Random regular graphs of non-constant degree: connectivity and Hamiltonicity

Colin Cooper* Alan Frieze† Bruce Reed‡

September 9, 2001

Abstract

Let G_r denote a graph chosen uniformly at random from the set of r-regular graphs with vertex set $\{1, 2, \ldots, n\}$ where $3 \leq r \leq c_0 n$ for some small constant c_0. We prove that with probability tending to 1 as $n \to \infty$, G_r is r-connected and Hamiltonian.

1 Introduction

The properties of random r-regular graphs have received much attention. For a comprehensive discussion of this topic, see the recent survey by Wormald [22] or Chapter 9 of the book, Random Graphs, by Janson, Łuczak and Ruciński [12].

A major obstacle in the development of the subject has been a lack of suitable techniques for modelling simple random graphs over the entire range, $0 \leq r \leq n - 1$, of possible values of r. The classical method for generating uniformly distributed simple r-regular graphs, is by rejection sampling using the configuration model of Bollobás [3]. The configuration model is a probabilistic interpretation of a counting formula of Bender and Canfield [2]. The method is most easily applied when r is constant or grows slowly with n, the number of vertices, as n tends to infinity. The formative paper [3] on this topic considered the case where $r = O((\log n)^{1/2})$. McKay [16] and McKay

*Department of Mathematical and Computing Sciences, Goldsmiths College, University of London, New Cross, London SE14 6NW. Research supported by the STORM Research Centre, UNL. E-mail: c.cooper@gold.ac.uk.
†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA15213, U.S.A., Supported in part by NSF grant CCR-9818411. E-mail: alan@random.math.cmu.edu.
‡Equipe Combinatoire, CNRS, Univ. de Paris VI, 4 Place Jussieu, Paris 75005, France. E-mail: reed@ecp6.jussieu.fr.
and Wormald [17, 18] subsequently gave alternative approaches which are useful for
\(r = o(n^{1/2}) \) or \(r = \Omega(n) \).

We use edge switching techniques extensively in this paper and note that these tech-
niques have been successfully applied in a number of places e.g. [16], [17, 18], [9], [14]
and [13].

Let \(G_r \) denote a graph chosen uniformly at random from the set \(G_r \) of simple \(r \)-regular
graphs with vertex set \(V = \{1, 2, \ldots, n\} \). We consider properties of simple \(r \)-regular
graphs for the case where \(r \to \infty \) as \(n \to \infty \), but \(r = o(n) \). The properties we
study are vertex \(r \)-connectivity and Hamiltonicity. These properties are also studied,
in a recent paper by Krivelevich, Sudakov, Vu and Wormald [13], for the case where
\(r(n) \geq \sqrt{n \log n} \). Our paper complements [13] both in both in the range of \(r \) studied
and in the techniques applied.

Theorem 1 Assume \(3 \leq r \leq \alpha_0 n \) for some small positive absolute constant \(\alpha_0 \). Then
with probability tending to 1 as \(n \to \infty \),

(a) \(G_r \) is \(r \)-connected.

(b) \(G_r \) is Hamiltonian.

The results of Theorem 1 are well known for \(r \) constant. Result (a) is from Bollobás
[4] and (b) is from Robinson and Wormald [20, 21], Bollobás [5], Fenner and Frieze [8].
For \(r = o(n^{1/2}) \) such results could have been proved with the help of the models of [16]
and [17]. In fact this was done, for Hamiltonicity, up to \(r = o(n^{1/5}) \), in an unpublished
work by Frieze [9], and for \(r \)-connectivity, up to \(r \leq n^{0.02} \) by Łuczak [15].

As [13] proves the case where \(r \geq \sqrt{n \log n} \), this implies \(G_r \) is \(r \)-connected and Hamil-
tonian \(\text{whp} \)\(^1\) for all \(3 \leq r \leq n - 4 \).

2 Generating graphs with a fixed degree sequence.

Let \(d = (d_1, d_2, \ldots, d_n) \), and let \(2D = (d_1 + d_2 + \cdots + d_n) \). Let \(\mathcal{G}_d \) be the set of simple
graphs \(G \) with vertex set \(V = [n] \), degree sequence \(d \), and \(D \) edges.

Let \(\Omega \) be the set of all \((2D)!/(D!2^D) \) partitions of \(W = [2D] \) into \(D \) 2-element sets.
An element of \(\Omega \) is a configuration. The constituent 2-element sets of a configuration
\(F \) are referred to as the edges of \(F \).

