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A b s t r a c t .  We study the performance of packet routing on arrays (or 
meshes) with bounded buffers in the routing switches, assuming that 
new packets are continuously inserted at all the nodes. We give the first 
routing algorithm on this topology that is stable under an injection rate 
within a constant factor of the hardware bandwidth. Unlike previous 
results, our algorithm does not require the global synchronization of the 
insertion times or the retraction and reinsertion of excessively delayed 
messages and our analysis holds for a broad range of packet generation 
stochastic distributions. This result represents a new application of a 
general technique for the design and analysis of dynamic algorithms that 
we first presented in [Broder et al., FOCS 96, pp. 390-399.]. 

1 Introduct ion 

The rigorous analysis of the dynamic performance of routing algorithms is one 
of the most challenging current goals in the study of communication networks. 
So far, most theoretical work on this area has focused on static routing: A set 
of packets is injected into the system at t ime 0, and the routing algorithm is 
measured by the t ime it takes to deliver all these packets to their destinations, 
assuming that  no new packets are injected into the system in the meantime (see 
Leighton [8] for an extensive survey). In practice however, networks are rarely 
used in this "batch" mode. Most real-life networks operate in a dynamic mode 
whereby new packets are continuously injected into the system. Each processor 
usually controls only the rate at which it injects its own packets and has only a 
limited knowledge of the global state. 

This situation is bet ter  modeled by a stochastic paradigm whereby packets 
are continuously injected into the system according to some inter-arrival distribu- 
tion, and the routing algorithm is evaluated according to its long term behavior. 
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In particular, quantities of interest are the maximum arrival rate for which the 
system is stable (that is, the arrival rate that ensures that the expected number 
of packets waiting in queues does not grow with time), and the expected time a 
packet spends in the system in the steady state. The performance of a dynamic 
algorithm is a function of the inter-arrival distribution. The goal is to develop 
algorithms that perform close to optimal for any inter-arrival distribution. 

Several recent articles have addressed the dynamic routing problem, in the 
context of packet routing on arrays [7, 6, 9], on the hypercube and the butterfly 
[12] and general networks [11]. The analysis in all these works assumes a Poisson 
injection rate and requires unbounded queues in the routing switches (though 
some works give a high probability bound on the size of the queue used [7, 
6]). Unbounded queues allow the application of some tools from queuing theory 
(see [4, 5]) and help reduce the correlation between events in the system, thus 
simplifying the analysis at the cost of a less realistic model. Clearly bounded 
buffers in the routing switches is a setting that most accurately models real 
networks. 

A general technique for the design and analysis of dynamic packet routing 
algorithms has been developed in [1]. The crux of that work is a general theorem 
showing that any communication scheme (a routing algorithm and a network) 
that satisfies a given set of conditions, defined only with respect to a finite 
history, is stable up to a certain inter-arrival rate. Thus, the analysis of the 
long term behavior of a dynamic algorithm is reduced to a simpler question of 
analyzing a finite execution of the algorithm. Furthermore, this technique also 
gives a bound on the expected routing time in the stable state. The theorem 
applies to any inter-arrival distribution: the stability results and the expected 
routing time of a packet inside the network depend only on the inter-arrivai 
rate. The waiting time in queues depends on the inter-arrival distribution and 
an explicit relation is given in the main theorem of [1]. 

To apply the general technique one needs to present an algorithm whose per- 
formance analysis (on finite segments) satisfies the conditions of the theorem. 
Several applications of the general technique to routing algorithms for low diame- 
ter networks such as the butterfly have been demonstrated in [1]. Here we present 
the first application to arrays: we consider an n • n mesh of routing switches 
with bounded buffers. Each routing switch node is connected to a processor. A 
processor has its own queue for the packets generated by it that are waiting to 
enter the network. We can assume this processor queue to be unbounded. (De 
facto, this queue is finite and when it becomes full the processor stops generating 
new packets.) Other packets pass only through the routing switch. The routing 
switch has a routing queue stored in a bounded buffer where packets waiting to 
be routed are placed. For simplicity we assume that packets have random desti- 
nations. This assumption can be relaxed as long as no destination is overloaded 
with packets. 

