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Abstract

Let ∆ ≥ 3 be an integer. Given a fixed z ∈ R∆
+ such that z∆ > 0, we consider a

graph Gz drawn uniformly at random from the collection of graphs with zin vertices
of degree i for i = 1, . . . ,∆. We study the performance of the Karp-Sipser algorithm
when applied to Gz. If there is an index δ > 1 such that z1 = · · · = zδ−1 = 0 and
δzδ, . . . ,∆z∆ is a log-concave sequence of positive reals then with high probability the
Karp-Sipser algorithm succeeds in finding a matching with n‖z‖1/2− o(n1−ε) edges in
Gz where ε = ε(∆, z) is a constant.

1 Introduction.

The Karp-Sipser algorithm is the following randomized algorithm for finding a large matching
in a graph. We begin with the empty matching and iteratively choose edges from the graph
at random and add them to the matching. When an edge is added to the matching the
vertices in that edge and all incident edges are removed from the graph. Care is taken in the
choice of the random edge only when there are vertices of degree 1 in the graph. If vertices
of degree 1 exist, one is chosen at random and the edge containing that vertex is added to
the matching. Note that when the algorithm adds an edge that contains a vertex of degree
1 (sometimes called a pendant edge) no ‘mistake’ is made; to be precise, if G is a graph with
a pendant edge e then G has a maximum matching that contains e.

There are polynomial time algorithms for finding maximum matchings in general graphs
(see [6] [14]). However, these algorithms are somewhat complicated and require significantly
more than linear time. The Karp-Sipser algorithm, on the other hand, is a simple linear time
algorithm that finds a nearly optimal matching in the average case. Indeed, the performance
of the Karp-Sipser algorithm on the sparse random graph Gn,cn/2 is well understood. (The
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graph Gn,m is chosen uniformly at random from the collection of graphs with n vertices
and m edges.) If c < e then whp the Karp-Sipser algorithm finds a maximum matching
in Gn,cn/2. If c > e then whp the Karp-Sipser algorithm finds a matching with cardinality
within n1/5+ε of the largest matching in Gn,cn/2 for any ε > 0. These results were achieved by
Aronson, Frieze and Pittel [1] in refinement of earlier results of Karp and Sipser [13]. While
these results show that the Karp-Sipser algorithm succeeds in finding a nearly maximum
matching whp 1 in almost all sparse graphs, we do not have an understanding of how it
performs on more restrictive classes of sparse graphs; that is, when we impose conditions
beyond simply insisting that the graph has certain a number of edges.

Consider the following model. We use R+ to denote the non-negative reals. Let ∆ be a
positive integer and let z ∈ R∆

+ be a fixed vector with z∆ > 0. We define Gz to be a graph
drawn uniformly at random from the collection of a graphs with zin vertices of degree i for
i ≥ 2. (We systematically drop nearest integer notation and assume that the sum of the
degrees in any degree sequence is even. These conventions have no impact on our results.)
Note that we do not impose the condition

∑∆
i=1 zi = 1. The number of vertices in Gz is

‖z‖1n. ([5] and [15] treat similar models.) We consider the question:

Which distributions z have the property that the Karp-Sipser algorithm is likely
to produce a matching with (1− o(1))‖z‖1n/2 edges in Gz?

We will refer to such matchings as almost perfect matchings. Of course, this question
is closely related to the matching numbers of these graphs, a natural question from the
perspective of the theory of random graphs that seems not to have been addressed. We
return to a discussion of the matching numbers of these graphs in the Conclusion of this
paper. Note that if the graph Gz has z1 > 0 then whp there will be a linear number of
pairs of vertices of degree 1 that have a common neighbor. At most one vertex from such a
pair is saturated by a given matching. Therefore, if z1 > 0 then whp Gz will not have an
almost perfect matching. So, we henceforth consider only degree distributions z with z1 = 0.
(N.b. there are other degree distributions for which we can easily see that the Karp-Sipser
algorithm does not produce an almost perfect matching. These are discussed in Section 2
below.)

Let δ be the minimum degree of the random graph Gz (i.e. the smallest i such that
zi > 0). Our results hold for vectors z such that

zi > 0 and i2z2
i ≥ (i− 1)zi−1(i+ 1)zi+1 for i = δ + 1, . . . ,∆− 1. (1)

Many natural degree sequences satisfy this condition. For example, if we have

zi =

{
1 if δ ≤ i ≤ ∆

0 if 1 ≤ i < δ

then z satisfies (1). Regular graphs, for example, have degree distributions of this type. For
a second example, consider the distribution given by

zi =

{
λi

i!
if δ ≤ i < ∆

0 if 1 ≤ i < δ

1a sequence of events E1, E2, . . . occur with high probability (whp) if limn→∞ P(En) = 1.
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(i.e. a truncated Poisson random variable). Then we have

i2z2
i =

λi

(i− 1)!

λi

(i− 1)!
>

λi−1

(i− 2)!

λi+1

i!
= (i− 1)zi−1(i+ 1)zi+1.

So the truncated Poisson distribution satisfies (1). We are now ready to state our main
result.

Theorem 1. If ∆ ≥ 3 and z ∈ R∆
+ such that z1 = 0, z∆ > 0 and z satisfies (1) then whp

the Karp-Sipser algorithm produces a matching with (1− o (n−ε)) ‖z‖1n/2 edges in Gz for
some constant ε = ε(∆, z).

An analysis of the evolution of the Karp-Sipser algorithm on the graph Gz for a fixed z can be
achieved by a (more or less) straightforward application of the so-called differential equations
method for random graph processes (see Wormald [17] for an introduction to and discussion
of this method). We write a system of ordinary differential equations with ∆ variables (one
corresponding to the set of vertices of degree i for each 1 ≤ i ≤ ∆) and show that whp
the evolution of the algorithm is concentrated around the trajectory given by the solution
of the system. Usually the solution of such a system of differential equations does not have
a simple closed form. But one can get an approximation for the trajectory by solving the
system numerically. Of course, this approach can only handle one distribution z at a time.
Furthermore, numerically approximating this system all the way to the termination of the
algorithm with good bounds on the errors in the approximation is a significant technical
challenge because a certain Lipschitz constant goes to infinity as the number of remaining
vertices goes to zero. (This issue is discussed in more detail in Section 2 below.) Thus, the
main contribution of Theorem 1 is an analytic proof that the solution of the associated system
of differential equations is well-behaved all the way to the termination of the algorithm for
every distribution z that satisfies the given conditions.

