Vertex covers by edge disjoint cliques

Tom Bohman Alan Frieze* Miklós Ruszinkó†
Lubos Thoma‡

Department of Mathematical Sciences,
Carnegie Mellon University.

June 6, 2000

Abstract

Let H be a simple graph having no isolated vertices. An (H, k)-vertex-cover of a simple graph $G = (V, E)$ is a collection H_1, \ldots, H_r of subgraphs of G satisfying

1. $H_i \cong H$, for all $i = 1, \ldots, r$,
2. $\bigcup_{i=1}^r V(H_i) = V$,
3. $E(H_i) \cap E(H_j) = \emptyset$, for all $i \neq j$, and
4. each $v \in V$ is in at most k of the H_i.

We consider the existence of such vertex covers when H is a complete graph, K_t, $t \geq 3$, in the context of extremal and random graphs.

1 Introduction

Let H be a simple graph having no isolated vertices. For the purposes of this discussion we say that the simple graph $G = (V, E)$ has property $\mathcal{C}_{H,k}$ if there is a collection H_1, \ldots, H_r of subgraphs of G satisfying

P1. $H_i \cong H$, for all $i = 1, \ldots, r$,

P2. $\bigcup_{i=1}^r V(H_i) = V$,

P3. $E(H_i) \cap E(H_j) = \emptyset$, for all $i \neq j$, and

P4. each $v \in V$ is in at most k of the H_i.

*Supported in part by NSF grant CCR-9530974.
†Permanent Address: Computer and Automation Research Institute of the Hungarian Academy of Sciences, Budapest, P.O.Box 63, Hungary-1518.
‡Research was partially supported by OTKA Grants T 030059 and T 29074, FKFP 0607/1999 and by the Bolyai Foundation.
§Supported in part by NSF grant DMS-9970622.
We call the family \(\{H_1, \ldots, H_r\} \) an \((H, k)\)-vertex-cover of \(G \). Thus when \(k = 1 \) we ask for the existence of a partition of \(V \) into \textit{vertex disjoint} copies of \(H \) i.e. the existence of an \(H \)-factor. In this case we assume the necessary divisibility condition, i.e. that \(|V(H)| \) divides \(|V|\). We study this property when \(G \) is a random graph and also when \(G \) is extremal w.r.t. minimum degree. In the main we will focus on the case where \(H \) is a complete graph \(K_t \) and denote our property by \(\mathcal{C}_{k,t} \).

Random Graphs. The precise threshold for the occurrence of \(\mathcal{C}_{2,1} \) i.e. the existence of a perfect matching was found by Erdős and Rényi [7] as part of a series of papers which laid the foundations of the theory of random graphs. The precise threshold for the occurrence of \(\mathcal{C}_{3,1} \) i.e. the existence of a vertex partition into triangles remains as one of the most challenging problems in this area (see, for example, the Appendix by Erdős to the monograph by Alon and Spencer [1]).

The thresholds for \(H \)-factors have been studied for example by Ruciński [15] and by Alon and Yuster [3]. For a graph \(H \), let

\[
m_1(H) = \max \left(\frac{|E(H')|}{|V(H')| - 1} \right)
\]

where the maximum is taken over all subgraphs \(H' \) of the graph \(H \) with at least two vertices. In [15], Ruciński showed that the probability \(p(n) = O(n^{-1/m_1(H)}) \) is a sharp threshold for the property \(\mathcal{C}_{H,1} \) for any graph \(H \) such that \(m_1(H) > \delta(H) \) where \(\delta(H) \) stands, as usual, for the minimum degree of the graph \(H \). Note that, for example, \(H \) being a complete graph is excluded. Hence, the first interesting case is \(H = K_3 \). In [11], Krivelevich showed that the probability \(p(n) = O(n^{-3/5}) \) is enough for the random graph to have a \(K_3 \)-factor \textbf{whp} and, in general, if \(p(n) = O(n^{-2/(t-1)(t+2)}) \) then the random graph \(G_{n,p} \) contains a \(K_t \)-factor \textbf{whp} (provided \(t \) divides \(n \)).

An obvious necessary condition for the existence of a \((K_t, k)\)-vertex-cover is that every vertex be incident with at least one copy of \(K_t \).

Theorem 1. Let \(m = (n)_2((t - 1)! (\log n + c_n))^{1/(t-1)} n^{-2/t} \). Then

\[
\lim_{n \to \infty} \Pr(G_{n,m} \text{ contains a } (K_t, 2)\text{-vertex-cover}) = \begin{cases}
0 & c_n \to -\infty \\
c^{-e^{-c}} & c_n \to c \\
1 & c_n \to \infty
\end{cases}
\]

(Here, \(G_{n,m} \) stands for the probability space over the set of all graphs on \(n \) vertices and with \(m \) edges endowed with the uniform probability measure.) We will prove this as a consequence of the slightly stronger hitting time version. We consider the graph process \(G_m = ([n], E_m), m = 0, 1, \ldots, (n)_2 \), where \(E_0 = \emptyset \) and \(G_m \) is obtained from \(G_{m-1} \) by choosing \(e_m \) randomly from \((n)_2 \setminus E_{m-1}\) and putting

\(^{1}\)A sequence of events \(\mathcal{E}_n \) occurs with high probability, \textbf{whp}, if \(\Pr(\mathcal{E}_n) = 1 - o(1) \).
\[E_m = E_{m-1} \cup \{e_m\} \]. We define two hitting times:

\[
\tau_1 = \tau_1(t) = \min \{m : \text{ Every } v \in [n] \text{ is contained in a copy of } K_t \text{ in } G_m \}, \\
\tau_2 = \tau_2(t) = \min \{m : G_m \text{ contains a } (K_t, 2)\text{-vertex-cover} \}.
\]

Theorem 2. For every fixed \(t \geq 3 \),

\[
\lim_{n \to \infty} \Pr(\tau_1 = \tau_2) = 1.
\]

Moreover, there exists whp a \((K_t, 2)\)-vertex-cover of \(G_{\tau_2} \) containing \((1 + o(1)) n^t \) copies of \(K_t \).

Remark 1. In fact, our proof of Theorem 2 implies that \(G_{\tau_2} \) possesses whp a \((K_t, 2)\)-vertex-cover containing at most \(\left(\frac{1}{t} + \frac{1}{(\log n)^t} \right) n \) copies of \(K_t \).

Remark 2. Theorem 2 lends weight to the common conjecture that the threshold for a \(K_t \)-factor is \(m \) of Theorem 1.

We prove Theorem 2 in Section 2 and show how Theorem 1 follows from Theorem 2 in Section 3.

Extremal Graphs. For a graph \(G \) on \(n \) vertices what is the smallest minimum degree that insures \(G \) has \(C_{t,k} \)? For \(t \geq 3 \) and \(k \geq 2 \) let

\[
f(n, t, k) = \max \{d : \exists G \text{ such that } \delta(G) = d, |V(G)| = n \text{ and } G \notin C_{t,k}\}.
\]

We will assume that \(n \) is large with respect to \(t \), but \(k \) can be arbitrarily large. The smallest minimum degree that guarantees a \(K_t \)-factor (this would be, up to divisibility considerations, \(f(n, t, 1) + 1 \)) was established in the following deep theorem of Hajnal and Szemerédi [9].

Theorem 3 (Hajnal, Szemerédi). If \(|V(G)| = n \) and \(\delta(G) \geq (1 - \frac{1}{t})n \) then \(G \) contains \(\lfloor n/t \rfloor \) vertex-disjoint copies of \(K_t \).

Our central result in this section is the following:

Theorem 4. Let \(t \geq 3, k \geq 2, n \geq 6t^2 - 4t \) and

\[
n = q[(t-1)k + 1] + r \text{ where } 1 \leq r \leq (t-1)k + 1.
\]

Then

\[
n - qk - \left\lfloor \frac{r}{t-1} \right\rfloor \leq f(n, t, k) \leq n - qk - \left\lfloor \frac{r}{t-1} \right\rfloor + 1.
\]

Note that it follows from Theorem 4 that

\[
f(n, t, k) = \left\lfloor \frac{(t-2)k + 1|n}{(t-1)k + 1} \right\rfloor + c
\]

(1)

where \(c \in \{0, 1, 2\} \). It is tempting to believe that \(f(n, t, k) \) equals the lower bound given in Theorem 4. This is not the case in general.
Theorem 5. Let $n \geq 6$ and $k \geq (n - 1)/2$.

$$f(n, 3, k) = \left\lceil \frac{n}{2} \right\rceil.$$

Note that the value of $f(n, 3, k)$ given in Theorem 5 equals the lower bound in Theorem 4 for n even, but equals the upper bound for n odd. (Here $q = 0$ and $r = n$).

