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Abstract

We describe a 2O(r
√

n(log n)5/2)
ǫ
−2 time randomized algorithm which

estimates the number of feasible solutions of a multidimensional knap-
sack problem within 1± ǫ of the exact number. (Here r is the number
of constraints and n is the number of integer variables.) The algorithm
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uses a Markov chain to generate an almost uniform random solution
to the problem.

1 Introduction

An instance of the multidimensional knapsack problem in n variables is de-
fined by a non-negative r×n integer matrix A, a vector d ∈ ZZ

n, and a vector
b ∈ ZZ

r. We assume, to avoid trivialities, that all components of b and d are
positive. The set of feasible solutions, K, is then

K = {x ∈ ZZ
n | Ax ≤ b, 0 ≤ x ≤ d}. (1)

We will assume, without loss of generality that dj ≤ mini bi/aij. Let dmax =
maxj dj . In particular, if dmax = 1, we have the zero-one multidimensional
knapsack problem, and if r = 1 we have the knapsack problem. The opti-
mization problem consists of finding the maximum value of a given linear
function over K. This is known to be NP-Complete, even for r = 1 and zero-
one variables. The counting problem seems to be even harder. This asks
for |K|. This problem is #P-complete, again even for r = 1 and zero-one
variables.

Markov chains have been successfully used to approximately solve several
#P-complete problems [1, 2, 3, 4, 6, 7, 10, 12, 14]. In all of these problems
the running time of the algorithm is polynomial in problem size and relative
error. On the other hand, the general zero-one permanent still resists poly-
nomial time approximation, but Jerrum and Vazirani [9] have reduced the
time complexity to 2O(

√
n(log n)2)ǫ−2 for computing an ǫ-approximation i.e. an

approximation with relative error in the range 1 ± ǫ.

In this paper we make similar progress in approximating |K|. We show that

there is an 2O(r
√

n(log n)5/2)ǫ−2 time algorithm for computing an ǫ-approximation
to |K|. Furthermore when dj ≥ n2 for j ∈ [n] = {1, 2, . . . , n} we can make
the scheme polynomial.

Note that there is an easy randomized approximation algorithm, given by
generating random points as follows. Suppose we simply choose xj randomly
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in [0, dj ]. It is obvious that

Pr(xj ≤ ⌊dj/n⌋) ≥ 1/(2n).

However, if xj ≤ ⌊dj/n⌋ (j ∈ [n]) we have

Ax ≤ 1
n
Ad ≤ b,

since aijdj ≤ bi for all i ∈ [r], j ∈ [n]. Therefore x ∈ K. Thus, by randomly
generating x in this fashion, we have probability (2n)−n of having x ∈ K.
Hence a uniformly distributed point in K can be generated in (2n)n+1 time
with very high probability. This easily gives an approximation algorithm
with the time complexity nO(n)rǫ−2. As previously stated our approximation
algorithm runs in time 2O(r

√
n(log n)5/2) and so we will assume here that r =

O(nκ) for some fixed κ < 1
2
. (In the zero-one case, an O(rn2n) time exact

deterministic algorithm is, of course, trivial.) It may be worth pointing
out that while there are fully polynomial time approximation schemes for
the optimisation version of the knapsack problem, there are none for the
multidimensional problem unless P=NP. Furthermore, we have not been able
to make any use of these optimisation results for knapsack in the associated
counting problem.

We develop the argument in three steps. First we examine the zero-one
knapsack problem in section 3, then move to the general zero-one case in
section 4. Finally, we consider the general problem in section 5.

As a tool in our proof we prove a general fact about random sampling (The-
orem 6) that may be of independent interest and so we mention it here: sup-
pose we have a population of n non-negative reals c1, c2, . . . , cn with mean µ
and ci ≤ α, for i = 1, 2, . . . , n, and we pick without replacement a sample of
t ci’s; let St be their sum. The Chernoff-Hoeffding Theorems assert

Pr(St − tµ ≥ x) ≤ exp

{

−2x2

tα2

}

for all x ≥ 0.

We prove a similar bound, but where α is replaced by a quantity that we have
“observed” from the samples. Let Sm be the sum of the m largest samples
among the t we have picked. Then we prove

Pr(St−tµ > Sm) = O(exp{−m2(t−m)2/t3}) for t = m+1, . . . , n.
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2 Rapidly Mixing Markov Chains

It is well known that the approximate counting of combinatorial objects is
intimately related to their near uniform generation–see Jerrum, Valiant and
Vazirani [8] for a formal statement of this relation.