T h e o r e m  1. There is a packet routing algorithm for the n x n  mesh with bounded 
buffers that is stable for any inter-arrival distribution with expectation at least 
Cn for some fixed constant C. The expected time a packet spends in the network 
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is O(n). In the case of Poisson arrival (geometric inter-arrival distribution) the 
expected time the packet spends in the queue is also O(n). 

Since the distance between most pairs of nodes on the mesh is f2(n) the above 
theorem is clearly optimal up to constant factors. 

Leighton [7] has studied this problem and obtained similar results provided 
that the buffers in the routing switches are unbounded. More precisely, Leighton's 
algorithm ensures that at any fixed time, with high probability, no routing queue 
has more than 4 packets. However, for any sufficiently long execution the maxi- 
mum size of any queue exceeds any given bound. Our results build on Leighton's 
analysis, by augmenting his algorithm with a simple flow control mechanism, 
which ensures that every routing queue is bounded at all times, and thus only 
finite buffers are needed. 

In a different direction, several recent works studied the dynamic performance 
of deflection (hot potato) routing. In deflection routing packets in the networks 
always move and there are no buffers in the routing switches. However, the 
analysis in these works requires either strong synchronization between processors 
in timing injections of new packets to the network [3,10], or a mechanism to 
retract and reinsert excessively delayed packets [2]. 

2 T h e  G e n e r a l  T e c h n i q u e  

We outline here the general technique developed in [1]. The setting is as follows: 
we are given a routing algorithm ,4 acting on a synchronous  network F(n) 
with n inputs and n outputs. Each input receives new packets with inter-arrival 
distribution ~'. The packets are placed into an unbounded FIFO queue at the 
input node. Packets have an output destination chosen independently and uni- 
formly at random. When a packet reaches the top of its queue, we call it active. 
At some point after becoming active, the packet is removed from its queue and 
eventually routed to its destination. 

We are interested in determining under which conditions the queuing system 
is ergodic (or stable), that is, under which conditions the expected length of 
the input queues is bounded as t ~ oo. To this purpose we have to study the 
inter-departure time, which is the interval from when a packet becomes active 
until it leaves the queue, and the next packet in line (if any) becomes active. 
Besides stability, we are also interested in the expected time a packet spends in 
the queue, and the expected time it spends in the network. 

Since the inter-arrival times are independent, if the inter-departure times are 
also independent, then each queue can simply be viewed as a G/G/1 system and 
the stability condition would trivially be that the inter-departure rate exceeds 
the inter-arrival rate. However the usual situation is that there are complex 
interactions among packets during routing and thus the inter-departure times 
are highly dependent and hard to analyze. 

The following theorem defines a set of relatively simple sufficient conditions 
such that if the routing algorithm satisfies them, then the system is stable up to 
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a certain inter-arrival rate and we can bound the expected time a packet spends 
in the queue and in the network. 

The or e m 2. Assume that the randomized routing algorithm .4 acting on the 
network F(n) is characterized by four parameters a, b, m, and T, where a and b 
are constants, m and T might depend on n, and m / T  < 1, and that it satisfies 
the following conditions: 

(1) Every packet is delivered at most O(n a) steps after becoming active. 
There exists an event s (where r is a time) with the following properties: 

(2) (a) Er depends only on random choices made in the open interval ( r - - n b , r +  
rib). (These choices are: random destinations chosen by the packets that 
became active in the interval, random arrivals in this interval, and ran- 
dom coin flips made by the algorithm.) 

(b) -~s implies that any packet that at time r was among the first m packets 
in its queue, is delivered before time r + T. 