For H a simple graph with no isolated vertices and G an arbitrary graph an (H, ∞)-vertex-cover of G is a collection H_1, \ldots, H_r of subgraphs of G satisfying P1, P2 and P3. Thus, G has an (H, ∞)-vertex-cover if and only if there exists a k such that G has a (H, k)-vertex-cover. To motivate our results on (H, ∞)-vertex-covers, we recall the following well-known extension of Theorem 3. Given an arbitrary graph H, Komlős, Sárközy and Szemerédi [13] showed that there is a constant c (depending only on the graph H) such that if $\delta(G) \geq \left(1 - \frac{1}{\chi(H)}\right)n$ for a graph G on n vertices, then there is a union of vertex-disjoint copies of H covering all but at most c vertices of G. Weakening the condition on $\delta(G)$ we show in the following theorem the existence of (H, ∞)-vertex-covers for graphs H having the property that there is a vertex u of H such that $\chi(H \setminus \{u\}) = \chi(H) - 1 \geq 3$.

Theorem 6. Let H be a graph such that $\chi(H) \geq 4$ and such that there is a vertex u of H with the property that $\chi(H \setminus \{u\}) = \chi(H) - 1$. Then for every $\epsilon > 0$ and every graph G on n vertices, if $\delta(G) \geq \left(1 - \frac{1}{\chi(H) - 1} + \epsilon\right)n$, then G has an (H, ∞)-vertex-cover provided n is large enough.

Theorems 4, 5 and 6 are proved in Section 4.

2 Proof of Theorem 2

In this section we will use the following Chernoff bounds on the tails of the binomial random variable $B(n, p)$. For $0 \leq \epsilon \leq 1$ and $\theta > 0$

$$\Pr(B(n, p) \leq (1 - \epsilon)np) \leq e^{-\epsilon^2np/2} \quad (2)$$

$$\Pr(B(n, p) \geq (1 + \epsilon)np) \leq e^{-\epsilon^2np/3} \quad (3)$$

$$\Pr(B(n, p) \geq \theta np) \leq (e/\theta)^{\theta np} \quad (4)$$

All Lemmas introduced in this section will be proven in the subsections that follow.

Let $t \geq 3$ be fixed. We construct a $(K_t, 2)$-vertex-cover in G_m by dividing our graph process into 3 phases and using edges from different phases for different purposes. Before describing the phases, we make some preliminary definitions and the observation that we may restrict our attention to G_m where m lies in a small interval. Let $\alpha, \beta > 0$ be constants such that

$$\beta^{(1)} > 19/20 \quad \text{and} \quad \alpha + \beta < 1,$$
and let
\[
m_a = \alpha \left(\frac{n}{2} \right) ((t - 1)! \log n)^{1/2} n^{-2/t}, \quad \text{and}
\]
\[
m_b = \beta \left(\frac{n}{2} \right) ((t - 1)! \log n)^{1/2} n^{-2/t}.
\]
Furthermore, for \(i = 0, 1 \) let
\[
m_i = \left(\frac{n}{2} \right) ((t - 1)! (\log n - (1 - 2i) \log \log n))^{1/2} n^{-2/t}.
\]

Lemma 1.
\[
\Pr(\tau_1 \notin [m_0, m_1]) = o(1).
\]

We will use the term ‘a collection of \(K_t \)'s’ in the graph \(G \), for a family \(\mathcal{A} \subseteq \left(V(G) \atop t \right) \) such that \(G[S] \) is complete for all \(S \in \mathcal{A} \). For such a collection \(\mathcal{A} \) we set
\[
V(\mathcal{A}) = \bigcup_{S \in \mathcal{A}} S \quad \text{and} \quad E(\mathcal{A}) = \bigcup_{S \in \mathcal{A}} \left(S \atop 2 \right),
\]
say \(\mathcal{A} \) ‘covers’ a vertex \(v \) if \(v \in V(\mathcal{A}) \), and say \(\mathcal{A} \) ‘covers’ a set of vertices \(T \) if \(T \subseteq V(\mathcal{A}) \).

We are now ready to describe the 3 phases. In the first phase we simply choose \(m_a \) edges uniformly at random, producing the graph \(G^1 = ([n], E^1) \). Thus,
\[
G^1 = G_{n, m_a}.
\]

In the second phase we form the graph \(G^2 = ([n], E^2) \) by choosing \(m_b \) edges uniformly at random. This is done independently of phase 1 and without knowledge of which edges were placed in phase 1. Thus,
\[
G^2 = G_{n, m_b},
\]
and a particular edge may appear in both \(G^1 \) and \(G^2 \). Let \(F = E^1 \cup E^2 \) and \(m_{-1} = |F| \). The third phase is the graph process \(H_i = ([n], F_i), i = m_{-1}, \ldots, m_1 \) where \(F_{m_{-1}} = F \) and \(F_{i+1} \) is the union of \(F_i \) and the set containing a single edge chosen uniformly at random from \(\left(\begin{array}{c} n \end{array} \right) \setminus F_i \). In other words, in the third phase we start with the collection of edges generated in phases 1 and 2 and then add new edges one at time until \(m_1 \) edges have been placed. Note that for \(m_a + m_b \leq i \leq m_1 \) the graphs \(G_i \) and \(H_i \) are identically distributed.

We henceforth assume that
\[
m_a + m_b \leq m \leq m_1
\]
and that every vertex in \(H_m = G_m \) lies in at least one copy of \(K_t \). We will show that
\[
\text{whp } G_m \text{ has a } (K_t, 2)\text{-vertex-cover.} \tag{5}
\]
Theorem 2 follows from (5) and Lemma 1.

How do we construct the \((K_t, 2)\)-vertex-cover? We first use the phase one edges to greedily cover as many vertices as possible with vertex disjoint \(K_t\)'s. Let \(\Xi\) be an arbitrary maximal collection of vertex disjoint \(K_t\)'s in \(G^1, X \subseteq [n]\) be the set of vertices not covered by \(\Xi\), and

\[
r = \left\lceil \frac{n}{(\log n)^{1/t}} \right\rceil.
\]

We can easily randomise this choice of \(K_t\)'s so that \(X\) is a random \(|X|\)-subset of \([n]\). This will be used in the proof of Lemma 4.

Lemma 2. Let \(G = G_{n, m_a}\).

\[
\Pr(\exists R \subseteq [n] \text{ such that } |R| = r \text{ and } G[R] \text{ contains no } K_t \text{'s}) = o(1).
\]

It follows from Lemma 2 that whp

\[
|X| \leq r.
\]

(6)

In other words, after using only a small fraction of the edges in \(G_m\), only \(o(n)\) vertices remain to be covered. We will use the phase 2 edges (as well as a handful of the phase 1 and phase 3 edges) to form a vertex disjoint collection of \(K_t\)'s that covers \(X\) but does not use any edge in \(E(\Xi)\).

Before describing the vertex disjoint collection of \(K_t\)'s that covers \(X\), we make further definitions and preliminary observations. Our first observation concerns the random graph process \(G_{m_1}\) alone. Let \(\nu_3 = 4, \nu_4 = 3\) and \(\nu_i = 2\) for \(i = 5, 6, \ldots\). We define a cluster to be a collection \(C = \{S_1, \ldots, S_l\}\) of \(K_t\)'s in \(G_{m_1}\) such that \(l \leq 2\nu_i\)

\[
\kappa_i \geq 1 \quad \text{for} \quad i = 2, \ldots, l
\]
\[
\kappa_i = t \quad \Rightarrow \quad \kappa_{i-1} = 1 \quad \land \quad |S_i \cap S_{i-1}| \geq 2
\]
\[
\text{and} \quad |\{i : \kappa_i \neq 1\}| = \nu_i
\]

where

\[
\kappa_i = \left| S_i \cap \left(\bigcup_{j=1}^{i-1} S_j \right) \right| \quad \text{for} \quad i = 2, \ldots, l.
\]

Roughly speaking, a cluster is a small collection of \(K_t\)'s that have many or large pairwise intersections.

Lemma 3.

\[
\Pr(G_{m_1} \text{ contains a cluster}) = o(1).
\]
We now turn our attention to the graph G^2. For $v \in [n]$ let Υ_v be the collection of K_t's in G^2 that contain v; to be precise,

$$\Upsilon_v = \left\{ S \in \left([n] \atop t \right) : v \in S \text{ and } \binom{S}{2} \subseteq E^2 \right\}.$$

Since Υ_v depends only on the graph G^2 while X is small and depends only on the graph G^1, it is usually the case that no $V(\Upsilon_v)$ contains many members of X. To make this statement precise, we let

$$q = \left\lfloor \frac{\log n}{\log \log \log n} \right\rfloor.$$

Lemma 4.

$$\Pr(\exists v \in [n] \text{ such that } |V(\Upsilon_v) \cap X| > q) = o(1).$$

We say that

- $v \in [n]$ is large if $|\Upsilon_v| \geq \frac{\log n}{\log 20}$, and
- $v \in [n]$ is small if $|\Upsilon_v| < \frac{\log n}{\log 20}$.

With high probability the small vertices are, with respect to connections via K_t's, far apart. To make this statement precise, we define a chain to be a pair u, v of distinct small vertices and a collection $S_1, S_2, S_3, S_4 \in \left([n] \atop t \right)$ of (not necessarily distinct) sets such that $u \in S_1$, $v \in S_4$,

$$S_1 \cap S_2, S_2 \cap S_3, S_3 \cap S_4 \neq \emptyset, \quad \text{and} \quad \binom{S_i}{2} \subseteq E(G_{m_i}) \text{ for } i = 1, 2, 3, 4.$$

Lemma 5.

$$\Pr(G_{m_1} \text{ contains a chain}) = o(1).$$

We also note that no K_t containing a small vertex intersects any other K_t in more than a single vertex. A link is a small vertex $u \in [n]$ and distinct $S_1, S_2 \in \left([n] \atop t \right)$ such that $u \in S_1$, $|S_1 \cap S_2| \geq 2$, and $\binom{S_1}{2}, \binom{S_2}{2} \subseteq E(G_{m_1})$.