Let \(W_1, W_2, \ldots, W_n \) be the natural ordered partition \(P_d \) of \(W = [2D] \) into sets of size
\(|W_i| = d_i \), and where \(\max W_i + 1 = \min W_{i+1} \) for \(i < n \).

\(^1\)A sequence of events \(\mathcal{E}_n \) is said to occur with high probability (whp) if \(\lim_{n \to \infty} \Pr(\mathcal{E}_n) = 1 \).
Let \(\Omega_d \) be \(\Omega \) with the understanding that the underlying set \(W \) is partitioned into \(P_d \). The degree sequence of an element \(F \) of \(\Omega_d \) is \(d \). We often write \(\Omega \) for \(\Omega_d \) when the context is clear. Define \(\phi_{P_d} : W \to [n] \) by \(\phi(w) = i \) if \(w \in W_i \). Let \(\gamma(F) \) denote the multigraph with vertex set \([n]\) and edge multiset \(E_F = \{ \{\phi(x),\phi(y)\} : \{x,y\} \in F \} \).

Definition: Let \(\Omega^*_d \) denote those configurations \(F \) for which \(\gamma(F) \) is simple relative to \(P_d \).

Remark 1 Note that each member of \(\mathcal{G}_d \) is the image under \(\gamma \) of precisely \(\prod_{i=1}^n d_i! \) members of \(\Omega^*_d \). Thus sampling \(F \) uniformly from \(\Omega^*_d \) induces the uniform measure on \(\gamma(F) \) and is equivalent to sampling uniformly from \(\mathcal{G}_d \).

If \(d_i = r \), \((1 \leq i \leq n)\) we will say the configuration, \(F \), is \(r \)-regular. The probability \(|\Omega^*|/|\Omega| \) that the underlying \(r \)-regular multigraph \(\gamma(F) \) of such a configuration \(F \) is simple is \(\exp(-\Theta(r^2)) \). For \(r = o(n^{1/2}) \) this follows from \([17, 18]\) and for larger values of \(r \) from Lemma 2 below. This result allows us to prove many results directly via configurations and then condition the probability estimates for simple graphs.

Lemma 1 Let \(\Delta = \max_{i \leq n} d_i \). Suppose that \(\Delta \leq n/1000 \) and that \(d \) satisfies \(\min_{i \leq n} d_i \geq \Delta/4 \). Given \(a, b \in [n] \), if \(G \) is sampled u.a.r. from \(\mathcal{G}_d \), then

\[
\Pr\{\{a, b\} \in E(G)\} \leq \frac{20 \Delta}{n}.
\]

Proof Let

\[\Omega_1 = \{G \in \mathcal{G}_d : \{a, b\} \in E(G)\} \quad \text{and} \quad \Omega_2 = \mathcal{G}_d \setminus \Omega_1. \]

We consider the set \(X \) of pairs \((G_1, G_2) \in \Omega_1 \times \Omega_2\) such that \(G_2 \) is obtained from \(G_1 \) by deleting disjoint edges \(\{a, b\}, \{x_1, y_1\}, \{x_2, y_2\} \) and replacing them by \(\{a, x_1\}, \{y_1, y_2\}, \{b, x_2\} \). Given \(G_1 \), we can choose \(\{x_1, y_1\}, \{x_2, y_2\} \) to be any ordered pair of disjoint edges which are not incident with \(a, b \) or their neighbours and such that \(\{y_1, y_2\} \) is not an edge of \(G_1 \). Thus each \(G_1 \in \Omega_1 \) is in at least \((D - (2\Delta^2 + 1))(D - (4\Delta^2 + 2))\) pairs. Each \(G_2 \in \Omega_2 \) is in at most \(2D\Delta^2 \) pairs. The factor of 2 arises because a suitable edge \(\{y_1, y_2\} \) of \(G_2 \) has an orientation relative to the switching back to \(G_1 \). As \(D \geq n\Delta/8 \) it follows that

\[
\frac{|\Omega_1|}{|\Omega_2|} \leq \frac{2D\Delta^2}{(D - (2\Delta^2 + 1))(D - (4\Delta^2 + 2))} \leq \frac{20 \Delta}{n}.
\]

\[\square \]