(c) For any fixed time r the probability Pr(~%) is bounded by 

(re~T) r 
Pr(Cr) < n 2 a + 2 b + 3  �9 

If there ezists a positive constant e such that the inter-arrival distribution 3: 
has an inter-arrival rate smaller than (1 - e)m/T,  then the system is stable and 
the time a packet spends in the input queue is bounded by O(T) + f ( T ) ,  where 
f is a .function that depends only on ~ and not on the routing process. (For 
"reasonable" distributions such as P oisson f ( T ) = O ( T / m ) ). Furthermore the 
average time elapsed since a packet becomes active until it is delivered is also 
O(T). [] 

3 The  Main  Resul t  

3.1 The  Algor i thm 

The description of the algorithm has three components: path selection; routing 
switch policy; and flow control. 

Path selection. A packet takes the shortest one-bend route from origin to desti- 
nation. First (left or right) on its origin row to its destination column, then up 
or down on that column to the packet's destination. 

Switch policy. We assume that a switch can receive up to four packets per step, 
one from each incoming edge, and send four packets per step, one through each 
outgoing edge. A switch maintains a buffer for each outgoing edge. When there 
is a space in a buffer the switch receives packets to that buffer according to the 
following rule: A packet is old if it has spent at least K n  steps in the network, 
where K is a sufficiently large constant (K _> 2e 2) will suffice. Old packets 
have higher priority. Among the old packets the oldest packet has the highest 
priority. Old packets of the same age are dealt with in lexicographic order of 
pair (origin,destination). Among packets that are not old, the packet that has 
to travel farthest has the highest priority. 
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Admiss ion  control  The algorithm uses a token based admission control mecha- 
nism. Each input has one token. A token can be in one of three modes: enabled, 
used or suspended. Initially all the tokens are in enabled mode. To inject a packet 
into the network the input needs an enabled token. The packet at the top of the 
processor queue is sent together with the enabled token to its destination, pro- 
vided there is room in the edge buffer which will receive it. When a packet is 
delivered the mode of its token switches to used mode and the token (acknowl- 
edgment) is returned to the input node where it came from. We use a separate 
network to route tokens back to their sources and the analysis of this routing 
mirrors that of the main network. Details are left to the full paper. Let t8 be 
the last time a given token was sent with a packet, and let tr be the last time it 
returns to its input node. 

If  tr - ts <_ 2 K n  then the token becomes enabled again at time tr + 2 K n  + Z ,  
where Z is a random number chosen uniformly from [0, Kn].  I f  tr - ts > 2 K n  
then the token mode is switched to suspended mode until time tr + 6n 7 + Z 
steps, then it is switched again to enabled mode, where Z is chosen as above. 

This flow mechanism guarantees that an input cannot inject more than one 
packet within each interval of 2 K n  steps, and that the input does not inject new 
packets when the network is congested. Furthermore, observe that the probabil- 
ity that a token becomes enabled at any fixed time is at most 1 / ( K n ) .  

3.2 Analysis  of  the  A lgo r i t hm 

In this section we give an analysis of the performance of the above algorithm 
for finite intervals showing that the algorithm satisfies the requirements of the 
general technique (Thm. 2). This will prove Thm. 1. 

We will assume Poisson arrivals i.e. at each step, a packet arrives with prob- 
ability 1 / ( C n ) .  The general case can be handled as in [1]. The following lemma 
satisfies requirement (1) of the general theorem: 

L e m m a  3. Under this protocol, no packet takes more than S = 7n r steps to 
reach its destination, once it has become active and at mos t  2n s steps once it 
has obtained an enabled token. 

Proof. Consider a packet P. Let P0 be its predecessor in the queue. P0 does 
not leave the queue until it has an enabled token. At that time there are no 
more than n 2 other packets in the network. Consider the progress of the highest 
priority old packet / / i n  the network. If H is moving along a column then it 
moves at every time step. If it is moving along a row, then it could fail to 
move because further along that row there is contention for a column buffer. H 
waits at most K n  + n 2 steps before making another move. This is because the 
packet waiting to move along the column in question will have become old and 
it will be the oldest packet trying to get into the column edge buffer. Thus after 
K n  + K n  2 + n 3 steps H will have reached its destination column and will reach 
its final destination within a further n steps. So after at most K n  3 + K n  4 + n s 
steps, P0 will be the highest priority packet in the network and will be delivered 
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within a further K n  + K n  2 + n 3 steps. Thus aDO gets to its destination at most 
K n  + K n  2 + ( K + 1)n 3 + K n  4 + n s <_ 2n 5 steps after leaving the queue. The used 
token comes back after at most another 2n s steps and after at most 6n 7 + K n  
steps is re-activated. Finally, after at most another 2n s steps the packet P is 
delivered. The sum of these delays is less than 7n r. [3 

