume

of C by mapping φj(u)δn of it to C ′
j ∈ S ′ for j ∈ J . The result follows (as
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in Proposition 10) once we have shown that a cube in S ′ has at most 18δn

in volume mapped onto it in this way. So now let C ′ ∈ S ′ be fixed. This is

mapped onto by cubes C(k) ∈ S − S ′, using x(k), u(k), k ∈ K ⊆ {1, 2, ..., n}
(in the notation of Proposition 10). Now

|x(k) − x(l)| ≤ 3
√

nδ k, l ∈ K

which implies

|u(k) − u(l)| ≤ 2

3
√

2n

and hence (Proposition 7)

∑

k∈K

φk(u
(k))δn ≤ 18δn.

Remark: The term 2n|(S, S̄)| in the inequality of Proposition 10 can be

replaced by 8
√

2n|(S, S̄)|. This is done by modifying the argument, and using

a strengthening of Proposition 9 to show that an inside cube can be reached

in distance δ
√

2n/uk. However it turns out that this is not the dominant

term in the complexity analysis, so we have omitted this refinement.

5. Remarks

Remark 1 If the convex body K is a polytope given explicitly by its

constraints, then we can just use the natural random walk – since it is now

possible to test in polynomial time if the body intersects C(α) for any cube C.

This is done by solving a quadratic programming problem using the ellipsoid

algorithm.
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Remark 2 We do not quite need the oracle we have described. We may

instead use the so-called “weak membership oracle” (Grötschel, Lovász and

Schrijver [1988]). A “weak membership oracle” for a convex body K does

the following : given a point x and a rational λ, it tells us (in unit time)

either (i) x belongs to K(λ) or (ii) tells us that x does not belong to K(−λ),

the set of points in K which are at distance at least λ from the boundary of

K. It is straightforward to see that such an oracle will do for our purposes.

Remark 3 Given a weak oracle for a convex body K containing the

origin in its interior, it is easy to construct an oracle for the so-called “polar”

or “dual” body K∗ = {u : max{u · x : x ∈ K} − min{u · x : x ∈ K} ≤ 1}.
We briefly sketch the argument. Given any u, we can find the approximate

maximum and minimum of u ·x over K to a desired degree of approximation

using the weak oracle for K (see Grötschel, Lovász and Schrijver [1988]).

Then if the difference between these is suitably close to 1, we answer yes,

otherwise answer no. Thus, it is possible to find the volume of the polar

body given an oracle for the “primal” body.

Remark 4 We can integrate any bounded nonnegative concave function

defined over a convex body K in Rn. This is because we can express
∫

K f

as Voln+1(K1) where K1 = {(x, t) : x ∈ K and 0 ≤ t ≤ f(x)}. Some non-

concave functions that do not vary very rapidly may also be integrated by

sampling values at random points (using our random walk to choose the

points).

Remark 5 It would be interesting to show that the random walk over

cubes that intersect any well-rounded convex body K is rapidly mixing. This

would simplify our algorithm by avoiding the use of K(α).

Remark 6 We suspect the following result is true. If so, it would give

us the required isoperimetric inequality more readily without having to look
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at the boundary of the set T2.

Suppose K is any convex body in Rn and S is some measurable subset of

it. (It may or may not be necessary to assume any other properties of S like

smoothness or connectedness.) If the volume of S is at most half the volume

of K, is it true that the “exposed surface area of S”, i.e. the (n− 1) volume

of ∂S \ ∂K is at least the n volume of K divided by a fixed polynomial in

n, d(K) ? (Here d(K) is the diameter of K.) It is also possible that such a

result may hold for nonconvex K as well, where now the denominator is also

a function of the least (Ricci) curvature of the surface of K.

Remark 7 The random walk enables us to generate a random point in a

polytope with nearly uniform distribution. Of some interest, for example, is

the following polytope P in Rn2

where the variables are {xij, 1 ≤ i, j ≤ n}
and P = {x : 0 ≤ xij ≤ 1 , xij + xjk ≤ xik ∀i, j}. The points of P for

example give us “costs” on the edges of a graph on n vertices which satisfy

the triangle inequality. We expect that the random generation aspect of our

result will have other applications.

Remark 8 As we remarked immediately after the algorithm, we con-

jecture that the bound of O(n19) can be improved. Here we discuss some

limits on the improvements. The diameter of the Markov chain we have is

O(r/δ) which is O(n4). By working carefully through the proof of Lemmas

1 and 2, and taking note of Theorem 2, we see that the dependence of our

upper bounds on the number of steps for rapid mixing on the diameter of

the Markov chain is the fourth power of the diameter. (The Φ2 of Theorem

2 contributes a 2 and Lemmas 1 and 2 already have a 2 in them.) By well-

known results, (see Aldous [1981-1982], example 5.7), the dependence cannot

be improved below the square of the diameter, even in the simple case that

the convex body is a cube. (In fact, for the 1-dimensional random walk with
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2 reflecting boundaries, after t steps, we are expected to be only at distance
√

t from the starting point.) Thus, with our random walk, the best bound

on the number of steps needed for rapid mixing is Ω(n8). Thus, we must re-

duce the diameter of the Markov chain for more improvements. If the result

stated in Remark 5 is true, then there is no need for going to K(α). Then

going through our arguments carefully, it can be seen that δ = 1/O(n3/2)

will work, whence the diameter will be O(n3).
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