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Abstract

Polynomial-time approximation algorithms with non-trivial perfor-
mance guarantees are presented for the problems of (a) partitioning
the vertices of a weighted graph into k blocks so as to maximise the
weight of crossing edges, and (b) partitioning the vertices of a weighted
graph into two blocks of equal cardinality, again so as to maximise the
weight of crossing edges. The approach, pioneered by Goemans and
Williamson, is via a semidefinite programming relaxation.

1 Introduction

Goemans and Williamson [8] have significantly advanced the theory of ap-
proximation algorithms. Previous work on approximation algorithms was
largely dependent on comparing heuristic solution values to that of a Linear
Program (LP) relaxation, either implicitly or explicitly. This was recognised
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some time ago by Wolsey [16]. (One significant exception to this general rule
has been the case of Bin Packing.)

The main novelty of [8] is the use of a SemiDefinite Program (SDP) as
a relaxation. To be more precise let us consider the problem MAX CUT
studied (among others) in [8]: we are given a vertex set V = {1, . . . , n} and
non-negative weights wij , for 1 ≤ i, j ≤ n, where wij = wji and wii = 0 for

all i, j. If S ⊆ V and S = V \ S then the weight of the cut (S : S ) is

w(S : S ) =
∑

i∈S,j∈S

wij .

The aim is to find a cut of maximum weight.
Introducing integer variables yj ∈ {−1, 1} for j ∈ V we can formulate the

MAX CUT problem as

IP: maximise 1
2

∑
i<j wij(1 − yiyj)

subject to yj ∈ {−1, 1}, ∀j ∈ V.

The key insight of Goemans and Williamson is that instead of converting
this to an integer linear program and then considering the LP relaxation, it
is possible to relax IP directly to the following:

SDP: maximise 1
2

∑
i<j wij(1 − vi · vj)

subject to vj ∈ Sn−1, ∀j ∈ V.

Here Sn−1 = {x ∈ R
n : |x| = 1} is the unit sphere in n dimensions. SDP is

an example of special kind of convex program, called a semidefinite program

for reasons that will become apparent presently, which is efficiently solvable
in both theoretical and practical senses. In particular, an optimal solution
within given additive error ε may be computed in time polynomial in n
and log ε−1. (See Alizadeh [1] for a detailed exposition.) More explicitly, the
optimisation problem SDP is equivalent to:

CP: maximise 1
2

∑
i<j wij(1 − Yij)

subject to Yjj = 1, ∀j ∈ V
Y = [Yij] ≻ 0.

(1)

Here Yij replaces vi ·vj, and the notation Y ≻ 0 indicates that the matrix Y is
constrained to be positive semidefinite; this constraint defines a convex subset
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of R
n2

. The idea of Goemans and Williamson is to solve SDP and then use
the following simple (randomised rounding) heuristic to obtain a remarkably
good solution to MAX CUT: choose a random hyperplane through the origin,
and partition the vectors vi (and hence the vertex set V ) according to which
side of the hyperplane they fall.

This is an exciting new idea and it is important to see in what directions
it can be generalised. In this paper we do so in two ways. First we consider
MAX k-CUT where the aim is to partition V into k subsets: for a partition
P = P1, P2 . . . , Pℓ of V we let |P| = ℓ and

w(P) =
∑

1≤r<s≤ℓ

∑

i∈Pr , j∈Ps

wij.

The problem is then

MAX k-CUT: maximise w(P)
subject to |P| = k.

Note that MAX k-CUT may be interpreted as the search for a ground state
in the anti-ferromagnetic k-state Potts model: see Welsh [15].

Papadimitriou and Yannakakis [11] studied an unweighted (wij ∈ {0, 1})
version of MAX k-CUT in the guise of “MAX k-COLORABLE SUBGRAPH,”
and showed it to be MAX SNP-complete. In the light of Arora, Lund, Mot-
wani, Sudan and Szegedy’s characterisation of the class NP in terms of prob-
abilistically checkable proofs [3], this result implies that there can be no
polynomial-time approximation scheme for MAX k-CUT, for any k ≥ 2,
unless P = NP. The question, then, is how closely may MAX k-CUT be
approximated in polynomial time?

To attack this problem we need to be able to handle variables that can
take on one of k values as opposed to just two, a similar problem to that faced
by Karger, Motwani and Sudan in trying to colour 3-colourable graphs with
relatively few colours [10]. Our solution (and theirs) is a natural extension
of the existing solution for the case k = 2, but the performance analysis
presents greater technical difficulties.