The remainder of the paper is organized as follows. In the next section we introduce the
system of differential equations that governs the evolution of the Karp-Sipser algorithm on Gz

and, assuming that the evolution of Karp-Sipser follows the trajectory given by the solution
of this system of differential equations, prove Theorem 1. In Section 3 we verify that the
evolution of Karp-Sipser indeed follows the trajectory discussed in Section 2. The Conclusion
contains an extension of Theorem 1 to random graphs Gz with z1 > 0, a discussion of the
matching number of the random graph Gz and a number of open questions.

2 Proof of Theorem 1

We analyze the Karp-Sipser algorithm applied to the random graph Gz. We use the standard
configuration model to generate Gz (for an introduction to and discussion of this model see
Bollobás [2] or Section 9.1 in [11]). Each vertex v is associated with a set of configuration
points where the number of points in this set is equal to the degree of v. A configura-
tion is a uniform random matching on the set of configuration points. Each configuration
corresponds to a (multi-)graph with the desired degree sequence: To get the graph that cor-
responds to a given configuration simply contract the set of configuration points associated
with each vertex. We prove Theorem 1 in the configuration model; since we consider only
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graphs with bounded maximum degree, any property that holds whp in the configuration
model also holds whp in Gz. (It is well known that under these conditions the configuration
model produces a simple graph with probability bounded away from zero, and conditioning
on this event, the graph is uniformly distributed as Gz.)

We reveal the configuration only as necessary as the algorithm proceeds. So, for example,
when we choose a random edge we choose two configuration points at random and when we
determine the neighbor of a particular configuration point it is chosen at random from the
collection of remaining configuration points. Thus, our probability space is the uniform
distribution over the set of all pairs consisting of a configuration and a sequence of bits (the
sequence of bits determines the edge choices of the Karp-Sipser algorithm). Furthermore, if
we condition on the evolution of the process up to a certain point then the remaining graph
and the remaining bits form a probability space of the same form.

We follow the proof and notation of Theorem 5.1 in Wormald [17]. The vector Y ∈ Z∆
+

corresponds to the configuration model with Yi vertices of degree i for i = 1, . . . ,∆. The
vector z is our continuous approximation. Throughout this discussion we assume that we
are working with Y that is close (in a way that will be made precise when we get to the
actual proof) to nz. Define

µ(z) =
∆∑
i=1

izi

for z ∈ R∆. We have

µ(Y) =
∆∑
i=1

iYi.

Note that we assume µ(Y) to be approximately nµ(z) and that µ(Y) is the number of
configuration points in the configuration model Y.

There are two ‘phases’ of the Karp-Sipser algorithm applied to the graph Y that cor-
respond to two different systems of differential equations governing the evolution of the
algorithm: one for distributions z for which the algorithm spends all of its time dealing with
pendant edges and another for distributions z where pendant edges do not significantly ac-
cumulate and the algorithm splits its time between dealing with pendant edges and choosing
purely random edges. As we are only interested in those graphs Y for which the Karp-Sipser
algorithm produces almost-perfect matchings, we restrict our attention to the latter phase.
We restrict our attention to z such that z1 = 0 and pendant edges don’t quickly accumulate
for Y in the vicinity of z.

In order to characterize the set of distributions z with this property, we consider the
expected change in the number of vertices of degree one in a step of the Karp-Sipser algorithm
in which a pendant edge is added to the matching. Let v be a vertex of degree 1. We choose
a configuration point uniformly at random to be in the edge with the configuration point
corresponding to v. The probability that this configuration point corresponds to a vertex u
of degree i is iYi/(µ(Y) − 1) for i = 2, . . . ,∆. In this event we then delete the remaining
i− 1 edges incident with the vertex u. If any of these edges is incident with a vertex (other
than u) of degree 2 then a new pendant edge is created. The probability of this event is
2Y2/(µ(Y) − 3) for each edge deleted (unless the vertex u has degree 2 in which case 2
configuration points corresponding to the vertices of degree 2 have already been removed).
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Therefore, the expected number of vertices of degree one created is

2Y2

µ(Y)− 1
· 2Y2 − 2

µ(Y)− 3
+

∆∑
i=3

iYi
µ(Y)− 1

· (i− 1)
2Y2

µ(Y)− 3
=

2Y2

µ(Y)2

∆∑
i=2

Yii(i− 1) +O

(
1

µ(Y)

)
,

Note further that if the Karp-Sipser algorithm adds a purely randomly chosen edge from
the graph Y to the matching then the expected number of vertices of degree one created is
twice the final expression. Define

ϕ(z) =
2z2

µ(z)2

∆∑
i=2

zii(i− 1)

for z ∈ R∆
+. One can easily show that if ϕ(z) > 1 and Y is close to nz then whp the Karp-

Sipser algorithm quickly produces a linear number of vertices of degree 1 and therefore whp
does not produce an almost-perfect matching in the graph Y. So, we henceforth restrict our
attention to the following region (i.e. we only consider z that lie in this region):

D =
{
x ∈ R∆

+ : x1 = 0, x∆ > 0 and ϕ(x) < 1
}
.

By restricting z in this way we ensure that we only deal with the phase of the Karp-Sipser
algorithm that splits time between adding pendant edges and adding purely random edges
to the matching.

We are now ready to set-up our system of differential equations. We write the system of
differential equations by making a heuristic argument that relates the derivatives of the con-
tinuous variables with the expected one-step changes in the corresponding random variables.
The proof that the evolution of the Karp-Sipser algorithm actually follows the trajectory
given by the solution of this differential equations is given below (in Section 3). We begin
with the expected changes in the variables in one step of the process. Let Y+ be the degree
distribution after we apply a single step of the Karp-Sipser algorithm to the graph Y. If we
add a pendant edge to our matching we have

E[Y +
j − Yj] = − jYj

µ(Y)
+

∆∑
i=2

iYi
µ(Y)

(i− 1)

(
− jYj
µ(Y)

+
(j + 1)Yj+1

µ(Y)

)
+O

(
1

µ(Y)

)
for i = 2, . . . ,∆. This expression follows from reasoning that is similar to the calculation that
gave the expected number of degree 1 vertices created given above: the first term accounts
for change in Yj from the event that the pendant edge added to the matching contains a
vertex of degree j and the second term (i.e. the summation) accounts for the change in
Yj that results from the deletion of edges that are incident with the edge added to the
matching. Note that if we add a purely random edge the expected change in Yj is twice this
expression. Since there are two types of steps in the process, we cannot write the differential
equations in terms of the expected changes in a single step. Instead we write a system of
differential equations given by the expected changes over many steps of the process. We
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do this by taking into account the proportion of steps used on each of the two types of
steps in the Karp-Sipser algorithm. (Of course, this is not a ‘standard’ application of the
differential equations method as we cannot directly apply Theorem 5.1 of [17], for example.
The analysis due to Aronson, Frieze and Pittel [1] of the Karp-Sipser algorithm applied to
random graph Gn,cn also ‘mixes’ the two different types of Karp-Sipser steps into a single
differential equation. In that case this is achieved, rather miraculously, by a differential
equation in a single variable. A situation in which multiple types of moves are ‘mixed’ into a
single system of differential equations also arises in Shi and Wormald’s recent application of
the differential equations method to a greedy coloring algorithm on random regular graphs
[16].)