Lemma 6.

$$\Pr(G_{m_1} \text{ contains a link}) = o(1).$$

Finally, let

- $X_1 = \{ v \in X : v \text{ is small} \}$,
- $X_2 = \{ v \in X : v \text{ is large} \}$, and
- $\Phi = \left\{ S \in \left([n] \atop t \right) : \binom{S}{2} \subseteq E(G_{m_1}) \text{ and } S \cap X_1 \neq \emptyset \right\}$.
We are now prepared to describe the remainder of the \((K_1, 2)\)-cover.

We henceforth assume (6),

\[
G_{m_1} \text{ does not contain a cluster,} \quad (7)
\]
\[
\forall v \in [n] \quad |V(Y_v) \cap X| \leq q, \quad (8)
\]
\[
G_{m_1} \text{ does not contain a chain,} \quad (9)
\]
\[
G_{m_1} \text{ does not contain a link,} \quad (10)
\]

and that \(n\) is sufficiently large (in a sense that is made clear below). We will show that there exist collections \(\Xi_1\) and \(\Xi_2\) of vertex disjoint \(K_i\)'s in \(G_m\) such that \(\Xi_1 \cup \Xi_2\) covers \(X_1 \cup X_2\) and

\[
V(\Xi_1) \cap V(\Xi_2) = \emptyset \quad \text{and} \quad E(\Xi) \cap E(\Xi_1 \cup \Xi_2) = \emptyset. \quad (11)
\]

If follows from Lemmas 1, 2, 3, 4, 5 and 6 that (11) implies Theorem 2.

We cover \(X_1\) in a rather crude way. Let \(\Xi_1\) be an arbitrary collection of \(K_i\)'s in \(G_m\) that covers \(X_1\). Note that the collection \(\Xi_1\) uses edges from all 3 phases and that we make use of the fact that every vertex is contained in some \(K_i\) in \(G_m\) when forming \(\Xi_1\). By (9), \(\Xi_1\) is vertex disjoint.

We cover

\[
X'_2 := X_2 \setminus V(\Xi_1)
\]

in a more sophisticated way: we apply the Lovász Local Lemma. We first 'trim' the \(Y_v\)'s. For \(v \in X'_2\) let \(\mathcal{Y}_v^t\) be the collection of sets in \(S \in \mathcal{Y}_v\) such that

\[
S \cap X = \{v\}
\]
\[
T \in \binom{[n]}{t} \land \binom{T}{2} \subseteq E(G_{m_1}) \Rightarrow |S \cap T| \leq 1, \quad \text{and} \quad (12)
\]
\[
S \cap V(\Phi) \subseteq \{v\}.
\]

In words, we get \(\mathcal{Y}_v^t\) from \(\mathcal{Y}_v\) by throwing away those sets in \(\mathcal{Y}_v\) that contain an element of \(X\) other than \(v\), intersect another \(K_i\) in more than one vertex, or contain a vertex of a \(K_i\) that contains a small vertex. By (8) there are at most \(q\) sets in \(\mathcal{Y}_v\) that contain an element of \(X\) other than \(v\). We will show

\[
\text{there are } \leq \binom{2^{\text{ad}}}{t} \text{ sets in } \mathcal{Y}_v \text{ that intersect another } K_i \text{ in } \geq 2 \text{ vertices.} \quad (13)
\]

By (9) at most 1 set in \(\mathcal{Y}_v\) intersects \(V(\Phi)\). Therefore, we may choose \(\Theta_v \subseteq \mathcal{Y}_v^t\) such that

\[
|\Theta_v| = \left\lceil \frac{\log n}{21} \right\rceil \quad \text{for all} \quad v \in X'_2. \quad (14)
\]

Proof of (13) Let \(\hat{\mathcal{Y}}_v\) denote the collection of \(K_i\)'s in \(\mathcal{Y}_v\) which intersect another \(K_i\) in more than one vertex. Let \(B = V(\hat{\mathcal{Y}}_v)\). We construct copies \(X_1, X_2, \ldots, X_i\)
of K_2 in G_{m_1} as follows: Suppose we have constructed X_1, X_2, \ldots, X_k. Either (i) $B \subseteq V_k = V(X_1 \cup X_2 \cup \ldots \cup X_k)$ or (ii) $B \not\subseteq V_k$. In case (ii) choose $X_{k+1} \in \mathcal{T}_v$ which is not contained in V_k. If $|X_{k+1} \cap V_k| = 1$ then choose X_{k+2} where $|X_{k+2} \cap X_{k+1}| \geq 2$. If this process continues for ν_1 iterations we will have produced a cluster. Thus $l \leq 2\nu_1$ and $|B| \leq 2t\nu_1$, which implies (13).

Now, consider the probability space in which each $v \in X'_2$ chooses $S_v \in \Theta_v$ uniformly at random and independently of the other vertices. For $u \neq v \in X'_2, S \in \Theta_u$ and $T \in \Theta_v$ such that $S \cap T \neq \emptyset$ let $A_{u,v,S,T}$ be the event that $S_u = S$ and $S_v = T$. These are the 'bad' events in our application of the Lovász Local Lemma. Clearly,

$$\Pr(A_{u,v,S,T}) = \frac{1}{|\Theta_v||\Theta_u|} \leq \left(\frac{21}{\log n} \right)^2 = p.$$ \hspace{1cm} (15)

Events A_{u_1,u_2,S_1,S_2} and A_{v_1,v_2,T_1,T_2} are dependent if and only if

$$\{u_1, u_2\} \cap \{v_1, v_2\} \neq \emptyset.$$

Thus, the degree in the dependency graph is bounded above by

$$d := 2 \max_{u \in X'_2} \sum_{S \in \Theta_u} \sum_{v \in X'_2} |\{T \in \Theta_v : S \cap T \neq \emptyset\}|$$

$$\leq 2 \max_{u \in X'_2} \sum_{v \in V(\Theta_u)} |\gamma_v \cap X'_2|$$

$$\leq 2tq \left[\log n \right] \frac{\log n}{21} \quad \text{by (8)}$$

$$\leq \frac{t(\log n)^2}{10 \log \log \log n}.$$ \hspace{1cm} (16)

It follows from (15) and (16) that

$$pd \leq \frac{45}{\log \log \log n} = o(1).$$

Thus, for n sufficiently large, it follows from the Lovász Local Lemma that there exists a vertex disjoint collection Ξ_2 of K_2's in G^2 that covers X'_2 but covers no vertex in $V(\Xi_1)$.

It remains to show that

$$E(\Xi) \cap E(\Xi_1 \cup \Xi_2) = \emptyset.$$

This is an immediate consequence of (10) and (12). We have established (11) and completed the proof. \hfill \Box

2.1 Proof of Lemma 1

Let $p_i = m_i/\binom{n}{2}$ for $i = 0, 1$.

9
We first apply Janson's inequality to show that whp every vertex in G_{n,p_1} is contained in a copy of K_t (we follow the notation of [1, pages 95 and 96]). Let v be a fixed vertex and let n denote the number of copies of K_t in G which are incident with v. Next let $S_1, S_2, \ldots, S_{\binom{n-1}{t-1}}$ be an enumeration of the copies of K_t in K_n which contain v. Letting B_j be the event $(\binom{s_j}{2}) \subseteq E(G_{n,p_0})$, we have

$$
\mu = \sum_{j=1}^{\binom{n-1}{t-1}} \Pr(B_j) = \binom{n-1}{t-1} p_1^{\binom{s_j}{2}} = (\log n + \log \log n)(1 + O(1/n))
$$

(17)

and

$$
\Delta = \sum_{|S_j \cap S_k| \geq 2} \Pr(B_j \cap B_k)
= \binom{n-1}{t-1} \sum_{r=2}^{t-1} \binom{t-1}{r} p_1^{\binom{s_j}{2} - \binom{s_k}{2}}
= O\left(\sum_{r=2}^{t-1} n^{2t-r-1} \binom{s_j}{2} - \binom{s_k}{2} + o(1)\right)
= O(n^{2t-1-1+o(1)}).
$$

(18)

Then, by Janson's inequality, we have

$$
\Pr(Z = 0) \leq \exp\left\{ -\mu + \frac{1}{1 - \epsilon} \frac{\Delta}{2} \right\}
= \frac{1}{n \log n} \exp\left\{ O(n^{-1+o(1)}) + O(n^{2t-1-1+o(1)}) \right\}
= o(1/n).
$$

(19)

It follows that

$$
\Pr(\exists u \in [n] : u \text{ is not contained in a copy of } K_t \text{ in } G_{n,p_0}) = o(1).
$$

(20)

The event $\{\exists u \in [n] : u \text{ is not contained in a copy of } K_t\}$ is monotone decreasing and so (20) implies that whp every vertex in $[n]$ is contained in a copy of K_t in G_{n,m_1}. In other words, $\tau_1 \leq m_1$ whp.