The simplest heuristic for MAX k-CUT is just to randomly partition V

into k sets. If P̂ denotes the (random) partition produced and P∗ denotes
the optimum partition then it is easy to see that

E(w(P̂)) ≥
(

1 − 1

k

)
w(P∗),
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since each edge (i, j) has probability (1− k−1) of joining vertices in different
sets of the partition.

We describe a (randomised) heuristic “k-CUT” that produces a k-partition,
say Pk, which is provably better on average than the one produced by obliv-
ious random partitioning. This heuristic is a natural extension of that of
Goemans and Williamson, and is similar to the one discovered earlier and
independently by Karger, Motwani and Sudan for the related problem of
finding “semicolorings” of a graph. We prove the existence of a sequence of
constants αk, for k ≥ 2, such that if P∗

k denotes the optimal partition in
MAX k-CUT then:

Theorem 1 E(w(Pk)) ≥ αk w(P∗
k), where the constants αk satisfy

(i) αk > 1 − k−1;

(ii) αk − (1 − k−1) ∼ 2k−2 ln k;1

(iii) α2 ≥ 0·878567, α3 ≥ 0·800217, α4 ≥ 0·850304, α5 ≥ 0·874243, α10 ≥
0·926642, and α100 ≥ 0·990625.

The performance ratio for k = 2 in the above theorem is the same as that
quoted by Goemans and Williamson, as in this special case we are able to
carry across their analysis unchanged.

It will be seen that we achieve an improvement over the random parti-
tioning heuristic for all k, and this is the main contribution of the article.
However, it must be admitted that the improvement for large k is rather
small. Kann, Khanna, Lagergren and Panconesi show, by presenting a more
refined approximation-preserving reduction that the one employed by Pa-
padimitriou and Yannakakis, that there can be no polynomial-time approxi-
mation algorithm for MAX k-CUT with performance ratio 1−1/239k, unless
P = NP [9]. (Note, however, that polynomial-time approximation schemes
are known for the case of dense graphs: see de la Vega [6] or Arora, Karger
and Karpinski [2].) This leaves open the possibility of an algorithm with
performance ratio bounded below by 1 − αk−1, uniformly over k, for some
1/239 < α < 1. We say something about the theoretical limitations of our
chosen semidefinite program relaxation in the following section.

1Throughout this article, the relation ∼ indicates two expressions whose ratio tends
to 1 as k → ∞.
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Our second result concerns the problem MAX BISECTION. Here we
have to partition V into two subsets of equal size (assuming that n is even)
so as to maximise w.

MAX BISECTION: maximise w(P)
subject to P = S, V \ S

|S| = n/2.

A problem of this type might arise as follows. Postulate a set of m people each
of whom select a pair of “activities” from a set of n activities. Assume that n
is even. We are required to split the activities evenly between two timetable
slots so as to maximise the number of people who are able participate in both
their chosen activities.

As with MAX CUT, a random bisection produces an expected perfomance
ratio of 1

2
. Let ε be a small positive constant. We describe a heuristic “BI-

SECT” which produces a partition PB, such that if P∗
B denotes the optimal

bisection:

Theorem 2 E(w(PB)) ≥ β w(P∗
B), where β = 2(

√
2α2 − 1) − ε.

Note that α2 = 0·878567 . . . , as in Theorem 1, and β > 0·651 for ε sufficiently
small. The difficulty with generalising Goemans and Williamson’s heuristic
to MAX BISECTION is that it does not generally give a bisection of V .
We prove that a simple modification of their basic algorithm is adequate to
achieve the improved performance ratio claimed in Theorem 2.

Note that there is a natural generalisation of this problem to MAX k-
SECTION, where we seek to partition V into k equal pieces. Unfortunately
we cannot prove that the natural generalisation of our bisection heuristic
beats the 1− k−1 lower bound of the simple random selection heuristic when
k ≥ 3.

2 MAX k-CUT

In this section we describe our heuristic “k-CUT.” We first describe a suitable
way of modelling variables which can take one of k values. Just allowing yj =
1, 2, . . . , k does not easily yield a useful integer program. Instead we allow
yj to be one of k vectors a1, a2, . . . , ak defined as follows: take an equilateral
simplex Σk in R

k−1 with vertices b1, b2, . . . , bk. Let ck = (b1 + b2 + · · ·+ bk)/k
be the centroid of Σk and let ai = bi − ck, for 1 ≤ i ≤ k. Finally assume that
Σk is scaled so that |ai| = 1 for 1 ≤ i ≤ k.
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Lemma 3

ai · aj = −1/(k − 1), for i 6= j. (2)

Proof Since a1, a2, . . . , ak are of unit length we have to show that the angle
between ai and aj is arccos(−1/(k − 1)) for i 6= j. Let b1, b2, . . . , bk−1 lie in
the plane xk−1 = 0 and form an equilateral simplex of dimension k − 2. Let
bi = (b′i, 0) for 1 ≤ i ≤ k − 1, where b′i has dimension k − 2, and assume
b′1 + b′2 + · · · + b′k−1 = 0. Then ck = (0, 0, . . . , 0, x) and bk = (0, 0, . . . , 0, kx)
for some x > 0. But |bk − ck| = 1 and so x = 1/(k − 1). But then (bk − ck) ·
(b1 − ck) = −(k − 1)x2 = −1/(k − 1).