When the algorithm chooses a pendant edge for the matching, the expected number of
pendant edges created is roughly ϕ(z), and when the algorithm chooses a purely random
edge for the matching, the expected number of pendant edges created is roughly 2ϕ(z).
So, setting α(z) equal to the proportion of time that the algorithm spends choosing purely
random edges for the matching (for distributions in the vicinity of z) and noting that over
many steps of the algorithm we expect nearly all of the pendant edges that appear to be
added to the matching, we have

α(z)(2ϕ(z)) + (1− α(z))ϕ(z) = 1− α(z) ⇒ α(z) =
1− ϕ(z)

1 + ϕ(z)
.

Let Y(`) be the degree distribution of the remaining graph after ` steps of the algorithm
(each edge added to the matching corresponds to a single step). We introduce a continuous
parameter t defined by t = `/n, and we suppose Y(`) ≈ z(t)n. (We generally write z in
the place of z(t) for ease of notation). Taking into account the two types of steps in the
algorithm, we arrive at the following system of differential equations:

dzi
dt

= fi(z) =
2ϕ(z)

1 + ϕ(z)

[
− izi
µ(z)

+

(
∆∑
j=2

jzj
µ(z)

(j − 1)

)(
− izi
µ(z)

+
(i+ 1)zi+1

µ(z)

)]

+
1− ϕ(z)

1 + ϕ(z)

[
− 2izi
µ(z)

+

(
∆∑
j=2

2
jzj
µ(z)

(j − 1)

)(
− izi
µ(z)

+
(i+ 1)zi+1

µ(z)

)]

=
2

1 + ϕ(z)

[
− izi
µ(z)

+

(
∆∑
j=2

jzj
µ(z)

(j − 1)

)(
− izi
µ(z)

+
(i+ 1)zi+1

µ(z)

)]
(2)

for 2 ≤ i ≤ ∆. We emphasize here that we have not yet established that Karp-Sipser
actually follows the solution of this autonomous system of differential equations. This is
done precisely below (see Theorem 2).

Before proceeding with the proof we make a number of observations regarding the system
of differential equations given in (2). These are purely analytic observations; they do not
make use of the correspondence with the Karp-Sipser algorithm. First note that this system
of differential equations does not have a Lipschitz constant over the entire region D; in
particular, the partial derivatives of fi are unbounded as µ→ 0. However, we do have

∂fi
∂zj

= O

(
1

µ(z)

)
. (3)

6



This follows from

fi(z) =
2
(
−iziµ(z) +

∑∆
j=2 jzj(j − 1)(−izi + (i+ 1)zi+1)

)
µ2(z) + 2z2

∑∆
j=2 jzj(j − 1)

,

the fact that the partial derivatives of both the numerator and denominator are linear in
z2, . . . , z∆ and the simple observation jzj ≤ µ(z). It follows that fi is Lipschitz on regions
of the form

Dε =

{
x ∈ D :

∆∑
i=2

ixi > ε

}
.

Therefore, for any initial condition z(0) ∈ D there is a unique solution z(t) to the system of
differential equations (2) that extends to points arbitrarily close to the boundary of D. Note
next that when we compute dµ(z)/dt many of the terms cancel:

dµ(z)

dt
=

∆∑
i=2

ifi(z) = − 2

1 + ϕ(z)

∆∑
i=2

izi
µ(z)

[
2i− 1 +

2z2

µ(z)
(i− 1)

]
= −

(
2ϕ(z)µ(z)

z2(1 + ϕ(z))
+ 2

)
≤ −4. (4)

Furthermore,

dµ(z)

dt
= −

(
2ϕ(z)µ(z)

z2(1 + ϕ(z))
+ 2

)
≥ −

(
2ϕ(z)µ(z)

z2

+ 2

)
≥ −4∆. (5)

Similarly, we can bound dzi/dt; that is, we have

−2∆ ≤ −2∆izi
µ(z)

≤ fi(z) ≤ 2∆. (6)

(We note in passing that, while we derived the bounds (4)-(6) directly from the system of
differential equations, they have natural interpretations in terms of the graph process. For
example, since µ(z) is twice the number of edges and we delete at most 2∆ edges at each
step, (5) is a very natural bound.)

We note next that if z(0) is on the boundary of D (i.e. because some zi(0) equals 0) then
there is some δ > 0 such that z(t) is in the interior of D for t ∈ (0, δ]. To see this, consider
an index i ≥ 2 such that zi(0) = 0 and let k ≤ ∆ be the smallest index larger than i such
that zk(0) > 0. We claim that for i ≤ l ≤ k − 1 we have

djzl
dtj

(0) =
dj−1fl
dtj−1

(0)

{
= 0 if j < k − l
> 0 if j = k − l,

(7)

which follows from the fact that we can write fl = zlg1 + zl+1g2 where g1 < 0 and g2 > 0.
We verify (7) by induction on j. As a base case observe that

dzl
dt

= fl = zlg1 + zl+1g2

{
= 0 if l < k − 1

> 0 if l = k − 1.
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Now suppose that (7) is true for j ≤ m− 1. Consider i ≤ l ≤ k −m and write

dmzl
dtm

=
dm−1fl
dtm−1

=
m−1∑
r=0

(
m− 1

r

)(
drzl
dtr

dm−1−rg1

dtm−1−r +
drzl+1

dtr
dm−1−rg2

dtm−1−r

)
. (8)

It follows from our inductive assumption that drzl/dt
r = 0 for r + l < k and r ≤ m − 1.

Therefore, every term in (8) is zero if l < k −m, and in the l = k −m case we have

dmzk−m
dtm

= g2
dm−1zk−m+1

dtm−1
> 0,

again by induction.
Having established that the solution to (2) begins by moving into the interior of D, we

now characterize the ways in which the solution z(t) of the system (2) with initial condition
z(0) ∈ D can leave the region D. It follows from (6) that

zi(t) ≥ zi(δ) exp

(
−2i∆

∫ t

δ

dτ

µ(z(τ))

)
for t ≥ δ and i = 2, . . . ,∆

(this is an application of Gronwall’s inequality). Thus

zi(t) > 0 for i = 2, . . . ,∆ and t > 0 (9)

and
lim
t→s−

zi(t) = 0 ⇒ lim
t→s−

µ(z(t)) = 0. (10)

On the other hand, it follows from (4) that, as long as z(t) remains in the interior of D,
µ(z(t)) decreases at rate 4, at least. So there exists a finite s such that z(t) is defined for
t ∈ (0, s) and either

lim
t→s−

z(t) = 0 or lim
t→s−

ϕ(z(t)) = 1.