Lemma 2 Suppose \(100 \leq r \leq n/1000 \). Let \(d_j = r \), \(1 \leq j \leq n \). If \(F \) is chosen uniformly at random (u.a.r.) from \(\Omega \) then for \(n \) sufficiently large,

\[
\Pr(F \in \Omega^*) \geq e^{-2r^2}.
\]
Proof. Consider the following algorithm from Frieze and łuczak [11]:

Algorithm GENERATE

begin

\[D := r n / 2 \]
\[F_0 := \emptyset \]

Let \(\sigma = (x_1, x_2, \ldots, x_{2D-1}, x_{2D}) \) be an ordering of \(W \)

For \(i = 1 \) to \(D \) do

begin

\[F_i := \begin{cases}
F_{i-1} \cup \{x_{2i-1}, x_{2i}\} & \text{(With probability } \frac{1}{2i-1}) \\
F_{i-1} \cup \{x_{2i-1}, x_{2i}, z_1, z_2\} \setminus \{z_1, z_2\} & \text{(With probability } \frac{2i-2}{2i-1})
\end{cases} \]

end

Output \(F := F_D \)

end

We first prove that GENERATE produces a u.a.r member of \(\Omega \) whatever the ordering \(\sigma = (x_1, x_2, \ldots, x_{2D}) \) of \(W \). We then describe an ordering \(\sigma \) from which we can prove the lemma.

Let \(W^{(i)} = (x_1, x_2, \ldots, x_{2i}) \) and let \(\Omega_i \) be the set of configurations of \(W^{(i)} \). We show inductively that \(F_i \) is a random member of \(\Omega_i \). This clearly true for \(i = 1 \) and so assume that for some \(i \geq 2 \) we have that \(F_{i-1} \) is chosen u.a.r from \(\Omega_{i-1} \).

Now consider a bipartite graph \(H \) with vertex bipartition \((\Omega_{i-1}, \Omega_i) \) and an edge \((F, F') \) whenever \(F' = F \cup \{x_{2i-1}, x_{2i}\} \) or \(F' = (F \setminus \{a, b\}) \cup \{a, x_{2i-1}, b, x_{2i}\} \) for some \(\{a, b\} \in F \). Each \(F \in \Omega_{i-1} \) has degree \(2i-1 \) in \(H \) and each \(F' \in \Omega_i \) has degree \(1 \). Our algorithm chooses \(F \) uniformly from \(\Omega_{i-1} \) (induction) and then uniformly chooses an \(H \)-edge leaving \(F \). This implies uniformity in \(\Omega_i \).

Label the configuration points in set \(W_k \) of the partition, as \(\{(k-1)r + j : 1 \leq j \leq r\} \).

For the ordering \(\sigma \) of \(W \), we specify that \(x_i \) is always chosen as one of the remaining points for which \(\phi(x_i) \) occurs as little as possible in the sequence \((\phi(x_1), \ldots, \phi(x_{i-1})) \).

To be specific, when \(i = (j-1)n + k, (1 \leq k \leq n, 1 \leq j \leq r) \), define \(x_i \) to be the point in \(W_k \) with label \((k-1)r + j \).

Let \(\Omega_i^* = \{ F \in \Omega_i : \gamma(F) \text{ is simple}\} \). Let \(\Delta_i = \lceil 2i/n \rceil \) denote the maximum degree in \(\gamma(F_i) \). Let the edge \((\phi(x_{2i-1}), \phi(x_{2i})) = \{a, b\} \) and let \(\{\phi(z_1), \phi(z_2)\} = \{c, d\} \). We will prove that

\[
\Pr(F_i \in \Omega_i^* \mid F_{i-1} \in \Omega_{i-1}^*) \geq \begin{cases}
1 & \text{if } 2i \leq n \\
& \left(1 - \frac{60\Delta_i}{(2i-1)n} - \frac{2\Delta_i^2 + 2\Delta_i}{i-1}\right) & \text{if } n < 2i \leq rn.
\end{cases}
\]
If $i \leq n/2$ then F_i induces a matching. If $i > n/2$ and if at the ith step of generate, $\{a, b\}$ already exists in Case A or is equal to $\{c, d\}$ in Case B then F_i will not be simple. The probability the edge $\{a, b\}$ exists, in the corresponding simple random graph, is at most $\frac{20\Delta_i}{n}$, by Lemma 1. Thus the probability the edge exists (Case A) or exists and is selected (Case B) is at most

$$\frac{20\Delta_i}{n} \left(\frac{1}{2i - 1} + \frac{2i - 2}{2i - 1} \frac{1}{i - 1} \right) = \frac{60\Delta_i}{(2i - 1)n}.$$

Assume now that the ith step is type B and $\{a, b\} \neq \{c, d\}$.