Note that −1/(k−1) is the best angle separation we can obtain for k vectors
as we see from:

Lemma 4 If u1, u2, . . . , uk satisfy |ui| = 1 for 1 ≤ i ≤ k, and ui · uj ≤ γ for

i 6= j, then γ ≥ −1/(k − 1).

Proof 0 ≤ (u1 + u2 + · · · + uk)
2 ≤ k + k(k − 1)γ.

Given Lemma 3 we can formulate MAX k-CUT as follows:

IPk: maximise k−1
k

∑
i<j wij(1 − yi · yj)

subject to yj ∈ {a1, a2, . . . , ak}.

Here we use the fact that

1 − yi · yj =

{
0, if yi = yj

k/(k − 1), if yi 6= yj

To obtain our SDP relaxation we replace yi by vi, where vi can now be
any vector in Sn−1. There is a problem in that we can have vi · vj = −1
whereas yi · yj ≥ −1/(k − 1). We need therefore to add the constraint
vi · vj ≥ −1/(k − 1). We obtain

SDPk: maximise k−1
k

∑
i<j wij(1 − vi · vj)

subject to vj ∈ Sn−1, ∀j
vi · vj ≥ −1/(k − 1), ∀i 6= j

(3)

Note that (3) reduces to the linear constraint Yij ≥ −1/(k − 1) if we go to
the convex programming form CP. We can now describe our heuristic:
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k-CUT

Step 1. Solve the problem SDPk to obtain vectors v1, v2, . . . , vn ∈ Sn−1.

Step 2. Choose k random vectors z1, z2, . . . , zk.

Step 3. Partition V according to which of z1, z2, . . . , zk is closest to each vj,
i.e., let P = P1, P2, . . . , Pk be defined by

Pi = {j : vj · zi ≥ vj · zi′ for all i′ 6= i}, for 1 ≤ i ≤ k.

(Break ties for the minimum arbitrarily: they occur with probability
zero!)

The most natural way of choosing z1, z2, . . . , zk is to choose them indepen-
dently at random from Sn−1. Forcing |zi| = 1 complicates the analysis
marginally and so we let zj = (z1,j, z2,j, . . . , zn,j), 1 ≤ j ≤ k where the zi,j are
kn independent samples from a (standard) normal distribution with mean 0
and variance 1. When k = 2 we have (modulo the normalisation |zi| = 1)
the heuristic of Goemans and Williamson, although they define it in terms of
cutting Sn−1 by a random hyperplane through the origin. Karger et al. [10]
also use the above partitioning heuristic in their approach to approximate
colouring, though applied to a slightly different semidefinite relaxation. How-
ever, we must diverge at this point, as their analysis — though adequate for
the colouring application — is not sharp enough to yield Theorem 1.

Let Wk denote the weight of the partition produced by the heuristic, let

W ∗
k be the weight of the optimal partition and let W̃k denote the maximum

value of SDPk. Putting yj = ai, for j ∈ Pi and 1 ≤ i ≤ k, we see that

E(Wk) =
∑

i<j

wij Pr(yi 6= yj). (4)

Now by symmetry Pr(yi 6= yj) depends only on the angle θ between vi and vj,
and hence on ̺ = cos θ = vi · vj. Let this separation probability be denoted
by Φk(̺). It then follows from (4) that

E(Wk)

W ∗
k

≥ E(Wk)

W̃k

=

∑
i<j wij Φk(vi · vj)

k−1
k

∑
i<j wij(1 − vi · vj)

≥ αk,

where
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αk = min
−1/(k−1)≤̺≤1

k Φk(̺)

(k − 1)(1 − ̺)
.

The main work lies in bounding the quantity αk. As Goemans and
Williamson showed, the computation can be done exactly in the case k = 2,
save for a final step involving the optimisation of a simple trigonometric
function. When k > 2, it appears that we must work much harder, and the
remainder of the section is devoted to obtaining lower bounds in this case.
The results are summarised in Corollaries 6, 7, and 8, which, taken together,
establish Theorem 1. First, some definitions and a technical lemma.