We now turn to the random graph G_{n,p_0} in order to establish our almost sure lower bound on τ_1. For $v \in [n]$ let Z_v be the number of K_t's in G_{n,p_0} that contain v, and let Y denote the number of vertices v such that $Z_v = 0$. Since

$$
M = (1 - p_0)^{\binom{n-1}{t-1}} = (1 + o(1)) \frac{\log n}{n}
$$

(21)

is a lower bound on $\Pr(Z_v = 0)$ for each $v \in [n]$, we have

$$
E(Y) \geq (1 + o(1)) \log n.
$$

(22)
We now show that $\text{Var}(Y)$ is small. Indeed,

$$\Pr(Z_1 = Z_2 = 0) \leq \Pr(\mathcal{E}_1) + \Pr(\bar{\mathcal{E}}_2 \bar{\mathcal{E}}_3 | \bar{\mathcal{E}}_1)$$

(23)

where, if N_i is the set of neighbors of i in G_{n,p_0},

$$\mathcal{E}_1 = \left\{ \left(1 - n^{-\frac{1}{2}}\right) n^{p_0} \leq |N_1|, |N_2| \leq 2np_0 \right\} \vee \left\{ |N_1 \cap N_2| \geq n^{-\frac{1}{2}}np_0 \right\}$$

$$\mathcal{E}_2 = \{G_{n,p_0} \text{ contains a copy } H \text{ of } K_{t-1} \text{ such that } H \subseteq N_1\}$$

$$\mathcal{E}_3 = \{G_{n,p_0} \text{ contains a copy } H \text{ of } K_{t-1} \text{ such that } H \subseteq N_2 \setminus N_1\}$$

Applying (2)–(4) we get,

$$\Pr(\mathcal{E}_1) \leq 5 \exp \left\{ -n^{1-\frac{5}{4t} + o(1)} \right\}.$$

Note that

$$\Pr(\bar{\mathcal{E}}_2 \wedge \bar{\mathcal{E}}_3 | N_1, N_2) = \Pr(\bar{\mathcal{E}}_2 | N_1, N_2) \Pr(\bar{\mathcal{E}}_3 | N_1, N_2)$$

because, conditioning on N_1 and N_2, these events depend on disjoint sets of edges.

Let W_1 and W_2 be fixed sets that satisfy

$$\left(1 - \frac{1}{n^{\frac{1}{4t}}}\right) n^{p_0} \leq |W_1| \leq 2np_0 \text{ and } \left(1 - \frac{2}{n^{\frac{1}{4t}}}\right) \leq |W_2 \setminus W_1| \leq 2np_0.$$

It follows from another application of Janson’s inequality that

$$\Pr(\bar{\mathcal{E}}_2 | N_1 = W_1, N_2 \setminus N_1 = W_2), \Pr(\bar{\mathcal{E}}_3 | N_1 = W_1, N_2 \setminus N_1 = W_2)$$

$$\leq \exp \left\{ -\log n + \log \log n + O(n^{-\frac{1}{4t}} + o(1)) + O(n^{-1+\frac{1}{4t}} + o(1)) \right\}.$$

Therefore,

$$\Pr(Z_1 = Z_2 = 0) = \frac{\log^2 n}{n^2} + o(1),$$

and it follows from (21) that

$$\text{Var}(Y) = o(\log^2 n).$$

It then follows from Chebyshev’s inequality that

$$\Pr(Y = 0) = o(1).$$

(24)

Since the event $\{Y = 0\}$ is monotone increasing, it follows from (24) that

$$\Pr(\text{every vertex in } G_{n,m_0} \text{ is contained in a copy of } K_t) = o(1).$$

In other words, we have shown that whp $\tau_1 > m_0$.

11
\subsection{Proof of Lemma 2}

Let $p_a = m_a/\binom{n}{3}$ and consider the random graph $G = G_{n,p_a}$. For $S \in \binom{[n]}{t}$ let B_S be the event that the induced graph $G[S]$ is complete. For R a fixed subset of $[n]$ such that

$$|R| = r = \left\lceil \frac{n}{(\log n)^{1/t}} \right\rceil$$

let the random variable X_R be the number of copies of K_t contained in R. We clearly have

$$\mu := \mathbb{E}[X_R]$$

$$= \sum_{S \in \binom{R}{t}} \mathbb{P}(B_S)$$

$$= \binom{r}{t} p_a^{\binom{t}{2}}$$

$$= \binom{r}{t} \frac{\alpha^2(t-1)! \log n}{n^{t-1}}$$

$$= \frac{r^t}{t!} (1 + O(1/r)) \frac{\alpha^2(t-1)! \log n}{n^{t-1}}$$

$$= \Omega(n)$$

We apply Janson’s inequality (again, we follow the notation of [1]) to show that $\mathbb{P}(X_R = 0)$ is small. In order to do so, we must bound the parameter Δ.

$$\Delta = \sum_{S,T \in \binom{R}{t}, 2 \leq |S \cap T| \leq t-1} \mathbb{P}(B_S \wedge B_T)$$

$$= \binom{r}{t} \sum_{i=2}^{t-1} \binom{t}{i} \binom{r-t}{t-i} p_a^{\binom{i}{2} - \binom{i}{2}}$$

$$= \sum_{i=2}^{t-1} O \left(n^{2t-i-\frac{3}{2}\binom{i}{2} - \binom{i}{2} + o(1)} \right)$$

$$= \sum_{i=2}^{t-1} O \left(n^{2^{i-1} - i + o(1)} \right)$$

$$= O \left(n^{2^{t-1} + o(1)} \right).$$

Thus, Janson’s inequality gives

$$\mathbb{P}(X_R = 0) \leq e^{-c_1 n}$$
where \(c_1 \) is a positive constant. Applying the first moment method, we have

\[
\Pr \left(\bigvee_{R \in \binom{[n]}{r}} \{ X_R = 0 \} \right) \leq \binom{n}{r} e^{-c_1 n} \\
\leq \left(\frac{ne^r}{r} \right) e^{-c_1 n} \\
= \exp \left\{ r \left(1 + \frac{\log \log n}{t} \right) - c_1 n \right\} \\
= o(1)
\]

Since this event is monotone, the same holds for \(G_{n,m} \).

2.3 Proof of Lemma 3

Let \(C = \{ S_1, \ldots, S_l \} \) be a fixed collection of \(K_i \)'s in \(K_n \) such that \(l \leq 2\nu_i \)

\[
\kappa_i \geq 1 \quad \text{for} \quad i = 2, \ldots, l \\
\kappa_i = t \quad \Rightarrow \quad \kappa_{i-1} = 1 \land |S_i \cap S_{i-1}| \geq 2 \\
\text{and} \quad |\{i : \kappa_i \neq 1\}| = \nu_i
\]

where

\[
\kappa_i = \left| S_i \cap \left(\bigcup_{j=1}^{i-1} S_j \right) \right| \quad \text{for} \quad i = 2, \ldots, l.
\]

Let \(a = |V(C)| \) and \(b = |E(C)| \).

Claim 7.

\[
a - \frac{2b}{t} < -\frac{1}{t}
\]

Proof. We observe this difference as we ‘build’ the collection \(C \) one \(K_i \) at a time. For \(j = 1, \ldots, l \) let \(C_j = \{ S_1, \ldots, S_j \} \), \(a_j = |V(C_j)| \), \(b_j = |E(C_j)| \) and \(d_j = a_j - 2b_j/t \). Note that

\[
d_1 = 1,
\]

and

\[
d_{i+1} - d_i \leq (t - \kappa_{i+1}) \frac{2}{t} \left(\binom{t}{2} - \binom{\kappa_{i+1}}{2} \right) = (\kappa_{i+1} - 1) \left(\frac{\kappa_{i+1}}{t} - 1 \right).
\]

Thus

\[
\kappa_{i+1} = 1 \quad \Rightarrow \quad d_{i+1} - d_i = 0 \\
\text{and} \quad 2 \leq \kappa_{i+1} \leq t - 1 \quad \Rightarrow \quad d_{i+1} - d_i \leq \frac{2}{t} - 1.
\]
Furthermore, it follows from (25) that
\[\kappa_{i+1} = t \Rightarrow b_{i+1} \geq b_i + t - 2 \Rightarrow d_{i+1} - d_i \leq -\frac{2(t-2)}{t}. \]
(29)

Since (by (28) and (29)) the difference \(a_i - 2b_i/t \) decreases by at least \(1 - 2/t \) whenever \(\kappa_{i+1} \neq 1 \), it follows from (26) that \(a - 2b/t = d_i < -1/t \). \(\square \)

Let \(\mathcal{E}_i \) be the event that there exists a cluster in \(G_{m_1} \) with a vertex set of cardinality \(i \), and let \(b_i \) be the minimum number of edges in a cluster on \(i \) vertices. With \(p_{m_1} = m_1/\binom{n}{2} \) we have
\[
\Pr(\mathcal{E}_i) \leq \binom{n}{i} 2^{(i)} p_{m_1}^{b_i} = O\left(n^{i - \frac{2i}{t} + o(1)} \right) = O\left(n^{-\frac{1}{t} + o(1)} \right).
\]

The lemma then follows from the fact that the cardinality of the vertex set of a cluster is at most \(2\nu_it \), a constant depending only on \(t \).