When $\{a, b\} \cap \{c, d\} \neq \emptyset$, a loop may be created. This happens with probability at most $2\Delta_i/(i - 1)$.

When one of a, b is adjacent to c or d, a parallel edge may be created. This happens with probability at most $2\Delta_i^2/(i - 1)$.

All cases have been covered and the result follows from iterating (1) for $i \leq r n/2$. \hfill \Box

Remark 2 In Lemma 7 we need to run algorithm generate starting with a configuration F_0 on $[2D]$ and and restricting our random choice of $\{z_1, z_2\}$ to $F \setminus F_0$. The output is then F_0 plus a random configuration on $W = [2D' + 1, 2D' + 2D]$.

At this point we describe a simpler algorithm construct for obtaining a u.a.r configuration.

Algorithm construct

begin

$F_0 := \emptyset$; $R_0 := W := [2D]$

For $i = 1$ to D do

begin

Choose $u_i \in R_{i-1}$ arbitrarily

Choose v_i uniformly at random from $R_{i-1} \setminus \{u_i\}$

$F_i := F_{i-1} \cup \{u_i, v_i\}$; $R_i := R_{i-1} \setminus \{u_i, v_i\}$

end

Output $F := F_D$.

end

Remark 3 Neither of the algorithms generating F_D use any information about the partition P_3 associated with the configuration. After iteration i, F_i is a u.a.r element of Ω_i. We can, if we wish, complete a certain number I of iterations using construct and then switch to generate. Instead of initializing the ordering σ used in algorithm generate with W we initialize σ with R_I, the remaining unmatched points.
3 r-Connectivity

We now prove Theorem 1(a). Since the result is already known for r constant, we can assume that $10^6 \leq r \leq c_0 n$, where c_0 is sufficiently small.

For a simple graph G with edge set E, the disjoint neighbour set, $N(S)$, of a set of vertices S is defined as $N(S) = \{w \notin S : \exists v \in S \text{ s.t. } \{v, w\} \in E\}$. When S is a singleton $\{v\}$ we use the notation $N(v)$.

Lemma 3 Let $Q_1 \subseteq G_r$ be the event that for all vertices $v, w \in V$ of G_r:

(a) If $r = o(n)$ then $|N(v) \cap N(w)| \leq 10 + o(r)$.

(b) If $\log^2 n \leq r \leq n$ then $|N(v) \cap N(w)| \leq r^2/n + 5\sqrt{r \log n}$.

Then $\Pr(Q_1) = O(1/n^2)$.

Proof Throughout this proof, we fix a vertex v and the set $S = N(v)$, of vertices which are the (disjoint) neighbours of v. Let w be a fixed vertex of $V - v$.

Let $\mathcal{F}(S) = \{G : G = G_r - v, N(v) = S\}$ be the set of graphs G with vertex set $V - v$ formed by deleting v from those r-regular graphs, G_r, for which $N(v) = S$. Thus $|S| = r$, and the vertices in S have degree $r - 1$ in G.

The vertex w partitions \mathcal{F} into sets $\mathcal{F}(k) = \{G : |N(w) \cap S| = k\}$ where $0 \leq k \leq r$ if $w \notin S$ and $0 \leq k \leq r - 1$ if $w \in S$.

For sets $R, T \subseteq V - v$ let $\mathcal{N}(R, T) = \mathcal{N}(R, T; S, w)$ be the set of graphs in \mathcal{F} with $N(w) \cap S = R$ and $N(w) - S = T$. If $|R| < |S - w|$, choose $x \in (S - w) \setminus R$ and $a \in T$. We consider a bipartite graph \mathcal{B} with left vertex set $\mathcal{N}(R, T)$ and right vertex set $\mathcal{N}(R + x, T - a)$.

If $G \in \mathcal{N}(R, T)$ and $\{w, a\}, \{x, b\}$ are edges of G we make a switching $G : (wa, xb) \rightarrow (wx, ab)$ in which edges $\{w, a\}, \{x, b\}$ are replaced by $\{w, x\}, \{a, b\}$ provided the resulting graph G' is simple. These switchings define the edges of \mathcal{B}, and $d_L(G)$ (resp. $d_R(G')$) is the number of edges incident with G (resp. G') in \mathcal{B}.