So, the point where the solution to the system of the differential equations (2) leaves the
interior of D is either at the origin or at a point z with ϕ(z) = 1. Note that these two
outcomes correspond to success and failure, respectively, of the Karp-Sipser algorithm applied
to the graph Y(0) (assuming, of course, that the evolution of the Karp-Sipser algorithm
follows the solution of this system of differential equations): If we arrive at a distribution in
the vicinity of the origin then nearly all vertices are saturated by the matching produced by
the Karp-Sipser algorithm and if we arrive at a distribution with ϕ > 1 then pendant edges
quickly accumulate and Karp-Sipser does not produce an almost perfect matching. This
concludes our discussion of the analytic properties of the solution of system of differential
equations (2).

Now we return to our discussion of the Karp-Sipser algorithm itself. We first note that we
can apply the differential equations method to conclude that the evolution of the algorithm
indeed follows the trajectory given by the solution of (2). Note that in order to prove
Theorem 1 we also need to show that whp very few vertices become isolated (i.e. have
degree drop to zero before being saturated by the matching) in the course of this evolution.
Let Y(`) be the degree distribution after ` steps of the Karp-Sipser algorithm have been
applied to the graph Y(0).
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Theorem 2. Let a ∈ D. Let z(t) be the solution of the system of differential equations (2)
with initial condition z(0) = a. Let Y(0) = Ga. There exists a constant ε = ε(∆) > 0 such
that the following holds. If σ = σ(n) satisfies the condition

ϕ(z(t)) < 1− n−1/6 and µ(z(t)) > n−ε for 0 ≤ t ≤ σ (11)

then whp we have

|Yi(`)− nzi(`/n)| < n9/10 for i = 2, . . . ,∆ and 0 ≤ ` ≤ σn, (12)

and the number of vertices stranded (i.e. vertices whose degrees drops to zero before being
saturated by the matching) in the first σn rounds is at most n3/4.

The proof of Theorem 2 is given in Section 3.
With this understanding of the evolution of the Karp-Sipser algorithm within the region

D in hand, we are ready to consider log-concave degree-distributions. Define

C =
{
z ∈ R∆

+ : z1 = 0, z∆ > 0 and z satisfies (1)
}
.

We establish a relationship between the region C and the region D as well as a relationship
between the region C and the system of differential equations (2). In order to do so, we
replace (1) with the following equivalent condition. We say that z is fully log-concave if

x+ y = a+ b and x < a ≤ b < y ⇒ xzxyzy ≤ azabzb. (13)

It is easy to see that if z is fully log-concave then the sequence izi is log-concave. The converse
also holds. Indeed, if δzδ, . . . ,∆z∆ > 0 and δzδ, . . . ,∆z∆ is log-concave and δ ≤ x ≤ y ≤ ∆
then we have

y−1∏
i=x+1

i2z2
i ≥

y−1∏
i=x+1

(i− 1)zi−1(i+ 1)zi+1 = xzx(x+ 1)zx+1

[
y−2∏
i=x+2

i2z2
i

]
(y − 1)zy−1yzy.

This inequality implies (x+ 1)zx+1(y − 1)zy−1 ≤ xzxyzy.

Theorem 3. The region C is a subset of the region D, and

z ∈ C and ϕ(z) = 1 ⇒ z1 = z3 = · · · = z∆ = 0. (14)

Proof. If z ∈ R∆
+ satisfies (13), z∆ > 0 and ∆ ≥ 3 then we have(

∆∑
i=2

i(i− 1)zi

)
2z2 =

∆∑
i=2

i∑
j=2

izi2z2

≤
∆∑
i=2

i∑
j=2

jzj(i+ 2− j)zi+2−j

=
∆∑
k=2

∆+2−k∑
l=2

kzk · lzl

≤

(
∆∑
k=2

kzk

)2

−∆2z2
∆.

(15)
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Note that we use the condition ∆ ≥ 3 in the last line. Rearranging we have

ϕ(z) ≤ 1− ∆2z2
∆

µ2(z)
.

We conclude that ϕ(z) < 1 so long as z > 0 is log-concave and zi is non-zero for some i ≥ 3.
This gives C ⊆ D. To prove the boundary condition (14), consider z ∈ C and let k be the
largest index such that zk > 0. It follows from (15), replacing ∆ in the upper limit of the
summation with k, that if k ≥ 3 then ϕ(z) < 1.

Next we show that log-concavity is preserved along the trajectory z(t) as long as z(t) is
defined. This observation is the key new idea in this paper.

Theorem 4. The region C is invariant with respect to the system of differential equations
(2). To be precise, if z(0) ∈ C where z(t) is the solution to (2) then z(t) ∈ C for all t > 0
(for which z(t) ∈ D is defined).

Proof. It suffices to show that if z ∈ D, x+ y = a+ b and x < a ≤ b < y and

rzrszs ≥ uzuvzv for all u < r ≤ s < v such that r + s = u+ v > x+ y = a+ b (16)

then
d

dt
(azabzb − xzxyzy) ≥ −(a+ b)

(
2∆

µ(z)

)
(azabzb − xzxyzy). (17)

To see this, we suppose (16) implies (17) and prove that the inequalities in (13) remain
valid along the trajectory z(t) by (reverse) induction on x + y = a + b. Our base case is
x = ∆− 2, a = b = ∆− 1, y = ∆, where (16) is vacuously true. Here we have

aza(t)bzb(t)− xzx(t)yzy(t) ≥

[aza(0)bzb(0)− xzx(0)yzy(0)] exp

{
−(a+ b)

∫ t

0

2∆

µ(z(s))
ds

}
≥ 0

by Gronwall’s inequality, as long as z(t) is defined. As each step in the induction provides
condition (16) for the next step, the remainder of the induction follows similarly.

It remains to prove that (16) implies (17). We have

d

dt
azabzb = −(a+ b)

azabzb
µ(z)

(
2

1 + ϕ(z)

)[
1 +

∆∑
j=2

jzj
µ(z)

(j − 1)

]

+
(a(a+ 1)za+1bzb + baza(b+ 1)zb+1

µ(z)

(
2

1 + ϕ(z)

∆∑
j=2

jzj
µ(z)

(j − 1)

)
= C1(z) [−(a+ b)azabzb] + C2(z) [a(a+ 1)za+1bzb + baza(b+ 1)zb+1]

where 0 < C1(z) ≤ 2∆/µ(z) and 0 < C2(z) and C1(z), C2(z) do not depend on a, b. Since
a+ b = x+ y we have

d

dt
(azabzb − xzxyzy) = −C1(z)(a+ b) (azabzb − xzxyzy)

+ C2(z) [a(a+ 1)za+1bzb + baza(b+ 1)zb+1 − x(x+ 1)zx+1yzy − yxzx(y + 1)zy+1] .