2.4 Proof of Lemma 4

We first argue that whp
\[|\Upsilon_v| \leq 4 \log n \quad \text{for all } v \in [n]. \]
(30)

We can calculate in \(G_{n,p_b} \) where \(p_b = m_b/N, N = \binom{n}{2} \) and then use monotonicity to translate the result to \(G^2 \). It follows from Lemma 3 and (13) that whp after removing \(O(1) \) \(K_i \)'s from \(\Upsilon_v \) we have a collection \(\tilde{\Upsilon}_v \) of \(K_i \)'s which are disjoint except for there containing \(v \). So in \(G_{n,p_b} \)
\[
\Pr(|\tilde{\Upsilon}_v| \geq \kappa = 3.9 \log n) \leq \frac{(n-1)^\kappa}{\kappa!} \frac{(n)^{\kappa}}{\kappa!} \leq \frac{(e/3.9)^{3.9\log n}}{n^{-3/2}} = o(n^{-3/2}).
\]

This verifies (30).

Now fix a vertex \(v \). Then \(|V(\Upsilon_v)| < 4t \log n \) and \(|X| \leq r \). Also, \(X \) and \(V(\Upsilon_v) \) are chosen independently. It follows that
\[
\Pr(|V(\Upsilon_v) \cap X| \geq q) \leq \frac{\binom{4t \log n}{q} \binom{n-q}{r-q}}{\binom{n}{r}} \leq \frac{\binom{4te \log n}{qn}}{q^n} \leq \binom{4te \log \log n \log n}{(\log n)^{(t+1)/t}} \log n/\log \log n = O(n^{-A})
\]

14
for any constant $A > 0$.
There are n choices for v and the lemma follows.

2.5 Proof of Lemmas 5 and 6

Let

$$p = ((t - 1)! \log n)^{1/(t^2)} n^{-2/t} \text{ and } p_{m_1} = \frac{m_1}{\binom{n}{2}}.$$

The main work of this section is the following claim.

Claim 8. Let $H = (A, B)$ be a fixed graph whose vertex set A is a subset of $[n]$, and let $x, y \in A$ be distinct fixed vertices. If $b := |B|$ and $a := |A| \leq 4t$ then

1. $\Pr ((x \text{ is small}) \land (H \subseteq G_{m_1})) = O(p_{m_1}^b n^{-3/4})$
2. $\Pr ((x \text{ and } y \text{ are small}) \land (H \subseteq G_{m_1})) = O(p_{m_1}^b n^{-3/2})$

Proof. We only prove 2; the proof of 1 is both similar and easier. Let \mathcal{R}_x be the event that x is small, \mathcal{R}_y be the event that y is small, and let \mathcal{R}_H be the event $B \subseteq E(G_{m_1})$. Furthermore, let

$$N_x = \{v \in [n] : x \sim_{G^2} v\} \setminus A \quad \text{and} \quad N_y = \{v \in [n] : y \sim_{G^2} v\} \setminus (A \cup N_x),$$

G_x be the induced graph $G^2[N_x]$, and $G_y = G^2[N_y]$. Finally, let $\epsilon > 0$ be a constant such that

$$\beta + \epsilon < 1 \text{ and } (\beta - \epsilon)^{\binom{2}{t}} \geq \frac{3}{4} + \frac{1}{20} (1 + \log 20). \tag{31}$$

Case 1. $t = 3$

We condition on the event that N_x and N_y are of nearly the expected size. Let \mathcal{R}_1 be the event that

$$(\beta - \epsilon)np \leq |N_x|, |N_y| \leq (\beta + \epsilon)np, \tag{32}$$

and \mathcal{R}_2 be the event that

$$|E(G_x)|, |E(G_y)| \leq \frac{\log n}{20}. \tag{33}$$

We have

$$\Pr(\mathcal{R}_H \land \mathcal{R}_x \land \mathcal{R}_y) \leq \Pr(\mathcal{R}_2 | \mathcal{R}_1 \land \mathcal{R}_H) \Pr(\mathcal{R}_H) + \Pr(\bar{\mathcal{R}}_1). \tag{34}$$

Now the Chernoff bounds show that in $G_{n, p_{m_1}}$ we have

$$\Pr(\bar{\mathcal{R}}_1) = O(\exp\{-n^{1-2/t+o(1)}\}), \tag{35}$$
and we can inflate this by \(O(n) \) to show the same for \(G_{m_1} \).

Then, where \(N = \binom{n}{2} \)

\[
\Pr(\mathcal{R}_H) \leq \binom{\binom{n}{2}}{b} \left(\frac{N - b}{m_1 - b} \right) / \binom{N}{m_1} = O\left(b^m_{m_1}\right),
\]

(36)

To bound \(\Pr(\mathcal{R}_2) \) we condition on \(N_x = S, N_y = T \) satisfying (32), where \(S, T \) are fixed subsets of \([n] \). Now let \(\hat{\mathcal{R}}_2 \) denote the event

\[
|E(S)|, |E(T)| \leq \frac{\log n}{20}.
\]

We show that for \(\gamma \geq \beta - \epsilon \), in \(G_{n,\gamma p} \) we have

\[
\Pr_{\gamma p}(\hat{\mathcal{R}}_2) = O(n^{-3/2}).
\]

(37)

The monotonicity of \(\hat{\mathcal{R}}_2 \) plus the concentration of the number of edges of \(G_{n,\gamma p} \) around \(\gamma N p \) then allows us to assert (37) for \(G^2 \). Indeed, then

\[
O(n^{-3/2}) = \Pr_{\gamma p}(\hat{\mathcal{R}}_2) = \sum_m \binom{N}{m} (\gamma p)^m (1 - \gamma p)^{N - m} \Pr_m(\hat{\mathcal{R}}_2)
\]

and so taking \(\beta - \epsilon \leq \gamma \) we see that if \(\Pr_m(\hat{\mathcal{R}}_2) \geq A n^{-3/2} \) then \(\Pr_{\gamma p}(\hat{\mathcal{R}}_2) \geq A n^{-3/2} / 2 \).

The random variable \(X = |E(G_x)| \) (in \(G_{n,\gamma p} \)) is a binomial random variable \(B(s, p) \) where \(s = \binom{\binom{n}{2}}{2} \), having mean \(\mu \) where

\[
(\beta - \epsilon)^3 \log n < \mu < (\beta + \epsilon)^3 \log n.
\]

So,

\[
\Pr_{\gamma p} \left(X \leq \frac{\log n}{20} \right) \leq \sum_{l=0}^{\left\lfloor \frac{\log n}{20} \right\rfloor} \binom{s}{l} (\gamma p)^l (1 - \gamma p)^{s-l} \leq (1 + o(1)) \sum_{l=0}^{\left\lfloor \frac{\log n}{20} \right\rfloor} e^{-\mu \frac{l}{l!}} \\
\leq 2 e^{-\mu \frac{\left\lfloor \frac{\log n}{20} \right\rfloor}{\left\lfloor \frac{\log n}{20} \right\rfloor !}} \\
\leq 3 \exp \left\{ - \log n \left((\beta - \epsilon)^3 - \frac{1}{20 (1 + \log 20)} \right) \right\} \leq 3 n^{-3/4}
\]

We apply the same argument to \(|E(G_y)| \) (adding the appropriate conditioning on the number of edges within \(N_y \)). The proof now follows from (34) – (37).
Case 2. $t \geq 4$

We bound $\Pr(\mathcal{R}_x \wedge \mathcal{R}_y \wedge \mathcal{R}_H)$ by conditioning on the event that the neighborhoods of x and y are of nearly the expected size and have nearly the expected number of edges. Let \mathcal{R}_3 be the event that

$$(\beta - \epsilon)pn \leq |N_x|, |N_y| \leq (\beta + \epsilon)pn,$$

$$(\beta - \epsilon)p\left(\frac{|N_x|}{2}\right) \leq |E(G_x)| \leq (\beta + \epsilon)p\left(\frac{|N_x|}{2}\right), \text{ and}$$

$$(\beta - \epsilon)p\left(\frac{|N_y|}{2}\right) \leq |E(G_y)| \leq (\beta + \epsilon)p\left(\frac{|N_y|}{2}\right).$$

Let \mathcal{R}_4 be the event that both G_x and G_y contain fewer than $\frac{\log n}{20}$ copies of K_t. We now bound the probability of $\mathcal{R}_x \wedge \mathcal{R}_y \wedge \mathcal{R}_H$ as follows:

$$\Pr(\mathcal{R}_x \wedge \mathcal{R}_y \wedge \mathcal{R}_H) \leq \Pr(\mathcal{R}_4|\mathcal{R}_H \wedge \mathcal{R}_3)\Pr(\mathcal{R}_H) + \Pr(\mathcal{R}_3)$$

$$\leq \Pr(\mathcal{R}_4|\mathcal{R}_H \wedge \mathcal{R}_3)O(p_m^b) + O(\exp\{-n^{1-t^2+o(1)}\}). \quad (38)$$