Next we turn to the definition of the event St,  and to the probabilistic analysis 
of the algorithm's performance in finite intervals. Our analysis is based on the the 
technique in [7] as described in [8] [Sect. 1.7.2]. As in [7] we relate the execution 
of the algorithm to an artificial execution on a wide-channel model in which an 
arbi t rary number of packets can traverse an edge at any step, and no packet is 
ever delayed. We assume that  execution on the wide-channel starts at t ime r .  

Let c and q be constants to be defined later, let 

do = (e + 3) log n + log(2K) . 

This serves as a suitable high probability upper bound on the delay of any given 
packet. Define the events & as follows: 

& 

(1) 

(2) 

(3) 

(4) 

is the event tha t  at least one of the following occurred: 

There is an old packet in the system at any time in the 
interval [r, r + Kn]. 
There is a row edge e, a t > 0, and an interval [to, t0+t+do] C_ 
[r, r + Kn], such that  t + do packets traverse edge e in tha t  
interval in the wide-channel model. 
There is a column edge e, a t > 0, and an interval [to, to + 
t + 2do] C_ [r, r + Kn], such that  t + do packets traverse edge 
e in that  interval in the wide-channel model. 
A routing buffer has q packets in some step in the interval 
It, r + gn] .  

We say that  a packet was delayed d steps in traversing an edge if there is a 
d steps gap between the time it traverses the edge in the wide-channel model 
and the time it traverses the edge in the s tandard model. Leighton's analysis in 
[7] is based on the following fact (see CoL 1.9 and Lemma 1.10 in [8]): If buffers 
are unbounded and the farthest to go packet always has the highest priority, 
then a packet is delayed d steps in traversing a row edge e only if there is an 
interval of t + d steps such that  t + d packets crossed edge e in tha t  interval in 
the wide-channel model. Similarly, if a packet is delayed d steps in crossing a 
column edge e then, assuming no packet is delayed more than do steps on a row, 
there is an interval of t + do + d steps in which t + d packets cross edge e in the 
wide-channel model (see [8] for a detailed proof). Thus we have the following 
corollary that  satisfies requirement (2)(b) in the general theorem: 
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C o r o l l a r y  4. The event -"gr implies that any packet with an enabled token at 
time r is delivered within the next 2n + 2do < K n  steps. 

Proof. Any packet with an enabled token is delivered within 2n steps in the 
wide-channel model. In the standard model its additional delay is at most 2do. 

0 

Next we bound the probability of the event s Assume first tha t  old packets 
are removed from the system the moment they become old, and all buffers are 
unbounded. 

For an edge e and an interval [tl, t2] C_ [r, r + Kn] let Eo(e, t l ,  t2, r) be the 
event tha t  in the wide-channel model r packets cross e during time interval 
[tl, t2]. Note tha t  every token is used at most once in the interval. 