In our problem this general reduction implies that if in time T (n) we can
generate a solution x ∈ K with probability p(x) so that say, p(x)/p(y) ≤ 2
for all x, y ∈ K then it takes O(T (n)s(n)ǫ−2 log δ−1) time to compute an ǫ-
approximation with probability at least 1− δ, where s(n) is a polynomial in
n. As our T (n) dominates the remaining terms, we concentrate on estimating
its value from now on.

For this purpose we define an ergodic reversible Markov chain with set of
states K, whose steady state distribution is uniform. We then run this chain
for sufficient number of steps that we can be sure we are close enough to the
steady state. We then take the current state as our near uniform sample.

In detail, let K be the set of states of Markov chain M. If x, y ∈ ZZ
n ,define

the Hamming distance h(x, y) = |{j : xj 6= yj}|. (Normally this is defined
only for zero-one vectors, and this will be the principal use here, but we also
use the definition for general integer vectors.) The transition probabilities
p(x, y) are then given by

p(x, y) =











0 if h(x, y) > 1
1

2ndmax
if h(x, y) = 1

1 −∑

z 6=x p(x, z) if y = x

Note that M can be simulated easily, as follows. Start at any point of K (e.g.
the origin). At the “current” point x ∈ K, repeat the following step. Do
nothing with probability 1

2
, otherwise choose a coordinate direction k ∈ [n]

uniformly at random. Choose an integer x′
k 6= xk from [0, dmax] uniformly at

random. Let x′
j = xj (j ∈ [n] \ {k}). If x′ ∈ K, x′ becomes the new current

point, else remain at x. Note also that, since M is symmetric, aperiodic and
irreducible, its stationary distribution π is uniform over its states.

Now let p(t) be the distribution of the current point after t steps, starting at
x = 0. The variational distance between p(t) and π can be bounded in terms
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of the conductance, Φ:

Φ = min
{

ΦS : π(S) ≤ 1
2

}

where for S 6= ∅,
ΦS =

∑

x∈S,y∈S̄ π(x)p(x, y)

π(S)
,

and
π(S) =

∑

x∈S

π(x).

It will be useful to think in terms of a digraph Γ = (K,E) where E =
{(x, y) ∈ K2 : h(x, y) = 1}. If we let ES:S̄ = {(x, y) ∈ E : x ∈ S, y 6∈ S} and
ρ(S) = |ES:S̄ |/|S| then

Φ = min
|S|≤N/2

{

ρ(S)

2ndmax

}

(2)

Now, letting N = |K|, it follows from results in Sinclair and Jerrum [15] that
for all x ∈ K

|p(t)(x) − π(x)| ≤
√

N(1 − Φ2/2)t.

Thus our claim about near uniform generation can be justified by showing
that the conductance Φ of M satisfies

Φ = 2−O(r
√

n(log n)5/2). (3)

In view of (2), assuming that dmax is suitably bounded as a function of n,
this will then follow from

ρ(S) = 2−O(r
√

n(log n)5/2) for all S ⊆ K, |S| ≤ N/2. (4)

We will use a variation on the canonical path argument introduced by Jerrum
and Sinclair [6]. Fix S ⊆ K, |S| ≤ N/2. We will define a set T = T (S) ⊆
S × S̄ with

|T | ≥ |S| · |S̄|
2

. (5)

We will also define a canonical path Px,y in Γ from x to y for every (x, y) ∈ T .
For each (v, w) ∈ ES:S̄ we let Wv,w denote the set of canonical paths using the
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edge (v, w). Let λv,w = |Wv,w| and let λ = λ(S) = max{λv,w : (v, w) ∈ ES:S̄}.
Clearly

|ES:S̄ | ≥ |T |
λ

≥ |S| · |S̄|
2λ

and so

ρ(S) ≥ N

4λ
.

We will complete the proof of (4) by showing that for any S

λ = 2O(r
√

n(log n)5/2)N. (6)

3 The Zero-One Knapsack Problem

We concentrate first on the zero-one case. The case r = 1 has a special
feature which allows a slightly simpler proof. We will give this and then
analyse the general zero-one case later. For simplicity of notation we now let
K = {x ∈ {0, 1}n : a1x1 + a2x2 + · · · + anxn ≤ b} where a1, a2, . . . , an, b are
positive integers.