We bound $\Pr(\mathcal{R}_4|\mathcal{R}_H \wedge \mathcal{R}_3)$ by an application of the Poisson approximation on the number of K_t's in the random graph $G_{n,m}$ given by Theorem 6.1 of [8, page 68]. We let n' and m' be integers satisfying

$$(\beta - \epsilon)pn \leq n' \leq (\beta + \epsilon)pn, \quad (39)$$

$$(\beta - \epsilon)p\left(\frac{n'}{2}\right) \leq m' \leq (\beta + \epsilon)p\left(\frac{n'}{2}\right), \quad (40)$$

and condition on the event that $|N_x| = n'$ and $|E(G_x)| = m'$. Note that under this conditioning G_x can be viewed as the random graph $G_{n',m'}$. Following the notation of [8], we have

$$\frac{1}{2} (n')^{2-t^2} \omega_1 \leq m' \leq \frac{1}{2} (n')^{2-t^2} \omega_2$$

where

$$\omega_1 = (\beta - \epsilon)^{\frac{t^2}{t-1}} ((t-1)! \log n)^{1/(t^2)}$$

and

$$\omega_2 = (\beta + \epsilon)^{\frac{t^2}{t-1}} ((t-1)! \log n)^{1/(t^2)}.$$
It then follows from Theorem 6.1 of [8] that

\[
\Pr \left(X \leq \log \frac{n}{20} \right) \leq (1 + o(1)) \sum_{k=0}^{\left\lfloor \log \frac{n}{20} \right\rfloor} e^{-\lambda} \frac{\lambda^k}{k!} \\
\leq 2e^{-\lambda} \frac{\lambda^{\left\lfloor \log \frac{n}{20} \right\rfloor}}{\log n} \\
\leq 2e^{-\lambda} \left(\frac{20\epsilon}{\log n} \right)^{\left\lfloor \log \frac{n}{20} \right\rfloor} \\
\leq 2 \exp \left\{ -(\beta - \epsilon) \left(\frac{\epsilon}{2} \log n \right) \left(20 \epsilon \right)^{\frac{\log n}{20}} \right\} \\
= 2 \exp \left\{ - \log n \left((\beta - \epsilon) \left(\frac{\epsilon}{2} \right) - \frac{1}{20} (1 + \log 20) \right) \right\} \\
\leq 2n^{-3/4}
\]

With (38) this completes the proof. □

Proof of Lemma 5. Let \(S_1 \) be the event that there is a chain in \(G_{m_1} \). For a fixed collection \(\mathcal{A} \) of \(K_i \)'s in \(K_n \) and distinct \(u, v \in [n] \) which define a possible chain, it follows from an argument along the line of the proof of Claim 7 that

\[
|V(\mathcal{A})| \leq 1 + \frac{2|E(\mathcal{A})|}{t}
\]

and it follows from Claim 8 that

\[
\Pr \left((u \text{ and } v \text{ are small }) \cap E(\mathcal{A}) \subseteq E(G_{m_1}) \right) \leq O\left(p_{m_1}^{\left| E(\mathcal{A}) \right|} n^{-3/2} \right).
\]

Applying the first moment method we have

\[
\Pr(S_1) \leq \binom{n}{2}^{4t-3} \sum_{i=t}^{\binom{n-2}{2}} 2^i O\left(p_{m_1}^{\frac{(i-1)i}{2}} n^{-3/2} \right) \\
\leq \sum_{i=t}^{4t-3} O\left(n^{i-\frac{2(i-1)i}{2}-\frac{2}{3}+o(1)} \right) \\
\leq \sum_{i=t}^{4t-3} O\left(n^{-\frac{1}{2}+o(1)} \right) \\
= o(1)
\]

Proof of Lemma 6. Let \(S_2 \) be the event that there is a link in \(G_{m_1} \). For fixed \(S, T \in \binom{[n]}{2} \) such that \(|S \cap T| \geq 2 \) and \(x \in S \cup T \) it follows from Claim 8 that

\[
\Pr \left((x \text{ is small }) \cap \binom{S}{2} \cup \binom{T}{2} \subseteq E(G_{m_1}) \right) = O\left(p_{m_1}^{|S \cap T|} n^{-3/4} \right).
\]

18
Applying the first moment method we have

\[\Pr(S_2) \leq n \left(\frac{n-1}{t-1} \right) \sum_{i=2}^{t-1} \binom{i}{t} \left(\frac{n-t}{t-i} \right) O\left(\frac{2^t_i - \binom{i}{t}}{n^{3/4}} \right) \]
\[\leq \sum_{i=2}^{t-1} O\left(n^{2t-i-2(t-1) + \frac{2}{3} \binom{i}{t} \frac{5}{3} + o(1)} \right) \]
\[\leq \sum_{i=2}^{t-1} O\left(n^{\frac{5}{i} - \frac{i(i+1)}{1} + o(1)} \right) \]
\[= o(1) \]

\[\Box \]

3 Proof of Theorem 1.

For a graph \(G \) and a vertex \(v \), we defined prior to (21) \(Z_v(G) = Z_v \) to be the number of \(K_i \)'s in \(G \) that contain \(v \) and \(Y(G) = Y \) to be the number of vertices \(u \) with \(Z_u = 0 \).

In view of Theorem 2 we need only prove that

\[
\lim_{n \to \infty} \Pr(Y(G_{n,m}) = 0) = \begin{cases}
0 & c_n \to -\infty \\
e^{-e^{-c}} & c_n \to c \\
1 & c_n \to \infty
\end{cases}
\]

(41)

Using Theorem 2 of Łuczak [14] we can derive (41) from the more easily obtained

\[
\lim_{n \to \infty} \Pr(Y(G_{n,p}) = 0) = \begin{cases}
0 & c_n \to -\infty \\
e^{-e^{-c}} & c_n \to c \\
1 & c_n \to \infty
\end{cases}
\]

(42)

where \(p = m/\binom{n}{3} \). Furthermore we need only consider the case \(c_n \to c \) as the others follow by monotonicity. Equation (42) can be proved by showing that \(Y(G_{n,p}) \) is asymptotically Poisson. In particular we need only show that for \(k = O(1) \),

\[
\lim_{n \to \infty} n^{k} \Pr(Z_i(G_{n,p}) = 0, 1 \leq i \leq k) = e^{-ck}
\]

(43)

and then apply e.g. Theorem 20 of Bollobás [5].

Equation (43) follows from

\[
\Pr(Z_i(G_{n,p}) = 0 \mid Z_j(G_{n,p}) = 0, 1 \leq j < i) \sim \frac{e^{-e}}{n}
\]

(44)

for \(1 \leq i \leq k \).

Using \(N_j \) to denote the neighbourhood of \(j \) in \(G_{n,p} \) we let
• ν_1 denote the number of K_{i-1} in $N_i \setminus \bigcup_{j=1}^{i-1} N_j$.

• ν_2 denote the number of K_{i-1} in N_i which use a vertex of $\bigcup_{j=1}^{i-1} N_j$.

We then let $C_i = \{ Z_j(G_{n,p}) = 0, 1 \leq j < i \}$ and write

$$\Pr(Z_i(G_{n,p}) = 0 \mid C_i) = \Pr(\nu_1 = 0 \mid C_i)(1 - \Pr(\nu_2 \neq 0 \mid \nu_1 = 0, C_i)).$$

Then $\Pr(\nu_1 = 0 \mid C_i) \sim e^{-c}/n$ follows from Janson’s inequality and $\Pr(\nu_2 \neq 0 \mid \nu_1 = 0, C_i) \leq \Pr(\nu_2 \neq 0) = o(1/n)$ follows from the FKG inequality and a first moment calculation. \hfill \Box

4 Proofs of Theorems 4 – 6

We prove Theorem 4 via an application of the following theorem of Hajnal and Szemerédi. For $k \leq n$ the Turán graph $T_k(n)$ is the complete k-partite graph on n vertices where the parts in the vertex partition have cardinalities

$$\left\lfloor \frac{n}{k} \right\rfloor, \left\lfloor \frac{n+1}{k} \right\rfloor, \ldots, \left\lfloor \frac{n+k-1}{k} \right\rfloor.$$

In other words, the parts in the partition are as near as possible to being equal (i.e. the partition is a so-called equipartition). Below we use the following theorem proved by Hajnal and Szemerédi (cf. Theorem 3).

Theorem 7 (Hajnal, Szemerédi). If G is a graph on n vertices having maximum degree $\Delta(G) = \Delta$ then

$$G \subseteq T_{\Delta+1}(n).$$

For a graph G, let \overline{G} be the complement of G. It is easy to see that Theorem 7 is equivalent to

Theorem 8. If G is a graph on n vertices having minimum degree $\delta(G) = \delta$ then

$$T_{n-\delta}(n) \subseteq G.$$

Let a (K_t,l)-vertex-cover be a K_t-vertex-cover in which each vertex appears in at most l copies of K_t.