Case 1. e is a row edge: 

(The nodes on the row under consideration have a total  of n tokens. Each token 
is used at most once in the interval. Choose r of them to t ransport  the packets 
of interest. The probability tha t  a token becomes enabled at any fixed time is 
at most l / (Kn) . )  

Case ~. e is a column edge: 

(There is a total  of n 2 tokens. Each token is used at most once in the interval. 
Choose r of them to t ransport  the packets of interest. The  probability tha t  a 
token becomes enabled at any fixed time is at most 1/(Kn) and the probability 
that  the uses a particular column is 1 /n  0 

Thus, under the assumption that  no old packets are present in the interval 
[r, r + Kn] the probability tha t  there is a row edge e, a t > 0, and an interval 
[t0,t0 + t + do] C_ [r,r + Kn], such that  t + do packets traverse edge e in tha t  
interval in the wide-channel model is bounded by 

t_>o 

for K _> e 2. (There are K n  possible values for to and n 2 edges.) 
Similarly, under the same assumptions, the probability tha t  there is a column 

edge e, a t > 0, and an interval [to,t0 + t + 2do] C_ [r,r + Kn], such that  t + do 
packets traverse edge e in tha t  interval in the wide-channel model is bounded by 

t>o ~' (do + t )K ] <- Kn3 ~ ~- 2Kn3 ~- n-e  ' 
_ t>_o 

provided that  K _> 2e 2. 
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Remark 5. It  follows (see [8, Sect. 1.7.2, Lemma 1.10]) tha t  with probability at 
least 1 - 2n -c,  for every edge e and time interval I of do steps, there is a step 
in I in which e is empty. 

Now we show that  the assumptions that  no old packets are present in the 
interval [7, r + Kn] holds with high probability. 

Consider an interval [r I, ~.1 + 2Kn]. By definition, the only packets tha t  can 
become old in the interval IT I + K n ,  T I + 2Kn] had enabled tokens at t ime r I. 
Thus, in view of the discussion above, the probability tha t  any packet becomes 
old in [71 + K n ,  r I + 2Kn] given that  there were no old packets present in the 
interval [rl ,~ I + Kn] is at most 2n -r 

Hence if the interval I t -  a, ~- + Kn] contains any subinterval of length at  least 
K n  when no old messages are present, we can generously bound the probability 
tha t  any old messages are present in the interval [% r + Kn],  by 2(a + K n ) n  -c. 

Take a = n2S + kN .  Then if a packet from a particular source becomes old 
at some time in [v - a , v  + Kn], it is delivered within S steps, and its token is 
not enabled again until after t ime r + K n .  Hence there is an interval of length 
at least a - n2S = k N  when certainly no old messages are present, and thus 
with high probability no old messages are present in [v, ~- + Kn]. 

Next we bound the probability tha t  any buffer is full in the interval [T -- 
a, 7 + Kn]. From Remark 5 we can assume that  some row edge has q packets in 
its buffer only if there is a window of do steps in which some input tries to inject 
at least q packets. The probability of this is at most 

for sufficiently large q. 
From Remark 5 we can further assume that  a column edge has q packets 

in its buffer only if there is a window of do steps in which q packets turn at e, 
Assuming no row delay of do or more, the probability of this is bounded by 

~, K n  2 ] 

for sufficiently large q (see [8, Sect. 1.7.2, Thm.  1.13]). (The factor (a + K n ) n  2 
bounds the number of (interval I -- It1, t2], edge e) pairs. There are (q) choices of 
token. There is a probability 1 /n  tha t  its destination uses e. There is a probability 
of at most 2do/ (Kn)  tha t  it becomes enabled at a t ime which means it would 
cross e during [tl - do, t2] in the wide-channel model.) 

Now choose a, b, and c such that  

n a > S = 2 ( ( K + 2 ) n + n  2) , 

n b > a = n 2 S + K n  , 

c > 2 a + 2 b + l l  . 
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Then summarizing the discussion above 

Pr(Cr) ~ n - ( 2 a + 2 b + 3 )  �9 

Finally we observe that  in evaluating the probability of the event Cr we only 
used events in the interval [r - a, r + Kn] and thus requirement (2)(a) in the 
general theorem is satisfied for n b. Thus we showed that  all the condition of 
Thm. 2 are satisfied for T = 2 K n  and m = 1. 0 

4 C o n c l u s i o n  

We have shown how to combine our general technique, first presented in [1], with 
that  of Leighton's analysis [8] of a greedy routing algorithm on an n x n mesh. 
The results are optimal up to constant factors. 
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