3.1 Defining Canonical Paths

Consider a permutation σ on [n], an offset u (0 ≤ u < n) and states x ∈ S
and y ∈ S̄. We define the sequence Qx,y = Qx,y(σ, u) = v0, v1, . . . vn as
follows: v0 = x, vn = y and vi

j = vi−1
j for j 6= σ(i ⊕ u) and vi

σ(i⊕u) = yσ(i⊕u),
i ⊕ u = (i + u − 1 mod n) + 1. Thus, we go through the components of x
in the order σ(1 ⊕ u), σ(2 ⊕ u), . . . , σ(n ⊕ u), changing one component from
xj to yj at each step. If all intermediate points are in K then we say Qx,y is
feasible. (We may remove the loops caused by vi = vi+1.)

Assume we have chosen σ, u and for notational convenience assume that σ
is the identity permutation and u = 0. Fix (v, w) ∈ ES:S̄ and consider those
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(x, y) ∈ S × S̄ for which the path Qx,y uses (v, w). Then for some t ≥ 1 we
can write

v = (y1 . . . yt−1xtxt+1 . . . xn) and w = (y1 . . . yt−1ytxt+1 . . . xn).

Then σ, u, and (v, w) together fix y1, . . . , yt and xt, . . . , xn and λv,w is bounded
by the number of possibilities for x1, . . . , xt−1, yt+1, . . . , yn. This leads to the
idea of the complementary point w′ = (x1, . . . , xt, yt+1, . . . , yn) of (v, w) from
Jerrum and Sinclair [15]. Let W ′ = W ′(x, y) be the set of complementary
points w′ such that (v, w) is on Qx,y. Clearly, if we use the same σ for each
x, y then the number of (x, y) pairs in S × S̄ for which Qx,y uses (v, w) is
at most n times the total possible number of complementary points for w.
(Since n is the number of choices for u.)

Now let Dβ = {ξ : h(ξ, η) ≤ β for some η ∈ K}. Then, the following lemma
holds:

Lemma 1 There exist σ∗ and T ∗ ⊂ S × S̄ such that |T ∗| ≥ |S||S̄|
2

and

(i) W ′ ⊆ D4m, where m = ⌈4
√

n log2 n⌉.

(ii) For all (x, y) ∈ T ∗, there exists u∗ = u∗(x, y) such that
Px,y = Qx,y(σ

∗, u∗) is feasible.

Proof Fix x ∈ S, y ∈ S̄. Choose σ randomly, u arbitrarily and an inter-
mediate point v of Qx,y, say the ℓ-th point in the sequence. For η ∈ {0, 1}n,
let its support Iη = {j : ηj = 1}. Let I = {σ(1 ⊕ u), σ(2 ⊕ u), . . . σ(ℓ ⊕ u)}.
Then

Iw′ = (Ix ∩ I) ∪ (Iy \ I)

where w′ is the complementary point corresponding to the edge (v, w) of Qx,y

which starts with v.

Now for X ⊆ [n] let a(X) =
∑

j∈X aj . Then a(Ix ∩ I) is the sum of the
elements of a random ℓ-subset of the multiset Ax = {ajxj : j ∈ [n]}. Assume
next that |Ix ∩ I| ≥ 2m and let ∆x denote the sum of the m largest elements
of the multiset {aj : j ∈ Ix ∩ I}. Now, where ax =

∑

j∈[n] ajxj,

E(a(Ix ∩ I)) = µx =
ℓ

n
ax
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and so from Theorem 6 (see Section 7)

Pr(a(Ix ∩ I) ≥ µx + ∆x) = O(e−m2/4ℓ)

= O(n−4).

Thus, regardless of the size of Ix ∩ I we can assert that with probability
1 − O(n−4) there exists a set Jx ⊆ Ix ∩ I such that

|(Ix ∩ I) \ Jx| ≤ 2m (7)

a(Jx) ≤ µx. (8)

Now consider Iy \ I.

E(a(Iy \ I)) = µy =
n − ℓ

n
ay.