10



Noting that (16) implies

a(a+ 1)za+1bzb + baza(b+ 1)zb+1 ≥ (a+ b)aza(b+ 1)zb+1

≥ (x+ y)(x+ 1)zx+1yzy

≥ x(x+ 1)zx+1yzy + yxzx(y + 1)zy+1,

we see that (17) follows.

We are now ready to prove Theorem 1. Let a ∈ C and let z(t) be the solution of the system
of differential equations (2) with initial condition z(0) = a. It follows from Theorems 3 and 4
that the point where z(t) leaves the region D is along the ‘edge’{

x ∈ R∆
+ : x1 = x3 = · · · = x∆ = 0

}
.

Since, by (10), no variable goes to zero until the sum of the variables goes to zero, it follows
that z(t) leaves D at the origin.

It only remains for us to deduce Theorem 1 from this understanding of the trajectory
z(t). Let Y(0) = na and let Y(`) be the degree sequence of the remaining graph after `
steps of the Karp-Sipser algorithm. We apply Theorem 2. Let σ = σ(n) be defined by

µ(z(σ)) = n−δ

where δ < 1/(6∆2) and δ is less than the ε of Theorem 2. To get the condition ϕ(z(t)) <
1− n−1/6 for 0 < t < σ we use the fact that f∆(z) ≥ −2∆2z∆/µ(z) (which follows from (6))
and (4) to write

dz∆

dt
≥ − 2∆2z∆

µ(z(σ)) + 4(σ − t)
for 0 ≤ t ≤ σ.

So, for t ∈ [0, σ],

z∆(t) ≥ z∆(0)

(
µ(z(σ)) + 4σ − 4t

µ(z(σ)) + 4σ

)∆2/2

or
z∆(t) = Ω

(
µ(z(σ))∆2/2

)
,

since
µ(z(σ)) + 4σ ≤ µ(z(0)).

Since (15) implies ϕ(z) ≤ 1− (∆z∆/µ(z))2 for z ∈ C, we have the bound

ϕ(z(t)) = 1− Ω
(
µ(z(σ))∆2−2

)
= 1− Ω

(
n−δ(∆

2−2)
)

= 1− ω
(
n−1/6

)
for 0 ≤ t ≤ σ. Theorem 1 now follows directly from Theorem 2.

3 Proof of Theorem 2

We follow the proof of Theorem 5.1 in [17]. There are two technical difficulties that force
some modification of the proof: (i) the system of differential equations (2) does not model

11



the expected change in a single step of the process and (ii) there is a singularity in ∂fi
∂zj

on

the boundary of D (i.e. at the origin).
We begin with a Lemma that we apply inductively to prove Theorem 2. Set ω = n2/3.

(This 2/3 in the exponent is an arbitrary but convenient choice; our argument can be made
to work for other values of ω.)

Lemma 5. Suppose the degree sequence Y ∈ N∆ has ϕ(Y) < 1 − n−1/5, µ(Y) > n26/27 =
ω13/9 and Y1 < (log n) max{log9 n, (1−ϕ(Y))−9/4}. Let Y(t) be the degree sequence after we
apply t steps of the Karp-Sipser algorithm to the graph Y. With probability 1 − O(1/n) we
have

1. |Yi(ω)− Yi − ωfi (Y/n)| ≤ ω3/4 for i = 2, . . . ,∆,

2. Y1(t) ≤ 2(log n) max
{

log9 n, (1− ϕ(Y))−9/4
}

for t = 1, . . . , ω and

3. Y1(ω) < (log n) max
{

log9 n, (1− ϕ(Y(ω)))−9/4
}

.

Note that we expect the algorithm to spend more time on pendant edges as ϕ gets closer to
1. So our control on Y1 should deteriorate as ϕ grows closer to one, and this is reflected in
Lemma 5. The proof of Lemma 5 is given in Section 3.1.

Let 0 = k1 < · · · < kN = σn be a sequence of integers such that k`+1 − k` = ω
for ` = 1, . . . , N − 2 and kN − kN−1 < ω. We bound the difference between z and Y
(appropriately scaled) at each of these time steps by induction on ` by iterative application
of Lemma 5. The application of Lemma 5 to the random graph with degree sequence Y(k`)
requires 3 conditions: a condition on ϕ(Y(k`)), a condition on µ(Y(k`)) and a condition
on Y1(k`). It is easy to see that Y(k1) satisfies these three conditions. The condition on Y1

needed for subsequent application of the Lemma 5 is guaranteed by conclusion 3 of Lemma 5.
We will see below that the conditions on ϕ(Y(k`)) and µ(Y(k`)) follow from the control on
nY(k`)− z(k`/n) we are able to maintain and the condition on z(t) for t ∈ [0, σ] assumed in
Theorem 2 . So, for the moment, we assume that these conditions are satisfied and calculate
the control on Y that follows from Lemma 5. We then justify the inductive application of
said assumption from the control Y that we prove. Also note that, as the number steps in
our induction is o(n) and the probability of an error in any step is O(1/n), we can conclude
that this description of the evolution indeed holds whp (in fact, the argument given here can
– with some minor adjustments – be used to show that the probability that the description
of the evolution given in Theorem 2 does not hold is at most n−c for any constant c.)

Define
ei(k`) = |Yi(k`)− nzi(k`/n)| for i = 2, . . . ,∆

We have
ei(k`+1) = |Yi(k`+1)− nzi(k`+1/n)| ≤ A1 + A2 + A3 + A4

where

A1 = |Yi(k`)− nzi(k`/n)| = ei(k`)

A2 = |Yi(k`+1)− Yi(k`)− ωfi(Y(k`)/n)|
A3 = |ωz′i(k`/n)− n (zi(k`+1/n)− zi(k`/n))|
A4 = |ωfi(Y(k`)/n)− ωz′i(k`/n)| .