Let u, v be vectors, and r1, . . . , rk be a sequence of vectors, all in R
n. We

say that u and v are separated by r1, . . . , rk if the vector ri maximising u ·ri is
distinct from the vector rj maximising v ·rj . When we speak of a random vec-
tor, we mean a vector r = (ξ1, . . . , ξn) whose coordinates ξi are independent,
normally distributed random variables with mean 0 and variance 1. Note
that the probability density function of r is (2π)−n/2 exp(−(ξ2

1 + · · ·+ ξ2
n)/2),

and in particular is spherically symmetric.
Denote by g(x) = (2π)−1/2 exp(−x2/2) the probability density function

of the univariate normal distribution, and by G(x) =
∫ x

−∞
g(ξ) dξ the corre-

sponding cumulative distribution function. For i = 1, 2, . . ., the normalised
Hermite polynomials φi( · ) are defined by

(−1)i
√

i!φi(x)g(x) =
dig(x)

dxi
. (5)

Let hi = hi(k) denote the expectation of φi(xmax), where xmax is distributed
as the maximum of a sequence of k independent normally distributed random
variables.

Lemma 5 Suppose u, v ∈ R
n are unit vectors at angle θ, and r1, . . . , rk

is a sequence of random vectors. Let ̺ = cos θ = u · v, and denote by

Nk(̺) = 1−Φk(̺) the probability that u and v are not separated by r1, . . . , rk.

Then the Taylor series expansion

Nk(̺) = a0 + a1̺ + a2̺
2 + a3̺

3 + · · ·

of Nk(̺) about the point ̺ = 0 converges for all ̺ in the range |̺| ≤ 1. The

coefficients ai of the expansion are all non-negative, and their sum converges

to Nk(1) = 1. The first three coefficients are a0 = 1/k, a1 = h2
1/(k − 1) and

a2 = kh2
2/(k − 1)(k − 2).
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The main work lies in the proof of the above lemma, which we defer to the
end of the section in order to press on with establishing the claims about αk

made in Theorem 1.

Corollary 6 αk > 1 − k−1, for all k ≥ 2.

Proof Denote by Ak(̺) the function

Ak(̺) =
k(1 − Nk(̺))

(k − 1)(1 − ̺)
,

so that the performance ratio of the k-CUT heuristic can be expressed as

αk = min
−1/(k−1)≤̺<1

Ak(̺).

At ̺ = 0, the numerator and denominator of Ak(̺) are both k − 1; at ̺ = 1
they are both 0. Since the power series expansion of Nk(̺) has only positive
terms, the numerator is a concave function in the range 0 ≤ ̺ ≤ 1, and hence
Ak(̺) ≥ 1 in that range.

Turning to the case ̺ < 0, note that Nk(1) = 1 and Nk(−1) = 0 implies∑
i even ai = 1

2
; furthermore, since h1(k) increases with k and h1(3) = 3/2

√
π

(using calculations described by David in [5, Section 3.2]), we have a1 ≥
9/4π(k − 1). Therefore,

Nk(̺) ≤ 1

k
− 9(−̺)

4π(k − 1)
+

̺2

2
≤ 1

k
− (−̺)

5(k − 1)
,

where the second inequality is valid over the range −1/(k−1) ≤ ̺ ≤ 0, since
9/4π − 1/2 ≥ 1/5, and hence

Ak(̺) ≥ 1

1 − ̺

(
1 +

k(−̺)

5(k − 1)2

)
.

It is easily verified that the above expression is strictly greater than 1− k−1

over the closed interval −1/(k − 1) ≤ ̺ ≤ 0.

Corollary 7 αk − (1 − k−1) ∼ 2k−2 ln k.
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Proof Galambos [7, Section 2.3.2], gives the asymptotic distribution of
the maximum of k independent, normally distributed random variables. In
particular the quantity h1(k), which is just the expectation of the maximum,

satisfies h1(k) ∼
√

2 ln k. Thus we have the asymptotic estimate

Nk(̺) =
1

k
+
(
1 + ε(k)

)2 ln k

k
̺ + O(̺2),

where ε(k) is a function tending to 0, as k → ∞. The result follows by
arguments used in the proof of the previous corollary. As before, we need
only concern ourselves with negative ̺; then, plugging the above estimate for
Nk(̺) into the formula for Ak(̺), one finds that Ak(̺) is bounded below by
1 − k−1 + (1 + ε(k)) 2k−2 ln k for ̺ is the range −1/(k − 1) ≤ ̺ ≤ 0.