Let $\nu(a, x; G) = |N(a) \cap N(x)|$ be the number of common neighbours of a and x in G. Let $\delta(a, x; G) = 1$ if $a \in N(x)$.

Considering the possibilities for b when the switching $G : (wa, xb) \rightarrow (wx, ab)$ gives a simple G' we have

$$d_L(G) = |N(x)| - \nu(a, x; G') - \delta(a, x; G)$$

6
for G' is simple iff $b \neq a$ and $b \notin N(a)$. Here $|N(x)| = r - 1$ as $x \in S$. The switching leaves $\delta(a, x; G') = \delta(a, x; G)$ and $\nu(a, x; G') = \nu(a, x; G)$ as $(\{a\} \cup N(a)) \cap N(x)$ is the same set in both graphs.

Considering the switching $G' : (wx, ab) \to (wa, xb)$ giving G we have

$$d_R(G') = |N(a)| - \nu(a, x; G') - \delta(a, x; G').$$

We note that $|N(a)| = r$ as $a \notin S$.

The graph B consists of components within which δ, ν (and hence d_L, d_R) are invariant. Consider a component with bipartition size (N_L, N_R). We now prove that $N_L \geq N_R$. In any component with edges we have $d_R = d_L + 1$ so that $N_R = N_L d_L / (d_L + 1)$. The case $(N_L, N_R) = (0, 1)$ of isolated vertices in the right bipartition, cannot occur. For, in G',

$$\nu(a, x; G') + \delta(a, x; G') \leq |N(x) - w| = r - 2$$

and so

$$d_R(G') = |N(a)| - \nu - \delta \geq 2.$$

Thus

$$|\mathcal{N}(R, T)| \geq |\mathcal{N}(R + x, T - a)|.$$

Given S and w, the size of $\mathcal{N}(R, T; S, w)$ is invariant for all $R, T, |R| = k$ by a simple symmetry argument.

Let $|\mathcal{N}(R, T; S, w)| = \eta(k)$. Thus $\eta(k)$ is a non-increasing function of k. Let $f(k) = |\mathcal{F}(k)|$ be the number of graphs in \mathcal{F} with $|N(w) \cap S| = k$. If $w \notin S$ then for all $k \geq 0$, $f(k) = \binom{n-r}{k} \frac{\eta(k)}{(n-k)}$. Similarly, if $w \in S$ then for all $k \geq 0$, $f(k) = \binom{n-1-r}{k} \frac{\eta(k)}{(n-k)}$. Suppose G is chosen u.a.r. from $\mathcal{F}(S)$ and let $Z(G) = |R|$. Then $\Pr(Z = k) = f(k)/|\mathcal{F}|$. Writing $N = n - 2, \rho = r - 1 \in S$,$$
Pr(Z = k) = \binom{\rho}{k} \binom{N - \rho}{\rho - k} \frac{\eta(k)}{|\mathcal{F}|}.
$$

Let X be a hypergeometric random variable with $\Pr(X = k) = \binom{\rho}{k} \binom{N - \rho}{\rho - k} / \binom{N}{\rho}$. Then $\Pr(Z = k)/\Pr(X = k)$ decreases with k. It follows that $\Pr(Z \geq k) \leq \Pr(X \geq k)$ for any k.

The hypergeometric random variable X has mean $\mu = \rho^2/N$. The proportional error in bounding $\Pr(X = j)$ above by $\Pr(Y = j)$, where Y is the binomial random variable $B(\rho, \rho/N)$, is at most $\exp(\rho^2/(N - \rho))$ (see [7] p57). Thus provided $r = o(\sqrt{n})$, using the following bound (2) on Binomial tails (see [1]),

$$\Pr(Y \geq \beta \mu) \leq \left(\frac{e}{\beta}\right)^{\beta \mu} \tag{2}$$

$$7$$
we see that

\[\Pr(X \geq \beta \mu) \leq 2 \left(\frac{e}{\beta} \right)^{\beta \mu}. \]

If \(r \leq \log^2 n \) let \(k = \alpha \rho + 10, \alpha = 1/\log \log n \), then

\[\Pr(X \geq \alpha \rho + 10) \leq 2 \left(\frac{e \rho^2}{(\alpha \rho + 10)(n - 2)} \right)^{\alpha \rho + 10} \leq o(n^{-4}). \]