Then, in an analogous fashion to Ix ∩ I we have that with probability 1 −
O(n−4) there exists a set Jy ⊆ Iy \ I such that

|(Iy \ I) \ Jy| ≤ 2m (9)

a(Jy) ≤ µy. (10)

Now define w′′ by Iw′′ = Jx ∪ Jy. Then (7) and (9) imply

h(w′, w′′) ≤ 4m.

We find that w′′ ∈ K. Indeed, using (8) and (10)

aw′′ = a(Jx) + a(Jy)

≤ ℓ

n
ax +

n − ℓ

n
ay

≤ ℓ

n
b +

n − ℓ

n
b

= b. (11)

So for each of the pairs (x, y) such that x ∈ S and y ∈ S̄ we have that the
probability a random permutation satisfies

w′ ∈ D4m for all complementary points w′ arising from all offsets, (12)
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is at least 1 − O( 1
n2 ). Then by a simple counting argument we have that

there must exist some permutation σ∗ with at least a 1 − O( 1
n2 ) fraction of

x, y pairs satisfying (12).

For each x, y there is an offset u∗ = u∗(x, y) such that Qx,y(σ
∗, u∗) is feasible

(see Lovász [11], Problem 3.21, the gas station problem). Thus there exists
a set T ∗ ⊆ S × S̄ such that

|T ∗| ≥ |S| · |S̄|(1 − O(n−2)) (13)

and Px,y = Qx,y(σ
∗, u∗) is feasible for all (x, y) ∈ T ∗. This completes the

proof of the lemma. 2

Finally observe that for (v, w) ∈ ES:S̄ we have

λv,w ≤ n|D4m|

≤ nN

(

n

4m

)

= 2O(
√

n(log n)3/2)N

and (6) follows immediately.

4 The General Zero-One Problem

When r ≥ 2 the argument that the complementary points are almost always
“close” to K is still valid, but it is no longer possible to use an offset to make
the intermediate points of Qx,y satisfy all the constraints simultaneously.
Since offsets are no longer in use we drop the associated parameter in Qx,y.

For R ⊆ [n] and x ∈ {0, 1}n we define z = z(x,R) by Iz = Ix \ R i.e. to
obtain z, simply set components j to zero for j ∈ R.

Given x, y ∈ K, permutation σ and R ⊆ J(x, y) = (Ix\Iy)∪(Iy\Ix) we define
a new permutation τ = τ(x, y, σ,R) and then take Qx,y(τ) as our path. Here
τ is defined as follows: let Rα = R ∩ Iα and rα = |Rα| for α = x, y. Starting
with the sequence σ(1), σ(2), . . . σ(n) we move the elements of Rx to the front
(in natural order) and then move the elements of Ry to the back. τ is defined
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by the sequence obtained e.g. if σ = (10, 9, 1, 3, 7, 4, 8, 5, 6, 2) and Rx =
{7, 9}, Ry = {3, 5} then τ = (7, 9, 10, 1, 4, 8, 6, 2, 3, 5).

Lemma 2 There exists σ∗ and T ∗ ⊆ S × S̄ such that |T ∗| ≥ |S||S̄|
2

and

(i) W ′ ⊆ D16mr log2 n+4mr, (m = ⌈4
√

n log2 n⌉)

(ii) For all (x, y) ∈ T ∗, there exists R = R(x, y), |R| ≤ 16mr log2 n such
that Qx,y(τ) is feasible.

Proof Fix x ∈ S, y ∈ S̄ and choose σ randomly. Observe first that no matter
what choice we make for R it is the case that each complementary point of
Qx,y(τ) is within Hamming distance |R| of a complementary point of Qx,y(σ).
Consider a complementary point w′ of Qx,y(σ). The analysis of Lemma 1
shows that with probability 1 − O(r/n4) we can find sets X1, X2, . . . Xr all
of size at most 4m such that zeroising the Xi-components of w′ produces a
vector which satisfies the ith constraint (here Xi is equal to Jx ∪ Jy of the
lemma). Hence zeroising all of the

⋃r
i=1 Xi-components produces a member

of K. Thus in this case all complementary points of Qx,y(τ) are within
Hamming distance |R| + 4mr of K and the first part follows (modulo a
definition of R.)

Our next observation is that if R′ ⊆ R ⊆ J(x, y) and all intermediate points
in Qx,y(τ(x, y, σ,R′)) satisfy the ith constraint then the same is true for
Qx,y(τ(x, y, σ,R)). This is simply because the intermediate points in the
latter path have supports which are subsets of those in the former.