Corollary 8 α3 ≥ 0·800217, α4 ≥ 0·850304, α5 ≥ 0·874243, α10 ≥ 0·926642,
and α100 ≥ 0·990625.

Proof We use the bound Nk(̺) ≤ 1/k + a1̺ + a2̺
2 + ̺4/2, valid for −1 <

̺ < 0, and evaluate a1 and a2 numerically. The bound follows from two
observations: (i) all coefficients ai are non-negative, and hence the odd terms
make a negative contribution to the sum, and (ii) the even coefficients sum
to 1

2
, and hence the sum of the even terms from the fourth power upwards is

bounded above by 1
2
̺4.

Note that by computing further terms in the Taylor expansion of Nk(̺)
it is possible to obtain better bounds on αk; e.g., expanding to the term in ̺4

yields the bound α3 ≥ 0·832718. The calculations, though routine (more
integration by parts, à la proof of Lemma 5), are lengthy, and we shall not
try the reader’s patience by repeating them here. The returns from this
additional computation in any case decline rapidly as k increases.

As remarked in the introduction, the performance ratio for large k, though
better than random partitioning heuristic, is hardy impressive. One may
obtain upper bounds on the performance ratio that can be achieved using
our approach by exhibiting graphs G for which the optimum solution to
the relaxation SDPk is large in relation to the size of the maximum cut
in G. Assume k ≥ 2 is even, and let G = Kn be the complete graph on
n = 3k/2 vertices. A feasible solution to SDPk is obtained by placing the
vectors vi at the corners of a (n− 1)-dimensional equilateral simplex. Then,
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by routine calculation, the ratio between the actual maximum k-cut in G,
and the optimal solution to SDPk, is at most 1−1/9(k−1). This upper bound
is much larger that the performance ratios quoted in Theorem 1: perhaps
there are much worse instances than the complete graph Kn, or perhaps
our heuristic is not extracting as much information from the relaxation as it
might.

Finally, as promised, we present the proof of the technical lemma.

Proof of Lemma 5 We begin by computing the joint distribution of x = u·r
and y = v · r, where r = (ξ1, . . . , ξn) is a random vector. Each of the random
vectors ri in the statement of the lemma induces an independent sample from
this distribution. The quantity Nk(̺) we wish to estimate is the probability
that one sample point dominates the other k − 1, coordinatewise. Since
the density function of r is spherically symmetric, this joint distribution
is dependent on θ only, and not on the particular choice of u and v; for
convenience let u = (1, 0, . . . , 0) and v = (cos θ, sin θ, 0, . . . , 0). Then

Pr(u · r ≤ x and v · r ≤ y)

= Pr(ξ1 ≤ x and ξ1 cos θ + ξ2 sin θ ≤ y)

=
1

2π

∫ x

ξ1=−∞

∫ (y−ξ1 cos θ)/ sin θ

ξ2=−∞

exp

(
−ξ2

1 + ξ2
2

2

)
dξ2 dξ1

=
1

2π sin θ

∫ x

ζ1=−∞

∫ y

ζ2=−∞

exp

(
−ζ2

1 − 2 cos(θ)ζ1ζ2 + ζ2
2

2(sin θ)2

)
dζ2 dζ1,

where we have applied the change of coordinates ζ1 = ξ1 and ζ2 = ξ1 cos θ +
ξ2 sin θ. The joint probability density function of x = u · r and y = v · r is
thus

f(x, y; ̺) =
1

2π
√

1 − ̺2
exp

(
−x2 − 2̺xy + y2

2(1 − ̺2)

)
,

where ̺ = cos θ; this is the probability density function of the bivariate
normal distribution in standard form, with correlation ̺ = cos θ. Denote by

F (x, y; ̺) =

∫ x

ξ=−∞

∫ y

η=−∞

f(ξ, η; ̺) dη dξ

the corresponding cumulative distribution function.
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Let r1, . . . , rk be independent random vectors; then

Pr(u and v are not separated by r1, . . . , rk)

= k × Pr(u · r1 = max
i

u · ri and v · r1 = max
j

v · rj)

= k I(̺),

where

I(̺) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y; ̺) F (x, y; ̺)k−1 dx dy.