12



Note that we can bound A2 ≤ ω3/4 with an application of Lemma 5. We use the Lipschitz
constant, as given by (3), to bound A3 and A4. We have

A3 =

∣∣∣∣ω2

2n
z′′i (s)

∣∣∣∣
for some value s such that k`/n ≤ s ≤ k`+1/n. Therefore, since dµ(z(t))/dt ≥ −4∆ (from
(5)), we have

A3 ≤
ω2

n

M

µ(z(k`/n))− 4∆ω/n

for some absolute constant M . (Note that µ(z(k`/n)) > n−ε � 4∆ω/n so long as ε < 1/3.)
Furthermore, it follows from (3) that

A4 = |ω (fi(Y(k`)/n)− fi(z(k`/n)))|

= ω

∣∣∣∣∣
∆∑
j=2

∂fi
∂zj

(a)(Yj(k`)/n− zj(k`/n))

∣∣∣∣∣
≤ ω

(
L

µ(z(k`/n))− µ(e(k`))/n

)
‖e(k`)‖∞

n

where a = (1− t)z(k`/n) + tY(k`)/n for some t ∈ [0, 1] and L is an absolute constant.
Now we combine the bounds on A1, A2, A3 and A4 to bound ei(k`+1) itself. Of course,

e(k1) = 0. We add the inductive assumption (which we also justify below) that

µ(e(k`))

n
,
4∆ω

n
<

1

2
µ(z(k`/n)). (18)

We have for ` ≥ 1

‖e(k`+1)‖∞ ≤ ‖e(k`)‖∞
(

1 +
ω

n
· 2L

µ(z(k`/n))

)
+

(
ω3/4 +

ω2

n

2M

µ(z(k`/n))

)
. (19)

Let
αj = 2L/µ(z(kj/n)) and β = 2M/µ(z(kN/n)).

By iterative application of (19) we have

‖e(kr)‖∞ ≤
(
ω3/4 +

ω2

n
β

)
+

r−1∑
i=1

[
r−1∏
j=r−i

(
1 +

ω

n
αj

)](
ω3/4 +

ω2

n
β

)
(20)

for r = 2, . . . N . Now, it follows from (4) that µ(z(t)) is decreasing with derivative bounded
above by −4. Therefore, letting µfinal = µ(z(kN/n)) = µ(z(σ)), we have µ(z(t)) ≥ µfinal +
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4(σ − t). So, we have the bound

r−1∏
j=r−i

(
1 +

ω

n
αj

)
≤

r−1∏
j=r−i

(
1 +

2Lω

n
· 1

µfinal + 4(σ − kj/n)

)

≤ exp

{
2Lω

n

N−1∑
j=1

1

µfinal + 4(σ − kj/n)

}

≤ exp

{
2Lω

n
· n

4ω

∫ µfinal+4σ

µfinal

dx

x

}
= O (exp {−L ln (µfinal)})
= O

(
µ−Lfinal

)
.

Plugging this estimate into (20) and recalling that r ≤ σn/ω and µfinal ≥ n−ε we have

‖e(kr)‖∞ ≤
(
ω3/4 +

ω2

n
β

)(
1 +

σn

ω
O
(
µ−Lfinal

))
= O

(
σnω−1/4µ−Lfinal

)
+O

(
2Mωσµ−L−1

final

)
= O

(
n5/6+(L+1)ε

)
. (21)

We assume that
ε < 1/(30(L+ 2)).

Given this choice of ε, we see that (21) implies (12).
It remains to justify the assumption (18) and the assumption that ϕ(Y) and µ(Y) satisfy

the conditions required for the application of Lemma 5. Note that, since µ(x) ≤ ∆2‖x‖∞
and µ(z(kr/n)) > n−ε (by assumption (11)), (21) inductively justifies the assumption (18)
above as well as the conditions required to apply Lemma 5 at each step. Indeed, we have

µ(Y(kr)) ≥ nµ(z(kr/n))−∆‖e(kr)‖∞ ≥ nµ(z(kr/n))−O
(
n5/6+(L+1)ε

)
(22)

and therefore

ϕ(Y(kr)) ≤ ϕ(z(kr/n)) +O

(
‖e(kr)‖∞
µ(Y(kr))

)
≤ 1− n−1/6 +O

(
n−1/6+(L+2)ε

)
. (23)

Finally, note that when we apply a step of the Karp-Sipser algorithm to the random
graph given by Y the probability that we isolate a vertex is at most 2∆Y1/µ(Y). Thus, if
Y1 is bounded by n1/2 (as given by Lemma 5) then the expected number of isolated vertices
is bounded above by

σn∑
i=1

∆n1/2

n1−ε + 4i
≤ ∆n1/2

5σn∑
j=n1−ε

1

j
≤ ∆(log n)n1/2.

An application of Markov’s inequality then gives the desired result.
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3.1 Proof of Lemma 5

The idea here is to break the ω steps of the algorithm in question into a collection of simple
moves, apply Chernoff bounds to sums of simple moves, and use the fact that the outcomes
of the sums are close to their expected values to conclude that the aggregate behavior is
close to the expected value. To this end we define some auxiliary random variables.

We view the Karp-Sipser algorithm running on a configuration model as a sequence
of two types of moves: selections and deletions. A selection move is simply choosing a
configuration point (a.k.a. half edge) for an edge in the matching. When we choose a random
pendant edge we make one selection move. When we choose a purely random edge we make
two selection moves. After we make a selection move we delete some number of randomly
chosen configuration points for the remaining edges incident to the selected vertex. These are
deletion moves. We emphasize that one selection move may be followed by many deletion
moves.

Set µ = µ(Y). Let Si(s) be the indicator variable for the event that the sth selection is a
configuration point corresponding to a vertex of degree i. Similarly, let Di(s) the indicator
variable for the event that the sth deletion is a configuration point corresponding to a vertex
of degree i. Define

p1 =
iYi − 2∆ω

µ
p2 =

iYi + 2∆ω

µ− 2∆ω
.

Note that in a rounds of the Karp-Sipser algorithm at most 2∆a and at least 2a configuration
points are removed. It follows that Si(s) and Di(s), conditioned on the configuration given
by the previous moves, are Bernoulli random variables with success probability bounded
between p1 and p2. Therefore, the probability that there exists a degree i ≥ 1 and moves
0 < s1 < s2 such that s2 − s1 > log10 n and∣∣∣∣∣

s2∑
r=s1

Si(r)− (s2 − s1)
iYi
µ

∣∣∣∣∣ ≥ (s2 − s1)5/9 + (s2 − s1)(p2 − p1)

is bounded above (by way of an application of the bound

P(|Bi(N, p)−Np| ≥ a) ≤ 2e−a
2/(2N)

to Bi(s2 − s1, p1) and Bi(s2 − s1, p2)) by

2∆2ω
2∆ω∑

k=log10 n

2 exp
{
−k10/9/(2k)

}
= O(1/n).