We will now define R = R1∪R2∪· · ·Rr where all we claim is that the interme-
diate points of Qx,y(τ(x, y, σ,Ri)) satisfy the ith constraint with probability
1 − O(log2 n/n4).

We will now concentrate on R1 which we decompose as
⋃p

j=1 R1,j, where
p ≤ log2 n. We will use the notation a1(I) =

∑

j∈I a1,j for I ⊆ [n].

Let v be one of the first n/2 points of Qx,y(σ). Let Bx = Iv ∩ (Ix \ Iy)
and By = Iv ∩ (Iy \ Ix) so that Iv = Bx ∪ By ∪ (Ix ∩ Iy). We can argue
as in the proof of Lemma 1 that with probability 1 − O(n−4) there exist
B′′

x ⊆ Bx, B
′′
y ⊆ By with |Bx − B′′

x|, |By − B′′
y | ≤ 2m and a1(Iv′′) ≤ b1 where
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Iv′′ = B′′
x ∪B′′

y ∪ (Ix ∩ Iy). If |Ix \ Iy| > 8m then Lx is the index set of the 8m
largest elements in Ix \ Iy. Otherwise Lx = Ix \ Iy. Define Ly similarly with
respect to Iy \ Ix. It follows from Theorem 5 (below) that if |Lx| ≥ 8m then
|Lx ∩ Iv| ≥ 2m with probability 1−O(n−4). (An element of Lx is in Iv with
probability at least one half.) Similarly, |Ly| ≥ 8m implies |Ly ∩ Iv| ≥ 2m
with probability 1 − O(n−4). Hence with high probability if ṽ is defined by
Iṽ = Iv \ (Lx ∪ Ly) then a1(Iṽ) ≤ a1(Iv′′) ≤ b1.

Thus with probability 1 − O(n−4) the first n/2 points of Qx,y(τ(x, y, σ, Lx ∪
Ly)) satisfy the first inequality. We therefore take R1,1 = Lx ∪ Ly. Let x′

denote the 1
2
nth point of Qx,y(τ(x, y, σ, Lx ∪Ly)) and condition on its value.

The remaining n/2 components are changed by σ in random order in going
from x′ to y. To define R1,2 repeat the above argument with x′ in place of
x and n/4 in place of n/2. In this way we obtain a set R1,2 such that with
probability 1 − O(n−4), the first 3n/4 points of Qx,y(τ(x, y, σ,R1,1 ∪ R1,2))
satisfy the inequality. The remaining sets in the partition of R1 are obtained
similarly. We can stop when we have at most 16m components to change in
order to get to y.

The existence of T ∗ is now inferred as at the end of the proof of Lemma 1.
2

We can now prove (6) fairly easily. Fix (v, w) ∈ ES:S̄ . If Qx,y uses (v, w) then
we can fix x, y by fixing the permutation τ and the complementary point.
But there are at most

(

n
16mr log2 n

)

choices for τ , given σ∗. Hence

λv,w ≤ n|D16mr log2 n+4mr|
(

n

16mr log2 n

)

(14)

≤ n

(

n

16mr log2 n + 4mr

)

N

(

n

16mr log2 n

)

(15)

= O(2O(r
√

n(log n)5/2)N) (16)

and (6) follows immediately.
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5 The General Problem

We now consider the general case (1). Observe from (2) that Φ will be very
small if dmax is very large. Note also that the common device of replacing a
general integer variable xj by a sum of zero-one variables

∑ℓj

s=0 2szsj, where
ℓj is suitably chosen, does not seem to work here for two reasons:

(a) If dj 6= 2ℓj+1 − 1, then the number of solutions is not preserved (unless
we add a further constraint).

(b) The number of variables n is increased by a factor
∑

j log2(dj + 1). If
any dj is nonpolynomially large in n, this leads to a significant increase
in the algorithm’s time complexity.

Thus we will adopt a different strategy. We need to be able to deal with
the possibility of very large dj , but first consider the case where dmax < n3.
If canonical paths and complementary points are defined exactly as before,
then the arguments of Section 4 require only minor modification.