There is no expression for the integral I(̺) in closed form, so we compute
instead a Taylor series expansion for I(̺) about ̺ = 0 using ideas (and
notation) from Bofinger and Bofinger [4]. The Mehler expansion [14] of the
bivariate normal probability density function

f(x, y; ̺) = g(x)g(y)
(
1 + ̺φ1(x)φ1(y) + ̺2φ2(x)φ2(y) + · · ·

)
, (6)

converges uniformly for |̺| < 1. Three facts that follow easily from the
Mehler expansion and definition (5) of the Hermite polynomials are:

d

dx
g(x)φi−1(x) = −

√
i g(x)φi(x), (7)

∂F (x, y; ̺)

∂̺
= f(x, y; ̺) (8)

and
∂if

∂̺i

∣∣∣∣
̺=0

= i! g(x)g(y)φi(x)φi(y). (9)

We now evaluate I(̺) and its successive derivatives with respect to ̺
at the point ̺ = 0 by noting that F (x, y; 0) and f(x, y; 0) factorise into
G(x)G(y) and g(x)g(y), respectively. In this way we obtain a Taylor series
expansion for I(̺) about the point ̺ = 0. We defer an examination of the
radius of convergence of this Taylor expansion to the end of the proof.

Starting with I itself, we have

I(0) =

(∫
g(x)G(x)k−1dx

)2

=
1

k2
, (10)
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where the second equality can be seen by interpreting the integral as the
probability that the maximum of a sequence of k independent, normally
distributed random variables is achieved by the first variable.2

By identities (8) and (9),

∂I

∂̺

∣∣∣∣
̺=0

=

(∫
g(x)φ1(x)G(x)k−1 dx

)2

+ (k − 1)

(∫
g(x)2G(x)k−2 dx

)2

.

(Passing the derivative through the integral is justified by Section 1.88 of
Titchmarsh’s text on analysis of functions [13].) The first integral is simply
h1/k; the second may be simplified using integration by parts, and iden-
tity (7):

∫
g(x)(g(x)G(x)k−2) dx =

[
g(x)G(x)k−1

k − 1

]∞

−∞

− 1

k − 1

∫
g′(x)G(x)k−1 dx

=
1

k − 1

∫
g(x)φ1(x)G(x)k−1 dx

=
h1

k(k − 1)
.

Substituting these expressions for the two integrals yields

∂I

∂̺

∣∣∣∣
̺=0

=
h2

1

k(k − 1)
. (11)

Differentiating with respect to ̺ a second time, we obtain

∂2I

∂̺2

∣∣∣∣
̺=0

= 2

(∫
g(x)φ2(x)G(x)k−1 dx

)2

+ 3(k − 1)

(∫
g(x)2φ1(x)G(x)k−2 dx

)2

+ (k − 1)(k − 2)

(∫
g(x)3G(x)k−3 dx

)2

.

2Integration will be assumed to be over the infinite line when the limits of integration
are omitted.
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The first integral is just h2/k. The second, using integration by parts and
identity (7), is

∫
(g(x)φ1(x))(g(x)G(x)k−2) dx = − 1

k − 1

∫
(−

√
2 g(x)φ2(x))G(x)k−1 dx

=

√
2 h2

k(k − 1)
.

A further application of integration by parts reduces the third integral to the
second, from which

∫
g(x)3G(x)k−3 =

2
√

2h2

k(k − 1)(k − 2)
.

Substituting these expressions for the three integrals yields

∂2I

∂̺2

∣∣∣∣
̺=0

=

(
2

k2
+

6

k2(k − 1)
+

8

k2(k − 1)(k − 2)

)
h2

2 =
2h2

2

(k − 1)(k − 2)
.

(12)
In principle the process of repeated differentiation by ̺ could be continued
indefinitely; for any i, the ith derivative of I(̺) evaluated at ̺ = 0 is a positive
linear combination of squares of one-dimensional integrals. This observation,
combined with (10), (11), and (12) establishes the claims concerning the
Taylor expansion of I(̺).

It remains to show that the Taylor expansion of I(̺) is valid for |̺| < 1
and hence — by continuity of Nk(̺) at ̺ = 1 and the fact that all terms in
the expansion are positive — for |̺| ≤ 1. Observe that I(̺) is defined by an
integral of the form

I(̺) =

∫∫ ∞∑

i=0

̺isi(x, y) dx dy, (13)

where si(x, y) =
∑ni−1

j=0 tij(x, y) is a sum of terms tij(x, y), where each term is

a product of factors of the form g(x)g(y)φl(x)φl(y). Now
∫∫

|tij(x, y)| dx dy <
2.6, since

∫
|g(x)φl(x)| dx < 1.6 and maxx |g(x)φl(x)| < 1 for all l. (These

facts follow from the key inequality on page 324 of Sansone’s treatise on
orthogonal functions [12], which bounds |φl(x)| by c exp(−x2/4) for an ab-
solute constant c; note, however, that the bound given by Sansone is for
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un-normalised Hermite polynomials, and must be scaled accordingly.) Not-
ing that ni = O(ik−1), we see that the sum

∞∑

i=0

̺i

ni−1∑

j=0

∫∫
|tij(x, y)| dx dy

converges, provided |̺| < 1. Thus, by uniform convergence of the Mehler
expansion, and the theorems contained in Sections 1.71 and 1.77 of Titch-
marsh [13], it is permissible to integrate (13) term by term, yielding

I(̺) =
∞∑

i=0

̺i

∫∫
si(x, y) dx dy.

