Min-Wise independent linear permutations

Tom Bohman* Colin Cooper† Alan Frieze‡

January 13, 2000

1 Introduction

Broder, Charikar, Frieze and Mitzenmacher [3] introduced the notion of a set of min-wise independent permutations. We say that $\mathcal{F} \subseteq S_n$ is min-wise independent if for any set $X \subseteq [n]$ and any $x \in X$, when π is chosen at random in \mathcal{F} we have

$$\mathbb{P}(\min\{\pi(X)\} = \pi(x)) = \frac{1}{|X|}. \quad (1)$$

The research was motivated by the fact that such a family (under some relaxations) is essential to the algorithm used in practice by the AltaVista web index software to detect and filter near-duplicate documents. A set of permutations satisfying (1) needs to be exponentially large [3]. In practice we can allow certain relaxations. First, we can accept small relative errors. We say that $\mathcal{F} \subseteq S_n$ is approximately min-wise independent with relative error ϵ (or just approximately min-wise independent, where the meaning is clear) if for any set $X \subseteq [n]$ and any $x \in X$, when π is chosen at random in \mathcal{F} we have

$$\left| \mathbb{P}(\min\{\pi(X)\} = \pi(x)) - \frac{1}{|X|} \right| \leq \frac{\epsilon}{|X|}. \quad (2)$$

In other words we require that all the elements of any fixed set X have only an almost equal chance to become the minimum element of the image of X under π.

Linear permutations are an important class of permutations. Let p be a (large) prime and let $\mathcal{F}_p = \{\pi_{a,b} : 1 \leq a \leq p - 1, 0 \leq b \leq p - 1\}$ where for $x \in [p] = \{0, 1, \ldots, p - 1\}$,

$$\pi_{a,b}(x) = ax + b \mod p,$$

*Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213, U.S.A.
†School of Mathematical Sciences, University of North London, London N7 8DB, UK. Research supported by the STORM Research Group
‡Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213, U.S.A., Supported in part by NSF grant CCR-9818411
where for integer \(n \) we define \(n \mod p \) to be the non-negative remainder on division of \(n \) by \(p \).

For \(X \subseteq [p] \) we let

\[
F(X) = \max_{\pi \in \pi} \{ \mathbb{P}_{a,b}(\min\{\pi(X)\} = \pi(x)) \}
\]

where \(\mathbb{P}_{a,b} \) is over \(\pi \) chosen uniformly at random from \(\mathcal{F}_p \). The natural questions to discuss are what are the extremal and average values of \(F(X) \) as \(X \) ranges over \(\mathcal{A}_k = \{ X \subseteq [p] : |X| = k \} \). The following results were some of those obtained in [3]:

Theorem 1

(a) Consider the set \(X_k = \{0, 1, 2 \ldots k-1\} \), as a subset of \([p]\). As \(k, p \to \infty \), with \(k^2 = o(p) \),

\[
\mathbb{P}_{a,b}(\min\{\pi(X_k)\} = \pi(0)) = \frac{3 \ln k}{\pi^2} + O \left(\frac{k^2}{p} + \frac{1}{k} \right).
\]

(b) As \(k, p \to \infty \), with \(k^4 = o(p) \),

\[
\frac{1}{2(k-1)} \leq \mathbb{E}_X [F(X)] \leq \frac{\sqrt{2} + 1}{\sqrt{2k}} + O \left(\frac{1}{k^2} \right),
\]

where \(\mathbb{E}_X \) denotes expectations over \(X \) chosen uniformly at random from \(\mathcal{A}_k \).

In this paper we improve the second result and prove

Theorem 2

As \(k, p \to \infty \),

\[
\mathbb{E}_X [F(X)] = \frac{1}{k} + O \left(\frac{(\log k)^3}{k^{3/2}} \right).
\]

Thus for most sets, simply chosen, random linear permutations, will suffice as (near) min-wise independent. Other results on min-wise independence have been obtained by Indyk [6], Broder, Charikar and Mitzenmacher [4] and Broder and Feige [5].