Thus, given x, y ∈ K, consider two zero-one vectors ξ(1), ξ(2), where ξ
(1)
j = 1,

ξ
(2)
j = 0 if xj > yj and ξ

(1)
j = 0, ξ

(2)
j = 1 if yj > xj. (If xj = yj, the values

of ξ
(1)
j , ξ

(2)
j can be arbitrary.) Now, the canonical path from x to y can be

chosen using that from ξ(1) to ξ(2) in the zero-one polytope defined by the
system

n
∑

j=1

(aij|xj − yj|)ξj ≤ (bi −
n
∑

j=1

aij min{xj, yj}) (i ∈ [r]),

where x, y are to be treated as constant vectors. We simply interpret chang-
ing a component from ξ

(1)
j to ξ

(2)
j as requiring the change of a component from

xj to yj. We can apply Lemma 2 to this system and the bound on Hamming
distance still applies. Now the number of points within Hamming distance
β of K is clearly at most n3β times the estimate (15). This additional factor
does not, however, inflate the estimate (16).

To finish this case we must check that the intermediate points of the path Qx,y

so defined are feasible. Consider the k’th point and for notational convenience
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assume that τ = (1, 2, . . . , n). Then we know that

k
∑

i=1

((aij|xj−yj|)ξ(2)
j +

n
∑

j=k+1

(aij |xj−yj|)ξ(1)
j ≤ (bi−

n
∑

j=1

aij min{xj, yj}) (i ∈ [r]).

But
min{xj, yj} + |xj − yj|ξ(2)

j ≥ yj

and
min{xj, yj} + |xj − yj|ξ(1)

j ≥ xj.

Thus
k
∑

i=1

aijyj +
n
∑

j=k+1

aijxj ≤ bi (i ∈ [r]).

and the path Qx,y is feasible. Thus we may conclude that (6) remains valid
when dmax < n3 (and, in fact, for any polynomial bound on dmax).

Thus suppose, for some k (0 ≤ k < n), that dj < n3 for j = 1, 2, . . . , k,
and dj ≥ n3 for j = k + 1, k + 2, . . . , n. Define σj = ⌈(dj + 1)/n3⌉, and let
x′

j = ⌊xj/σj⌋, d′
j = ⌊dj/σj⌋ for j ∈ [n]. Also let a′

ij = σjaij for i ∈ [r], j ∈ [n].
We can generate a point (near) uniformly in K ′ = {x′ ∈ ZZ

n : A′x′ ≤ b, 0 ≤
x′ ≤ d′} by the above method, since

d′
j ≤ dj/σj ≤ n3dj/(dj + 1) < n3.

After generating such an x′ we then choose x by

xj = σjx
′
j + Zj, (j ∈ [n]), (17)

where Zj is an integer chosen uniformly from [0, σj −1]. We accept the point
x if it lies in K, otherwise we try again. Now (17) determines a bijection be-
tween the integer x’s in some set H and the pairs (x′, Z). The generated x’s
are evidently uniform on H, a union of hyper-rectangles, one corresponding
to each x′. Note that K ⊆ H since, for each x ∈ K, there is a unique pair
(x′, Z) with x′ ∈ K ′ given by x′

j = ⌊xj/σj⌋, Zj = xj mod σj, j ∈ [n]. The
accepted points will therefore be (near) uniform in K, as required. However,
the generated x may be rejected, so we must check that acceptance occurs
with sufficiently high probability. It is clearly enough that the acceptance
probability be large in comparison with the estimate of conductance (3). In
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that case the number of repetitions required for acceptance will not signifi-
cantly affect the total time to generate a (near) uniform point in K.

Suppose we have some “good” set G ⊆ K ′ such that

(i) Pr(x ∈ K | x′ ∈ G) ≥ 1
2
,

(ii) Pr(x′ ∈ G) ≥ n−4r.

Then it is easy to see that

Pr(x ∈ K) ≥ Pr(x ∈ K | x′ ∈ G) Pr(x′ ∈ G) ≥ 1
2
n−4r,

which is large compared to (3) and we are done.

Thus it remains only to define the set G and prove that it has properties (i)
and (ii). To this end, for y ∈ IR

n, let y = (ŷ, ȳ), where ŷ ∈ IR
k, ȳ ∈ IR

n−k, and
k is as defined above. We will use the same notation for the corresponding
partition of a matrix by its first k and last n− k columns. Note that x̂ = x̂′,
Â = Â′, since σj = 1 for j ≤ k. Now define

G = {x′ ∈ K ′ : Âx̂ ≤ k
k+1

b} and Ĝ = {x̂′ : x′ ∈ G}.