The above expression is a power series expansion of I(̺) valid for |̺| < 1,
which must be identical to the Taylor expansion, by uniqueness.

3 MAX BISECTION

We now describe how to ensure that the partition we obtain divides V into
equal parts. As an integer program we can express MAX BISECTION as

IPB: maximise 1
2

∑
i<j wij(1 − yiyj)

subject to
∑

i<j yiyj ≤ −n/2

yj ∈ {−1, 1} ∀j ∈ V

(14)

Inequality (14) is equivalent to
∑

i yi = 0 and expresses the constraint that
the sought-for partition must bisect the vertex set; this equivalence can be
seen by considering the identity

2
∑

i<j

yiyj =
(∑

i

yi

)2 −
∑

i

y2
i =

(∑

i

yi

)2 − n.

The version (14) has the advantage of being easily relaxed to give an semidef-
inite program:

SDPB: maximise 1
2

∑
i<j wij(1 − vi · vj)

subject to
∑

i<j vi · vj ≤ −n/2

vj ∈ Sn−1, ∀j ∈ V

(15)
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We can now describe our heuristic. The overall strategy is to solve SDPB,
and partition the resulting vectors vi by a random hyperplane. The induced
partition of vertices is not in general a bisection, but with reasonable proba-
bility we do not need to move many vertices to obtain balance. In swapping
these relatively few vertices, we do not harm the cut to much. Let ε is a
small positive constant, ε = 1/100 being small enough. In more detail, the
procedure is as follows.

BISECT

Step 1. Solve the problem SDPB to obtain vectors v1, v2, . . . , vn ∈ Sn−1.

Repeat Steps 2-4 below for t = 1, 2, . . . K = K(ε) = ⌈ε−1 ln ε−1⌉ and output

the best partition S̃t, V \ S̃t found in Step 4.

Step 2. Choose two random vectors z1, z2.

Step 3. Let St = {j : vj · z1 ≤ vj · z2}.

Step 4. Suppose (w.l.o.g.) that |St| ≥ n/2. For each i ∈ St let ζ(i) =∑
j 6∈St

wij and St = {x1, x2, . . . , xℓ}, where ζ(x1) ≥ ζ(x2) ≥ · · · ≥ ζ(xℓ).

Also, let S̃t = {x1, . . . , xn/2}.

Clearly the construction in Step 4 satisfies

w(S̃t : V \ S̃t) ≥
nw(St : V \ St)

2ℓ
. (16)

In order to analyse the quality of the final partition we define two sets of
random variables.

Xt = w(St : V \ St), for 1 ≤ t ≤ K;

Yt = |St|(n − |St|), for 1 ≤ t ≤ K.

Recall that P∗
B denotes the optimum bisection, and let W ∗ ≥ w(P∗

B) denote
the maximum of SDPB. Then, by the analysis of Theorem 1 (or [8]),

E(Xt) ≥ α2W
∗. (17)

Also
E(Yt) =

∑

i<j

Φ2(vi · vj) ≥
α2

2

∑

i<j

(1 − vi · vj) ≥ α2N,
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where N = n2/4. (Note the use of (15) here.)
Thus if

Zt =
Xt

W ∗
+

Yt

N

then
E(Zt) ≥ 2α2. (18)

On the other hand
Zt ≤ 2, (19)

since Xt ≤ W ∗ and Yt ≤ N .
Define Zτ = max1≤t≤K{Zt}. Now (18) and (19) imply that, for any ε > 0,

Pr(Z1 ≤ 2(1 − ε)α2) ≤
1 − α2

1 − (1 − ε)α2

and so

Pr(Zτ ≤ 2(1 − ε)α2) ≤
(

1 − α2

1 − (1 − ε)α2

)K

≤ ε,

for the given choice of K(ε). Assume that

Zτ ≥ 2(1 − ε)α2 (20)

and suppose
Xτ = λW ∗,

which from (18) and (20) implies

Yτ ≥ (2(1 − ε)α2 − λ)N. (21)