Proof of Theorem 4. We establish the lower bound by example. Consider the complete t-partite graph on n vertices having parts V_1, \ldots, V_t such that $|V_1| = q$ and

$$|V_2|, \ldots, |V_t| \in \left\{ lq + \left\lfloor \frac{r}{t-1} \right\rfloor, lq + \left\lfloor \frac{r}{t-1} \right\rfloor \right\}.$$
If \(q = 0 \) then \(G \) contains no \(t \)-clique and therefore has no \((K_t, l) \)-vertex-cover. If \(q > 0 \) then, by the definition of \(r \), there exists \(V_i \) such that \(|V_i| > ql \), and \(G \) has no \((K_t, l) \)-vertex-cover.

Suppose \(G \) is a graph on \(n \) vertices having

\[
\delta(G) \geq n - ql - \left\lfloor \frac{r}{t-1} \right\rfloor + 2.
\]

Let

\[
s = ql + \left\lfloor \frac{r}{t-1} \right\rfloor - 2.
\]

It follows from Theorem 8 that \(\overline{T_s(n)} \subseteq G \). In words, there exists an equipartition \(V(G) = V_1 \cup \cdots \cup V_s \) such that the induced graph \(G[V_i] \) is complete for \(i = 1, \ldots s \). We will show that the collection of cliques \(G[V_1], \ldots, G[V_s] \) can be transformed into a \((K_t, l) \)-vertex-cover.

Claim 9.

\[
t - 1 \leq |V_i| \leq t \text{ for } i = 1, \ldots, s.
\]

Proof. We merely observe that \(s(t - 1) < n \) while \(st \geq n \).

\[
\left[ql + \left\lfloor \frac{r}{t-1} \right\rfloor - 2 \right] (t - 1) \leq ql(t - 1) + \left(\frac{r}{t-1} + 1 \right) (t - 1) - 2(t - 1)
\]

\[
\leq ql(t - 1) + r - (t - 1)
\]

\[
< n.
\]

On the other hand,

\[
\left[ql + \left\lfloor \frac{r}{t-1} \right\rfloor - 2 \right] t \geq \left[ql + \frac{r}{t-1} - 2 \right] t
\]

\[
= n + q(l - 1) + \frac{r}{t-1} - 2t.
\]

Now, since \(n \geq 6t^2 - 4t \), at least one of the following holds:

- \(r \geq 2t(t - 1) \)
- \(q \geq 2t \)
- \(q(t - 1)l \geq 4t(t - 1) \).

In any of these situations, the expression in (46) is greater than or equal to \(n \).

If follows from Claim 9 that we may assume that for some \(m \) we have \(|V_1| = \cdots = |V_m| = t - 1 \) and \(|V_{m+1}| = \cdots = |V_s| = t \).
Claim 10.

\[m < (l - 1)(q + 1). \]

Proof. Since \(V_1, \ldots, V_s \) is a partition, we must have \((t - 1)m + t(s - m) = n \). However,

\[
(t - 1)(l - 1)(q + 1) + t \left[ql + \left\lfloor \frac{r}{t - 1} \right\rfloor - 2 - (l - 1)(q + 1) \right]
\]

\[
= q[(t - 1)(l + 1) + t \left(\frac{r}{t - 1} \right) + 1 - l - 2t]
\]

\[
\leq q[(t - 1)(l + 1) + t \left(\frac{r}{t - 1} + \frac{t - 2}{t - 1} \right) + 1 - l - 2t]
\]

\[
\leq n + \frac{1}{t - 1} + t \frac{t - 2}{t - 1} + 1 - 2t
\]

\[
= n - t
\]

\[
< n
\]

\[\square \]

We transform \(G[V_1], \ldots, G[V_s] \) into a \((K_t, l)\)-vertex-cover by expanding the clique \(V_i \) by one vertex for \(i = 1, \ldots, m \). To be precise, we will show that there exist \(x_1, \ldots, x_m \in V(G) \) such that

1. \(x_i \sim v \quad \forall v \in V_i \),
2. \(|\{x_i : x_i = v\}| \leq l - 1 \quad \forall v \in V(G) \),
3. \(x_i \in V_j \Rightarrow x_j \notin V_i \),
4. \(x_i \notin V_i \).

Note that the third condition must be included to prevent two of the expanded cliques from containing a common edge. For \(i = 1, \ldots, m \) let

\[A_i = \{ v \in V(G) \setminus V_i : v \sim u \quad \forall u \in V_i \} \]

Claim 11. \(|A_i| \geq q + t \) for \(i = 1, \ldots, m \).

Proof. Since, for \(v \in V_i \),

\[
|\{x \in V(G) \setminus V_i : x \neq v\}| \leq n - 1 - \delta(G)
\]

\[
\leq ql + \left\lfloor \frac{r}{t - 1} \right\rfloor - 3,
\]

22
we have

$$|\{x \in V(G) \setminus V_i : \exists v \in V_i \text{ such that } x \neq v\}|$$

$$\leq (t - 1) \left[ql + \left\lceil \frac{r}{t - 1} \right\rceil - 3 \right]$$

$$\leq ql(t - 1) + (t - 1) \left(\frac{r}{t - 1} + \frac{t - 2}{t - 1} \right) - 3(t - 1)$$

$$= ql(t - 1) + r - 2t + 1.$$

Therefore

$$|A_i| = |V(G) \setminus V_i| - |\{x \in V(G) \setminus V_i : \exists v \in V_i \text{ such that } x \neq v\}|$$

$$\geq n - (t - 1) - [ql(t - 1) + r - 2t + 1]$$

$$= q + t \quad \square$$

Now, we choose the x_i's one at a time in an order $x_1 = x_{i_1}, x_{i_2}, \ldots x_{i_m}$ as follows. Suppose x_{i_1}, \ldots, x_{i_k} have been chosen.

If $x_{i_k} \in V_j$ and $j \not\in \{i_1, \ldots, i_k\}$ then $j = i_{k+1}$. \hfill (47)

Otherwise i_{k+1} is chosen arbitrarily from $\{j : 1 \leq j \leq m\} \setminus \{i_1, \ldots, i_k\}$. In other words, we chose the x_i's in an order such that at most one x_i falls in V_j before x_j is chosen. For $k = 1, \ldots, m$ let

$$U_k = \{v \in V(G) : |\{1 \leq j < k : x_{i_j} = v\}| = l - 1\}.$$

In words, U_k is the set of vertices that satisfy 2. with equality after $x_{i_1}, \ldots, x_{i_{l-1}}$ have been determined. Thus, we must have $x_{i_k} \not\in U_k$. By Claim 10

$$|U_k| \leq \left\lceil \frac{m - 1}{l - 1} \right\rceil < q + 1. \quad \hfill (48)$$

For $k = 1, \ldots, m$ let

$$R_k = \bigcup_{1 \leq j < k : x_{i_j} \in V_k} V_{ij}.$$

(Note that the union here is over zero or one set only). By condition 3. we must have $x_{i_k} \not\in R_k$. By the construction of the ordering given in (47),

$$|R_k| \leq t - 1. \quad \hfill (49)$$

An arbitrary $x_{i_k} \in (A_{i_k} \setminus U_k) \setminus R_k$ satisfies 1, 2, and 3. By (48), (49) and Claim 11 such an element exists. \square
Proof of Theorem 6. Let $\epsilon > 0$ and let G be a graph on n vertices with $\delta(G) = \delta \geq (1 - \frac{1}{\chi(H)^2}) + \epsilon)n$. We show that any collection of edge disjoint copies of H that does not cover $V(G)$ can be extended to cover at least one new vertex. To be precise, we show that if a family $\mathcal{F} = \{\Gamma_1, \ldots, \Gamma_m\}$ of copies of H in G and a vertex $v \in V(G)$ satisfy
\begin{equation}
m < n, \\
\Gamma_i = (V(\Gamma_i), E(\Gamma_i)) \text{ are copies of } H \text{ in } G \text{ for all } i, (50)\\nE(\Gamma_i) \cap E(\Gamma_j) = \emptyset \text{ for all } i \neq j,
\end{equation}
and
\begin{equation}
v \not\in \bigcup_{i=1}^{m} V(\Gamma_i),
\end{equation}
then there exists a family $\mathcal{F}' = \{\Upsilon_1, \ldots, \Upsilon_l\}$ such that for all $i \Upsilon_i = (V(\Upsilon_i), E(\Upsilon_i))$ are copies of H in G
\begin{equation}
E(\Upsilon_i) \cap E(\Upsilon_j) = \emptyset \text{ for all } i \neq j
\end{equation}
and
\begin{equation}
\bigcup_{i=1}^{l} V(\Upsilon_i) \supseteq \left(\bigcup_{i=1}^{m} V(\Gamma_i) \right) \cup \{v\}.
\end{equation}
Note that we include the possibility of $m = 0$. Clearly, an inductive argument based on (50) and (51) above implies the theorem. Further, we may assume $m < n$ in (50). Suppose, on the contrary, that we have a family $\mathcal{F}' = \{\Gamma_1, \ldots, \Gamma_m\}, m \geq n$, constructed inductively by (50) and (51) such that it does not cover all vertices. However, by the inductive construction of \mathcal{F}' every vertex is already in some copy of H included in the family \mathcal{F}'. A contradiction.