Lemma 3 Pr(x ∈ K | x′ ∈ G) ≥ 1
2
.

Proof For x ∈ H let

D(x) = {y ∈ IR
n−k : xk+j/σk+j ≤ yj < (xk+j + 1)/σk+j, (j ∈ [n − k])}.

Fix ĝ ∈ Ĝ. Clearly (ĝ, ξ) ∈ K ′ if and only if ξ lies in the polytope

P̄ = {ξ ∈ IR
n−k : Ā′ξ ≤ b − Âĝ = b∗, 0 ≤ ξ ≤ d̄′},

where b∗ ≥ 1
k+1

b. Now

Pr(x ∈ K | x̂′ = ĝ) =
vol (H ′)

vol (H ′′)
, (18)
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where
H ′ =

⋃

x∈K
x̂′=ĝ

D(x) and H ′′ =
⋃

x∈H
x̂′=ĝ

D(x).

Now H ′ ⊇ P̄ since if ξ ∈ P̄ then ξ ∈ D(x) where x̂ = ĝ, xj+k = ⌊σj+kξj+k⌋
for j ∈ [n − k] and x is a member of K.

On the other hand the assumptions on dj imply

a′
ij ≤ aij(2dj/n

3) ≤ 2bi/n
3 ≤ 2(k + 1)b∗i /n

3. (19)

But then z ∈ H ′′ implies

Ā′z ≤ b∗ + Ā′1 ≤ (1 + 2(k+1)(n−k)
n3 )b∗,

where 1 is the vector of all 1’s, using (19). So

H ′′ ⊆
(

1 +
2(k + 1)(n − k)

n3

)

P̄ (20)

Hence

Pr(x ∈ K | x̂′ = ĝ) ≥ (1+2(k+1)(n−k)
n3 )−(n−k) ≥ exp{−2(k+1)(n−k)2/n3} ≥ 1

2
,

for n ≥ 4, completing the proof. 2

Lemma 4 Pr(x′ ∈ G) ≥ n−4r.

Proof If x′ ∈ K ′ \ G, consider the rows i ∈ [r] such that (Âx̂)i > k
k+1

bi.
For each such i, there exists a smallest t = t(i) (1 ≤ t ≤ k) such that
aitxt > bi/(k + 1). Thus define a function g : K ′ → G by

gj(x
′) =

{

x′
j if j 6= t(i) for any i,

0 otherwise

Clearly g(x′) ∈ G, as required. Since g(x′) differs from x′ in at most min{r, k}
coordinates, the point-to-set map g−1 clearly partitions K ′ into classes of size
at most

(

n

r

)

n3 min{r,k} ≤ n4r,

since x′ < n31. Hence |K ′| ≤ n4r|G| and

Pr(x′ ∈ G) = |G|/|K ′| ≥ n−4r,

as claimed. 2
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6 A polynomially solvable case

In this section we prove a stronger result in a special case. If dj ≥ n2, j =
1, 2, . . . , n, then we can construct a fully polynomial randomized approxi-
mation scheme for |K| i.e. our algorithm is polynomial in n, ǫ−1. Thus such
cases are “easy”, the reason being that the counting closely resembles volume
computation [4].

We can use the scaling of the previous section to “round” the feasible poly-
tope K to K ′. Then we have B(n/2) ⊆ K ′ ⊂ B(n3), where B(ν) = {0 ≤
x′ ≤ ν1}. The first inclusion follows from aijσj ≤ 2aijdj/n

2 ≤ 2bi/n
2 for

j ∈ [n], while the second is a restatement of d′
j < n3. We perform a biased

random walk on the integer lattice points x′ ∈ B(n3) with the weighting
function T (x′) = e−2nt(x′), where

t(x′) = min{t ≥ 0 : A′x′ ≤ (1 + t)b}.

At a point x′ we do nothing with probability 1/2. Otherwise we randomly
choose ±j from {±1,±2, . . . ,±n}. We then let y′ = x′±ej, where ej denotes
the j’th unit vector. If y′ ∈ B(n3) we move there with probability
min{1, T (y′)/T (x′)}. This completes a step of the walk.