For \(\log^2 n \leq r \leq n \) let \(k = \frac{\rho^2}{(n - 2) + 4 \sqrt{r \log n}} \). We can apply Azuma’s inequality to the 0, 1 sequence of observations of the sampling process of \(X \), with \(c_i = 1 \) to infer that

\[\Pr(X \geq \frac{\rho^2}{(n - 2) + 4 \sqrt{r \log n}}) = o(n^{-4}). \]

Note that if \(r \geq \log^2 n \) and \(r = o(n) \) then the bound in (b) implies that in (a). \(\square \)

Lemma 4 Let \(Q_2 \) be the event that no set of vertices \(U \subset V \) of \(G_r \), \(1 \leq |U| \leq n/70 \), induces more than \(r|U|/12 \) edges. Then \(\Pr(Q_2) = 1 - O(1/n^2) \).

Proof Let \(\beta = 1/12 \) and \(\theta = 1/70 \). Let \(|U| = u \).

Note first that in a simple \(r \)-regular graph a set of size \(u \) induces at most \(\binom{u}{2} \) edges and, provided \(u \leq 2\beta r \),

\[\binom{u}{2} \leq \beta ru. \]

Let \(\mathcal{E} = \{ F \in \Omega^r : \text{No vertex set } U, 2\beta r \leq |U| \leq \theta n \text{ induces more than } \beta r|U| \text{ edges} \} \). It suffices to prove that \(\Pr(\mathcal{E}) = O(n^{-2}) \).

In \(\Omega \) the number of edges \(X \) falling inside a set \(U \) is dominated by a binomial random variable \(Y \sim B(\theta r (n - u)/u)) \) in which each configuration point of \(U \) independently selects a pairing on the assumption that all configuration points of \(U \) are available, and that \(ru \) configuration points of \(V \setminus U \) are unavailable. Now, \(EY = ru^2/(n - u) \) and

\[\Pr_{\Omega}(Y \geq \beta ru) = \Pr(Y \geq (\beta(n - u)/u)EY) \leq \left(\frac{ue}{\beta(n - u)} \right)^{\beta ru} \text{ by (2)} \]
\[\leq \left(\frac{34u}{n} \right)^{\beta ru}. \]
As \(r \geq 10^6 \), \(\beta r / 2 \gg 1 \) and so by Lemma 2

\[
\Pr(\overline{E}) \leq e^{2r^2} \sum_{u=2\beta r}^{\eta_n} \binom{n}{u} \left(\frac{34u}{n} \right)^{\beta ru} \leq e^{2r^2} \sum_{u=2\beta r}^{\eta_n} \left(\frac{ne}{u} \right)^u \left(\frac{34u}{n} \right)^{\beta ru}
\]

\[
\leq e^{2r^2} \sum_{u=2\beta r}^{\eta_n} \left(\frac{34u}{n} \right)^{\beta ru/2} \leq 2e^{2r^2} \left(\frac{68\beta^2 r}{n} \right)^{\beta^2 r^2} \leq 2 \exp \left\{ 2r^2 - \beta^2 r^2 \log \frac{n}{6r} \right\}
\]

\[
= O(n^{-2}),
\]

provided \(r \leq c_0 n \), \(c_0 \) sufficiently small. \(\Box \)

Proof of Theorem 1(a). Assume the events \(Q_1, Q_2 \) described in Lemmas 3,4. If \(G_r \) is not \(r \)-connected then there is a separator \(X \) of size \(x \leq r - 1 \). Let \(G_r - X = A + B \) and \(|A| = a \leq |B| = b \).

Case 1: \(2 \leq a \leq r/2 \).

Let \(u, v \in A \) be arbitrary. If \(r = o(n) \) then as \(Q_1 \) occurs,

\[
|N(u) \cup N(v)| \geq 2r - |N(u) \cap N(v)| \geq 2r - o(r) - 10
\]

which contradicts (3).

If \(cn \leq r \leq n/4 \) for some \(c > 0 \), we see that because \(Q_1 \) occurs we have \(|N(u) \cup N(v)| \geq (1 - o(1))7r/4 \), which contradicts (4).

Case 2: \(r/2 \leq a \leq n/80 \).