To proceed with the proof we need to establish some notational conventions. Let u be the vertex of H such that $\chi(H \setminus \{u\}) = \chi(H) - 1$. Set $H' = H \setminus \{u\}$, $h = |V(H)|$, and $e_H = |E(H)|$. For \mathcal{F} and a vertex v as in (50), let N_v be the set of neighbors of v, $d_v = |N_v|$ and $F = \bigcup_{i=1}^{m} E(\Gamma_i)$. Our analysis will focus on the consideration of the subgraphs $L = G[N_v]$ and $L' = (N_v, E(L) \setminus F)$. We extend \mathcal{F} to \mathcal{F}' by simply finding a copy of H which contains v but no edges in F. Clearly, if there exists a copy of H' in L', then this H' together with v gives a copy of H that extends \mathcal{F}. (Note H' is a subgraph of $L = G[N_v]$).

We have for $|E(L)| \geq \frac{d_v}{2} \left(\delta - (n - d_v) \right)$. Since $\delta \geq \left(\frac{\chi - 2}{\chi - 1} + \epsilon \right)n$ is equivalent to $\delta - n \geq -\frac{1}{\chi - 2} \delta + \epsilon n \frac{\chi - 1}{\chi - 2}$, we get
\begin{align*}
|E(L)| & \geq \frac{d_v}{2} \left(\delta - (n - d_v) \right) \\
& \geq \frac{d_v}{2} \left(d_v - \frac{1}{\chi - 2} \delta + \epsilon n \frac{\chi - 1}{\chi - 2} \right) \\
& \geq \frac{d_v^2}{2} \cdot \frac{\chi - 3}{\chi - 2} + \epsilon n \frac{d_v}{2} \cdot \frac{\chi - 1}{\chi - 2}.
\end{align*}
Since we are assuming that $|\mathcal{F}| < n$, we have

$$|F \cap E(L)| \leq |F| \leq e_H n,$$

and it follows

$$|E(L')| = |E(L)| - |F \cap E(L)|$$

$$\geq \frac{d_v^2 \cdot \chi - 3}{\chi - 2} + \epsilon n \cdot \frac{d_v \cdot \chi - 1}{\chi - 2} - e_H n$$

$$\geq \left(\frac{d_v}{2} \right) \cdot \frac{\chi - 3}{\chi - 2} + \frac{1}{2} \epsilon \left(\frac{d_v}{2} \right)^2 \frac{\chi - 1}{\chi - 2}$$

$$+ \left(\frac{1}{2} \epsilon \left(\frac{d_v}{2} \right)^2 \frac{\chi - 1}{\chi - 2} + d_v \cdot \frac{\chi - 3}{\chi - 2} + e \frac{d_v}{2} \cdot \frac{\chi - 1}{\chi - 2} - e_H n \right).$$

Letting $\epsilon' = \frac{1}{2} \cdot \frac{\chi - 1}{\chi - 2} \cdot \epsilon$ and d_v be large enough (i.e. n large enough), we conclude that

$$\frac{1}{2} \epsilon \left(\frac{d_v}{2} \right)^2 \frac{\chi - 1}{\chi - 2} + \frac{d_v \cdot \chi - 3}{\chi - 2} + e \frac{d_v}{2} \cdot \frac{\chi - 1}{\chi - 2} - e_H n \geq 0$$

and thus, $|E(L')| \geq \left(\frac{\chi - 3}{\chi - 2} + \epsilon' \right) \left(\frac{d_v}{2} \right)^2$. By the Erdős - Stone theorem there exists a copy of H' in L'. Taking this copy of H' together with v and edges needed gives us a new copy of H by which we extend \mathcal{F} to \mathcal{F}'.

Proof of Theorem 5. We are going to determine the exact value of $f(n, 3, k)$, $k \geq \frac{n - 1}{2}$ and $n \geq 6$. First, note that in any (K_3, ∞)-vertex-cover of a graph G on n vertices no vertex lies in more than $\frac{n - 1}{2}$ copies of K_3. In order to get a tight result we assume G is a graph on n vertices with $\delta(G) \geq \lceil n/2 \rceil + 1$. Let $\mathcal{F} = \{ \Gamma_1, \ldots, \Gamma_m \}$ and v be as in (50) with $H = K_3$. We use the notation introduced in the proof of Theorem 6. Unlike in the proof of Theorem 6, in order to get a tight result it does not suffice to simply add a new K_3 to \mathcal{F}. Our argument includes consideration of several different kinds of modifications of \mathcal{F}.

It follows from our minimal degree condition that

$$d_L(x) \geq 2, \quad \text{for all} \quad x \in N_v. \quad (52)$$

If there is an edge in L not contained in $F = \bigcup_{i=1}^{m} E(\Gamma_i)$ then this edge together with v gives an extension of \mathcal{F} that contains v, and therefore we can assume

$$E(L) \subset F. \quad (53)$$

It follows from (52) and (53) that $|F \cap E(L)| \geq d_v = |N_v|$, and therefore

$$3|\mathcal{F}_3| + |\mathcal{F}_2| \geq d_v \geq \frac{n}{2} + 1, \quad (54)$$

where $\mathcal{F}_j = \{ \Gamma \in \mathcal{F} : |V(\Gamma) \cap V(L)| = j \}, j = 2, 3$. Since $H = K_3$, to simplify the description we identify $\Gamma \in \mathcal{F}$ with its vertex set, i.e. $\Gamma = \{ x_1, x_2, x_3 \}$. Consider
\[\Gamma_A = \{x_1, x_2, y\} \in \mathcal{F}_2 \text{ with } x_1, x_2 \in V(G) \text{ and } y \in V(G) \setminus (V(G) \cup \{v\}). \] If there exists \(\Gamma_B \in \mathcal{F}, \Gamma_B \not= \Gamma_A, \) such that \(y \in \Gamma_B \) then \((\mathcal{F} \setminus \{\Gamma_A\}) \cup \{\{x_1, x_2, y\}\} \) is an extension of \(\mathcal{F} \) containing \(v \). Therefore, we can assume

\[|\mathcal{F}_2| \leq |V(G) \setminus (V(G) \cup \{v\})| \leq \frac{n}{2} - 2, \tag{55} \]

because otherwise there exists a pair \(\Gamma_A, \Gamma_B \in \mathcal{F}, \Gamma_A = \{x_1, x_2, y\}, \Gamma_B = \{z_1, z_2, y\} \) as above. It follows from (54) and (55) that \(|\mathcal{F}_3| \geq 1 \). Now, consider \(\Gamma_A \in \mathcal{F}_3 \). If there exists \(\Gamma_B \in \mathcal{F} \) such that \(\Gamma_A \cap \Gamma_B = \{x\} \) then \((\mathcal{F} \cup \{\Gamma_A \setminus \{x\} \cup \{v\}\}) \setminus \{\Gamma_A\} \) is an extension of \(\mathcal{F} \) containing \(v \). So, we can henceforth assume

\[\Gamma_A \in \mathcal{F}_3, \Gamma_B \in \mathcal{F} \implies \Gamma_A \cap \Gamma_B = \emptyset. \tag{56} \]

Once again, we consider \(\Gamma_A = \{x_1, x_2, x_3\} \in \mathcal{F}_3 \). Since \(d_G(x_i) \geq n/2 + 1 > 3 \) (here we use our assumption on \(n \)) there exists \(u \in V \setminus \{v, x_1, x_2, x_3\} \) and \(a \not= b \in \{1, 2, 3\} \) such that \(u \) is adjacent to both \(x_a \) and \(x_b \). Let \(c = \{1, 2, 3\} \setminus \{a, b\} \) and set

\[\mathcal{F}' = \mathcal{F} \setminus \{\Gamma_A\} \cup \{\{x_a, x_b, u\}, \{x_a, x_c, v\}\}. \]

By (56) the family \(\mathcal{F}' \) is edge-disjoint and covers \(v \).

In order to prove the lower bound on \(f(n, 3, k) \) we consider the following two graphs. If \(n = 2m \), \(H_n^k \) is the complete bipartite graph on the vertex set \(Z_1 \cup Z_2, |Z_1| = |Z_2| = m \). In the case \(n = 2m + 1 \), \(H_n^k \) consists of the edges of the complete bipartite graph on the vertex set \(Z_1 \cup Z_2, |Z_1| = m + 1, |Z_2| = m \). Moreover, if \(|Z_1| \) is even, \(H_n^k \) contains edges of a perfect matching of \(Z_1 \) and in the case \(|Z_1| \) is odd, \(H_n^k \) contains edges of a maximal matching, say \(M \), of \(Z_1 \) together with a single edge \(\{x, y\} \) where \(x \) is the vertex of \(Z_1 \) which does not belong to \(M \) and \(y \) is any vertex of \(Z_1 \setminus \{x\} \). Clearly, \(\delta(H_n^k) = \lceil n/2 \rceil \) and \(\delta(H_n^k) = \lfloor n/2 \rfloor \).

Further, neither of \(H_n^k \) and \(H_n^k \) contains a \((K_3, \infty)-\)vertex-cover because \(H_n^k \) does not contain any copy of \(K_3 \) and \(H_n^k \) contains only at most \([(n + 1)/4] \) copies of \(K_3 \).

\[\Box \]

References