The same statement holds for the Di’s. For the remainder of the proof of this Lemma we
assume that these small probability events do not occur. Note that we have p2−p1 = O(ω/µ)
and the condition µ(Y) > n26/27 ensures (s2 − s1)ω/µ < (s2 − s1)5/9. Therefore, we may
henceforth assume ∣∣∣∣∣

s2∑
r=s1

Si(r)− (s2 − s1)
iYi
µ

∣∣∣∣∣ = O
(
(s2 − s1)5/9

)
, (24)

and by a similar argument∣∣∣∣∣
s2∑
r=s1

Di(r)− (s2 − s1)
iYi
µ

∣∣∣∣∣ = O
(
(s2 − s1)5/9

)
. (25)
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for all 0 < s1 < s2 such that s2 − s1 > log10 n.
We now consider the evolution of the number of vertices of degree 1 during the ω steps

of Karp-Sipser we consider here. Define

K = log n ·max
{

log9 n, (1− ϕ(Y))−9/4
}
.

Note that the condition on ϕ(Y) implies K < (log n)n9/20 � ω. Suppose there is a sequence
of k ≥ K consecutive steps of Karp-Sipser such that the algorithm chooses a pendant edge
on every step in this run. Note that during this span of steps of Karp-Sipser there is exactly
one selection move per step of the algorithm. During these steps we perform (i− 1) deletion
moves each time we select a vertex of degree i. Therefore, the number of deletion moves
performed is, by (26),

k
∆∑
i=2

iYi(i− 1)

µ
+O(k5/9).

Each of these deletion moves creates a new pendant edge when it deletes a configuration
point corresponding to a vertex of degree 2. So, by an application of (27), the number of
pendant edges created during these k steps is at most(

k
∆∑
i=2

i(i− 1)Yi
µ

+O(k5/9)

)
2Y2

µ
+O(k5/9) = kϕ(Y) +O(k5/9). (26)

We first apply this observation to show that the number of vertices of degree 1 drops to zero
during the ω steps of the algorithm we consider here. Under the assumption that in all ω
moves the algorithm adds a pendant edge to the matching, we set k = ω and see that the
number of vertices of degree 1 produced is at most

ωϕ(Y) +O(ω5/9).

This number is less than ω −K (for n sufficiently large) by the assumption in the Lemma
that ϕ(Y) < 1 − n−1/5 (and K < n9/10 log n). In other words, the number of vertices of
degree 1 at the beginning (i.e. Y1) plus the number of vertices of degree 1 produced in the ω
rounds is less than ω. But this is a contradiction as the algorithm processes a pendant edge
in each step. Next we show that Y1(t) is never too large. Note that the number of degree 1
vertices produced in K consecutive steps in which Karp-Sipser chooses pendant edges is at
most

Kϕ(Y) +O(K5/9) < K.

We conclude that the number of degree 1 vertices at the end of such a run is at most the
number of degree 1 vertices at the beginning. This implies that the number of vertices of
degree 1 never exceeds 2K, say. (Note that we have established condition 2 of Lemma 5.)
But we can say a little more. Suppose we arrive at a step at which there are zero vertices of
degree 1. And suppose that in the ensuing K rounds we see the worst-case K new degree 1
vertices. Note that the maximum number of new degree 1 vertices created in a single round
in which Karp-Sipser adds a pendant edge is ∆−1. So it must take at least K/(∆−1) steps
for the new degree 1 vertices to appear. Thus, as Karp-Sipser is also processing pendant
edges during these rounds, we see that the number of vertices of degree 1 does not exceed

K

∆− 1
(∆− 2) = K

(
1− 1

∆− 1

)
16



during these rounds. In particular, since we have already shown that the number of vertices
of degree 1 drops to zero during our ω rounds, the number of degree 1 vertices at the end of
the ω rounds is at most

K

(
1− 1

∆− 1

)
.

As

1− ϕ(Y(ω)) = 1− ϕ(Y) +O

(
ω

µ(Y)

)
≤ 1− ϕ(Y) +O

(
n2/3

n26/27

)
= (1− ϕ(Y))(1 + o(1)),

we have established Condition 3 in Lemma 5.
It remains to prove Condition 1. We begin by studying the proportion of each type of

step Karp-Sipser makes. To this end, we first note – applying the assumption that the low
probability events discussed above do not occur – that the algorithm selects or deletes a
configuration point corresponding to a vertex of degree 1 at most K times among the at
most 2∆ω selection/deletion moves in the ω steps of Karp-Sipser we consider here. Let P (t)
be the number of vertices of degree 1 created through the first t edges added to the matching
by the Karp-Sipser algorithm. Let R(t) be the number of deletion moves made through the
first t steps of Karp-Sipser. Since new vertices of degree 1 are only produced by deletion
moves, we have

P (t) =

R(t)∑
s=1

D2(s).

If t > K then (27) implies

P (t) = R(t)
2Y2

µ
+O(R(t)5/9). (27)

Note that if Y1 + P (t) ≤ t then Karp-Sipser adds at least one purely random edge (rather
than pendant edge) during the first step t + 1 steps. Indeed if there exists a step r < t
such that Y1 + P (r) ≤ r then – applying the observations from the previous paragraph –
Y1(t) < K and the number of pendant edges added during the first t steps is between

Y1 + P (t)− 2K and Y1 + P (t).

(We subtract 2K in the lower bound to account for vertices of degree 1 that might exist at
step t and vertices of degree 1 that the algorithm might have selected or deleted in the first
t steps of Karp-Sipser.) Let T (t) be the number of selection moves through t steps of the
process. Since we make 2 selection moves when Karp-Sipser adds a purely random edge and
only 1 selection move when Karp-Sipser adds a pendant edge, it follows that if t is sufficiently
large then

2t− (Y1 + P (t)) ≤ T (t) ≤ 2t− (Y1 + P (t)− 2K) (28)

and
2t−P (t)−K∑

s=1

∆∑
i=2

(i− 1)Si(s) ≤ R(t) ≤
2t−P (t)+2K∑

s=1

∆∑
i=2

(i− 1)Si(s).
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We see that, by (26), for t sufficiently large we have

R(t) = (2t− P (t))
∆∑
i=2

i(i− 1)Yi
µ

+O
(
(2t− P (t))5/9

)
+O(K). (29)

Putting (29) and (31) together (with t = ω and K ≤ n9/20 log n ≤ n19/40) yields

P (ω) = R(ω)
2Y2

µ
+O(ω5/9)

=

[
(2ω − P (ω))

∆∑
i=2

i(i− 1)Yi
µ

+O
(
ω5/9

)
+O(K)

]
2Y2

µ
+O(ω5/9)

= (2ω − P (ω))ϕ(Y) +O(n19/40).

and therefore,

P (ω) = ω · 2ϕ(Y)

1 + ϕ(Y)
+O

(
n19/40

)
.