Suppose |Sτ | = δn; then (21) implies

δ(1 − δ) ≥ (2(1 − ε)α2 − λ)/4. (22)

Applying (16) and (22) we see that

w(S̃τ : V \ S̃τ ) ≥ w(Sτ : V \ Sτ )/(2δ)

≥ λW ∗/(2δ)

≥ (2(1 − ε)α2 − 4δ(1 − δ))W ∗/(2δ)

≥ 2(
√

2(1 − ε)α2 − 1)W ∗.
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The last inequality follows from simple calculus. Thus

E(w(S̃τ )) ≥ 2(
√

2(1 − ε)α2 − 1)

(
1 −

(
1 − α2

1 − (1 − ε)α2

)K
)

W ∗

≥ 2(
√

2(1 − 3ε)α2 − 1)W ∗.

Finally note that the partition output by BISECT is at least as good as

S̃τ . We divide ε above by 3
√

2α2 to obtain the precise result presented in
Theorem 2. Sanjeev Mahajan has pointed out that the algorithm extends
easily to “MAX (c, 1 − c)-CUT” where the two blocks of the partition are
required to have between cn and (1 − c)n vertices. For example, one may
obtain an 0·81 approximation for MAX (1

3
, 2

3
)-CUT.

As with MAX k-cut, we can look for upper bounds on the performance
ratio that may be obtained using this approach. Let G = K2,2,2 be the
complete tripartite graph on 2 + 2 + 2 vertices. The maximum bisection
of G has 8 edges, whereas the optimum solution to the relaxation SDPB is
at least 9. (Arrange the vectors vi in pairs at the corners of an equilateral
triangle.) Thus 8/9 < 0·889 is an upper bound on performance ratio that
is achievable using this relaxation. Given the somewhat crude nature of
the approach, the large gap between this and the provable lower bound on
performance ratio is perhaps not surprising.

References

[1] F. Alizadeh, Interior point methods in semidefinite programming with
applications to combinatorial optimisation, Technical Report TR-93-

050, International Computer Science Institute, Berkeley CA, September
1993.

[2] S. Arora, D. Karger and M. Karpinski, Polynomial time approximation
schemes for dense instances of NP-hard problem, Proceedings of the 27th

Annual ACM Symposium on Theory of Computing, ACM Press, 1995,
pp. 284-293.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof verifi-
cation and hardness of approximation problems, Proceedings of the 33rd
IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, 1992, pp. 14–23.

18



[4] E. Bofinger and V. J. Bofinger, The correlation of maxima in samples
drawn from a bivariate normal distribution, The Australian Journal of

Statistics 7 (1965), pp. 57–61.

[5] H. A. David, Order Statistics, Wiley, New York, 1980.

[6] W. F. de la Vega, MAXCUT has a randomised approximation scheme

in dense graphs, Manuscript, December 1994.

[7] J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Wi-
ley, New York, 1978.

[8] M. X. Goemans and D. P. Williamson, .878-Approximation algorithms
for MAX CUT and MAX 2SAT, Proceedings of the 26th Annual ACM

Symposium on Theory of Computing, ACM Press, 1994, pp. 422–431.

[9] V. Kann, S. Khanna, J. Lagergren, and A. Panconesi, On the hardness
of approximating MAX k-CUT and its dual, Technical Report TRITA-

NA-9505, Department of Numerical Analysis and Computing Science,
Royal Institute of Technology, Stockholm, 1995.

[10] D. Karger, R. Motwani, and M. Sudan, Approximate graph coloring
by semidefinite programming, Proceedings of the 35th IEEE Symposium

on Foundations of Computer Science, Computer Society Press, 1994,
pp. 2–13.

[11] C. H. Papadimitriou and M. Yannakakis, Optimization, approximation
and complexity classes, Journal of Computer and System Sciences 43

(1991), pp. 425–440.

[12] G. Sansone, Orthogonal Functions, (translated from the Italian by A.
H. Diamond), Interscience Publishers, New York, 1959.

[13] E. C. Titchmarsh, The Theory of Functions (second edition), Oxford
University Press, 1939.

[14] G. N. Watson, Notes on generating functions of polynomials: Hermite
polynomials, Journal of the London Mathematical Society 8 (1933),
pp. 194–199.

19



[15] D. J. A. Welsh, Complexity: knots, colourings and counting, London

Mathematical Society Lecture Notes 186, Cambridge University Press,
1993.

[16] L. A. Wolsey, Heuristic analysis, linear programming and branch and
bound, Mathematical Programming Study 13: Combinatorial Optimiza-

tion II, North-Holland, 1980, pp. 121–134.

20