It is easily shown that t varies by only a constant factor over any unit cube
in B(n3), using the rounding property. Indeed if A′x′ ≤ (1 + t)b then

A′(x′ + 1) ≤
(

1 + t +
2

n

)

b. (21)

Walks of this type were studied in Applegate and Kannan [1] (see also Dyer
and Frieze [3] or Lovász and Simonovits [13] for some improvements.) The
function T is log-concave and log T has a Lipschitz constant of O(n). It
follows that the walk mixes rapidly i.e. the conductance is 1/p(n) for some
polynomial p and we can obtain a near uniform random point in K ′ in poly-
nomial time.

A point x is generated from a random x′ ∈ K ′ as in the previous section -
see (17). The rounding property ensures a probability of at least e−2 that
x ∈ K.

Pr(x ∈ K) ≥ vol (K ′)/vol (K ′ + B(1))
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≥
(

1 +
2

n

)−n

,

by (21). We can therefore sample nearly uniformly from K in polynomial
time and we obtain a fully polynomial time approximation scheme as stated.

7 Modification of a Theorem of Hoeffding

Let a population C consist of n real values c1 ≥ c2 ≥ · · · ≥ cn ≥ 0. Let
ci1, ci2 , . . . cit , i1 > i2 > · · · > it denote a random sample drawn without
replacement from C. Let Sk = ci1 + ci2 + · · · + cik for k = 1, 2, . . . , t. Let
µ = 1

n

∑n
i=1 ci. Hoeffding proved

Theorem 5 If 0 ≤ ci ≤ α for i = 1, 2, . . . , n then

Pr(St − tµ > x) ≤ exp

{

−2x2

tα2

}

for all x ≥ 0.

2

This is not suitable for us because we do not have enough control over the
size of α. We prove the following theorem which we believe is of interest in
its own right.

Theorem 6 With the above notation

Pr(St−tµ > Sm) = O(exp{−m2(t−m)2/t3}) for t = m+1, . . . , n.

Proof Let Tj = c1+c2+ · · ·+cj for j = 1, . . . , n and c = cim . If St > tµ+Sm

then for x > 0 (to be chosen later) either

(i) St − Sm > (t − m)Tn−Tim

n−im
+ cx,

or

(ii) (t − m)Tn−Tim

n−im
+ cx > tµ.
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We handle (i) by conditioning on ci1 , ci2 , . . . , cim and applying Theorem 5.
This yields

Pr((i)) ≤ e−2x2/(t−m). (22)

To handle (ii) we define δ by n− im = n
t
(t−m)(1− δ)−1 and replace (ii) by

the inequality

(ii’) cx − Tim t
n

(1 − δ) > tµδ.

Observe that
Tim/im ≥ max{µ, c}. (23)

At this point we bound |δ| probabilistically. Now im is distributed as the mth
largest index of a random t-set X chosen from [n]. Thus īm = E(im) = nm/t.

Let θ = īm − im so that δ = θ/(n − īm + θ) and θ = δn
(

1 − m
t

)

(1 − δ)−1.

Now let Zk = |X ∩ [k]|. We observe that for any y > 0

θ > y ⇒ Z⌊̄im−y⌋ ≥ m

and
θ < −y ⇒ Z⌈̄im+y⌉ ≤ m.

But for any k, Zk is distributed as the random variable St of Theorem 5,
where C consists of k 1’s and n − k 0’s. Thus E(Zk) = kt/n and applying
the theorem gives

Pr(|θ| ≥ y) ≤ 2e−2y2t/n2

. (24)

Case 1: δ < 0.

It follows from (23) that

(ii’) ⇒ Tim

im
x − Tim t

n
(1 − δ) ≥ tTim

im
δ,

⇒ x − imt
n

(1 − δ) ≥ tδ.

Substituting im = n(m−tδ)
t(1−δ)

we obtain

(ii’) ⇒ x ≥ m.

We take x = m/2 from now on, and so

Pr((ii) and δ < 0) = 0. (25)
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Case 2: δ ≥ 0.

Applying (23) we see now that (with x = m/2)

(ii’) ⇒ m
2
− im

n
t(1 − δ) ≥ 0

⇒ m
2
− im

t−m
n−im

≥ 0

⇒ im ≤ nm
2t−m

⇒ θ > mn
2t

(

1 − m
t

)

.

Hence, from (24) we have

Pr((ii) and δ ≥ 0) = O(exp{−m2(t − m)2/t3}). (26)

The theorem follows from (22), (25) and (26). 2
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