It now follows from (30) that we have

T (ω) = 2ω − P (ω) +O(K) = ω · 2

1 + ϕ(Y)
+O(n19/40).

(It should come as no surprise that our calculations now closely parallel the heuristic dis-
cussion that lead to the system of equations (2).) The number of deletion moves in these ω
steps is

R(ω) = (2ω − P (ω))
∆∑
i=2

i(i− 1)Yi
µ

+O(n19/40) = ω · 2

1 + ϕ(Y)
.

∆∑
i=2

i(i− 1)Yi
µ

+O(n19/40)

As

Yi(ω) = Yi −
T (ω)∑
s=1

Si(s)−
R(ω)∑
s=1

Di(s) +

R(ω)∑
s=1

Di+1(s),

we have the desired bound from an application of (26) and (27).

4 Conclusion

Theorem 1 can be extended to apply to degree distributions z with z1 > 0.

Theorem 6. Let z ∈ R∆
+ be a degree distribution with z1 > 0 and z2, . . . , z∆ strongly log-

concave. Whp the Karp-Sipser algorithm applied to Gz produces a matching with cardinality
within n1−ε of the maximum matching in Gz for some constant ε = ε(z,∆).

The proof follows from noting that the region

C ′ =
{
z ∈ R∆

+ : z2, . . . , z∆ is strongly log-concave
}
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is invariant with respect to the system of differential equations that governs the phase of
the Karp-Sipser algorithm that spends all of its time adding pendant edges to the matching
(the proof of this fact is very similar to the proof of Theorem 4). Using the fact that no
‘mistakes’ are made during this phase, we see that once the Karp-Sipser algorithm on Gz gets
to a distribution where there are no vertices of degree 1, we can apply Theorem 1 directly to
the remaining graph. Note that Theorem 6 is a kind of generalization of the analysis of the
Karp-Sipser algorithm on the random graph Gn,cn given by Karp and Sipser and Aronson,
Frieze and Pittel. The Karp-Sipser algorithm on Gn,cn has two distinct phases: in the first
phase pendant edges are removed, and if anything remains after the first phase then the
remainder of evolution of the Karp-Sipser algorithm is a phase in which pendant edges do
not significantly accumulate.

Of course, Theorem 1 begs the question: which distributions z have the property that
whp Gz has a perfect (or almost perfect) matching? This is a natural question from the
perspective of the theory of random graphs. The existence of a perfect matching is a graph
property for which there is a so-called minimum degree phenomenon: If p is large enough
so that whp the random graph Gn,p has minimum degree 1 then whp Gn,p has a perfect
matching (proved by Erdős and Rényi [7]). Furthermore, long before a perfect matching
actually appears whp Gn,p has a matching that saturates all non-isolated vertices. So, it is
natural to ask for the number of edges needed for a perfect matchings in random graphs when
we impose the condition that the minimum degree is at least 1. This problem was solved for
Gn,p by Bollobás and Frieze [4]: a super-linear number of edges are still needed as the barrier
to the existence of a perfect matching is now a pair of vertices of degree 1 that have a common
neighbor. Since a random graph with a significant number of vertices of degree 1 will likely
have such a pair, if we are to find perfect matchings in random graphs with a linear number
of edges we must ensure that there are no (or very few) vertices of degree 1. So, for sparse
random graphs it is natural to condition on minimum degree 2. The matching question has
been resolved for a handful of models of sparse random graphs with such a minimum degree
condition: the random regular graph, Gn,cn where we condition on minimum degree at least
2, the model Gk−out with k ≥ 2 (in Gk−out every vertex independently chooses k neighbors
at random, producing a graph with average degree 2k and minimum degree k), and certain
natural variations on Gk−out [3] [8] [9] [10] [12] [18].

It seems natural to suspect that if the Karp-Sipser algorithm whp produces an almost-
perfect matching in Gz then whp Gz has a perfect matching, up to the odd cycle components
which will appear in Gz if z2 > 0. We conjecture that this is indeed the case for the
distributions considered in Theorem 1.

Conjecture 7. If ∆ ≥ 3 and z ∈ R∆
+ such that z1 = 0, z∆ > 0 and z satisfies (1) then whp

Gz has a matching with defect equal to the number of odd cycle components in Gz.

In a companion paper the authors prove Conjecture 7 for a significant subset of the degree
distributions that satisfy (1). Theorem 1 is a key part of that proof. The full Conjecture 7
remains open.

At first glance, it is tempting to think that Gz has a matching with defect equal to the
number of odd cycle components whp whenever z1 = 0. We now illustrate by example that
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this is not the case. Consider the distribution z ∈ R6 defined by

zi =


m if i = 2

1 if i = 6

0 if i 6∈ {2, 6}

where m is some large constant. We can view Gz as a graph consisting of n vertices of degree
6 connected by a collection P of 3n paths of varying lengths where all internal vertices of
the paths have degree 2. Note that the lengths of the paths in P are whp approximately
distributed as a geometric random variable with mean m+ 1. Let Peven be the collection of
paths P ∈ P that have an even number of edges. Note that if m is sufficiently large then
whp we have |Peven| > 5n/4 as the path lengths are smoothly distributed. (Indeed, the
number of paths in P with 2i edges is roughly m/(m + 1) times the number of paths in P
with 2i − 1 edges.) Assume for the sake of contradiction that |Peven| > 5n/4 and there is
an almost perfect matching M in Gz. Consider a path P ∈ Peven that connects vertices (of
degree 6) u and v. If every internal vertex of P is saturated by M then there must be edge
in M ∩P that contains either u or v. Now, since M is almost perfect, nearly all of the paths
in Peven have the property that every internal vertex is saturated. Therefore there are at
least (1 − o(1))|Peven| > 9n/8 edges in M that contain vertices of degree 6. As there are n
vertices of degree 6, this is a contradiction. Mike Picollelli and Mike Molloy independently
point out that this example can be extended to show that there exists Gz with no perfect
matching whp and arbitrarily large minimum degree. To see this, consider z defined by

zi =


d if i = d

1 if i = d3

0 if i 6∈ {d, d3}

for some d large. Then there will be roughly nd/e > n vertices of degree d whose neighbor-
hoods are contained in the set of n vertices of degree d3. Clearly, such a graph does not have
a perfect matching.

Theorem 1 and Conjecture 7 lead naturally to a number of interesting questions regarding
Gz for z ∈ D \ C. We mention two of these here.

1. Can we analyze the performance of the Karp-Sipser algorithm on random graphs Gz

where z ∈ D\C? Are there distributions z such that the Karp-Sipser algorithm applied
to Gz passes between D and D an arbitrary number of times?

2. Which distributions z ∈ D have the property that whp Gz has a matching with defect
equal to the number of odd cycle components?
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