2 Proof of Theorem 2

Let \(X = \{x_0, x_1, \ldots, x_{k-1}\} \subseteq [p] \). Let \(\beta_i = ax_i \mod p \) for \(i = 0, 1, \ldots, k-1 \). Let

\[i = i(X, a) = \min\{\beta_0 - \beta_j \mod p : j = 1, 2, \ldots, k-1\}. \tag{3} \]

Let

\[A_i = A_i(X) = \{a \in [p] : i(X, a) = i\} \]
and note that
\[|A_i| \leq k - 1, \quad i = 1, 2, \ldots, p - 1. \]
Then
\[\min\{\pi(X)\} = \pi(x_0) \text{ iff } 0 \in \{\beta_0 + b, \beta_0 + b - 1, \ldots, \beta_0 + b - i + 1\} \mod p. \]
Thus if
\[Z = Z(X) = \sum_{i=1}^{p-1} i|A_i|, \]
\[\mathbb{P}_{a,b}(\min\{\pi(X)\} = \pi(x_0)) = \frac{Z}{p(p-1)}. \] (4)
Fix \(a \in \{1, 2, \ldots, p - 1\} \) and \(x_0 \). Then
\[\mathbb{P}(a \in A_i) = (k - 1) \cdot \frac{1}{p - 1} \prod_{t=1}^{k-2} \left(1 - \frac{i + t}{p - 1 - t} \right) \] (5)
We write \(Z = Z_0 + Z_1 \) where \(Z_0 = \sum_{t=0}^{i_0} i|A_i| \) where \(i_0 = \frac{4p\log k}{k} \). Now, by symmetry,
\[\mathbb{E}_X(\mathbb{P}_{a,b}(\min\{\pi(X)\} = \pi(x_0)) = \frac{1}{k} \] (6)
and so
\[\mathbb{E}_X(Z) = \frac{p(p-1)}{k}. \]
It follows from (5) that
\[\mathbb{E}(Z_1) \leq (k - 1) \sum_{i=i_0+1}^{p-1} i \exp \left\{ -\frac{4(k - 2) \log k}{k} \right\} \]
\[\leq \frac{p^2}{k^3} \] (7)
for large \(k, p \).
We continue by using the Azuma-Hoeffding Martingale tail inequality – see for example [1, 2, 7, 8, 9]. Let \(x_0 \) be fixed and for a given \(X \) let \(\hat{X} \) be obtained from \(X \) by replacing \(x_j \) by randomly chosen \(\hat{x}_j \). For \(j \geq 1 \) let
\[d_j = \max_X \{ |\mathbb{E}_{x_j}(Z(X) - Z(\hat{X}))| \}. \]
Then for any \(t > 0 \) we have
\[\mathbb{P}(|Z_0 - \mathbb{E}(Z_0)| \geq t) \leq 2 \exp \left\{ -\frac{2t^2}{d_1^2 + \cdots + d_{k-1}^2} \right\}. \] (8)
We claim that

$$d_j \leq \sum_{i=1}^{i_0} i + \sum_{i=1}^{i_0} \frac{(k-1)i^2}{p}$$

$$\leq \frac{i_0^2}{2} + \frac{i_0^3 k}{3p} + O(p)$$

$$\leq \frac{30(\log k)^3 p^2}{k^2}$$

Explanation for (9): If \(a \in A_i(X) \) because \(ax_j = ax_0 - i \) mod \(p \) then changing \(x_j \) to \(\hat{x}_j \) changes \(|A_i| \) by one. This explains the first summation. The second accounts for those \(a \in A_i(X) \) for which \(ax_0 - \hat{a}x_j \) mod \(p < i \), changing the minimum in (3). We then use \(|A_i| \leq k - 1 \) and \(P(ax_0 - \hat{a}x_j \text{ mod } p < i) = \frac{i}{p} \).

Using (10) in (8) with \(t = \varepsilon \frac{p^2}{k} \) we see that

$$P \left(|Z_0 - \mathbb{E}(Z_0)| \geq \varepsilon \frac{p^2}{k} \right) \leq \exp \left\{ -\frac{\varepsilon^2 k}{450(\log k)^6} \right\}.$$

It now follows from (4), (6), (7) and the above that

$$\mathbb{E}_X[F(X)] = \frac{1}{k} + O \left(\frac{1}{k^2} + \frac{1}{k} \int_{\varepsilon=0}^{\infty} \min \left\{ 1, k \exp \left\{ -\frac{\varepsilon^2 k}{450(\log k)^6} \right\} \right\} d\varepsilon \right)$$

and the result follows.

\[\square\]

References