As \(|A \cup X| \leq a + r - 1 \) and \(A \cup X \) contains at least \(ar/2 \) edges we see that because \(Q_2 \) occurs

\[
\frac{ar}{2} \leq \frac{r}{12} (a + r - 1) \text{ and so } a < r/5.
\]

Case 3: \(n/80 \leq a \leq \lfloor n/2 \rfloor \).

If configuration \(F \) is chosen randomly from \(\Omega \) then the existence of a separator of size \(x \leq r - 1 \), where the smaller component has size \(a \geq n/80 \), has probability at most

\[
\sum_{a=n/80}^{\lfloor n/2 \rfloor} \sum_{x=0}^{r-1} \binom{n}{a} \binom{n-a}{x} \left(1 - \frac{b}{n} \right)^{ar/2}.
\]

Thus from Lemma 2 the probability of this event in \(G_r \) is at most

\[
e^{2r^2} \sum_{a=n/80}^{\lfloor n/2 \rfloor} 4^n b^{-(n-(a+r))r/2n} \leq e^{-rn/500} = o(1)
\]

for \(r \leq c_0 n \), \(c_0 \) sufficiently small. \(\Box \)
4 Hamilton cycles

We prove Theorem 1(b) on the assumption that $10^7 \leq r \leq c_0 n$.

Definition: Let G^*_r denote the subset of G_r consisting of those graphs G with the following properties:

C1: All sets of vertices U of size at most $n/70$ induce at most $r|U|/12$ edges.

C2: The graph G is connected.

Lemma 4 and Theorem 1(a) imply that

Lemma 5 $|G^*_r| = (1 - o(1))|G_r|$.

Given a subset R of the edges of G, let $d_R(v)$ be the number of edges of R which are incident with the vertex v of G.

Definition: Let P be some fixed longest path of G. A set of edges $R \subseteq E(G)$ is *deletable* from G, ($R \in \text{Del}(G)$), if

D1: R avoids P.

D2: For all $v \in V$, $\frac{r}{4} \leq d_R(v) \leq \frac{r}{2}$.

Lemma 6 Let $G \in G_r$ and let R be a random subset of the edges of G where each edge of G is placed into R independently with probability $1/3$. then

$$\Pr(R \text{ is deletable } | G) \geq e^{-n}$$

Proof

$$\Pr(D1 \mid G) = \left(\frac{2}{3}\right)^{|P|} \geq \left(\frac{2}{3}\right)^n \geq e^{-n/2}.$$

For (D2) we condition on (D1). We use the symmetric version of the Lovász Local Lemma (see for example Alon and Spencer [1]) to show that

$$\Pr(D2 \mid D1) \geq e^{-n/2}.$$

Let A_v be the event $\{d_R(v) \notin \left[\frac{r}{4}, \frac{r}{2}\right]\}$, then $\Pr(A_v \mid D1) \leq e^{-r/100}$ and the dependency graph has degree at most r. For large r we can apply the lemma to show that conditional on D_1,

$$\Pr \left(\bigcap_{v \in V} A_v \mid D1 \right) \geq (1 - 2e^{-r/100})^n \geq e^{-n/2}.$$
The size of the set R of deleted edges is binomial $B(rn/2, 1/3)$ and thus $\text{whp} |R| = (1 + o(1))rn/6$. For the purposes of Lemma 7 below, we condition on $|R| \in [(0.16)rn, (0.17)rn]$. We note that there exists some $\delta > 10^{-7}$ such that

$$\Pr(|R| \not\in [(0.16)rn, (0.17)rn]) \leq e^{-\delta rn}. \quad (5)$$

Definition: A set of edges S is *addable* to a simple graph H, $(S \in \text{Add}(H))$, if

A1: $H + S \in G_r$.

A2: No longest path of H is closed to a cycle by S.

Let

$$N = \{G \in G_r^* : G \text{ is not Hamiltonian}\} \quad (6)$$

$$E = \{(G, R) : G \in N, R \in \text{Del}(G)\}$$

$$\Psi = \{H : H = G - R, (G, R) \in E, |R| \in [(0.16)rn, (0.17)rn]\}$$

$$\mathcal{F} = \{(G, S) : G \in G_r, G - S \in \Psi, S \in \text{Add}(G - S)\}.$$

Remark 4 We note that $E \subseteq \mathcal{F}$: Let $(G, R) \in E$ so that $G - R \in \Psi$, and let P be any longest path of G avoided by R. By (C2), G is connected, so P cannot be contained in any cycle, as this would imply either that G was Hamiltonian, or that P was not a longest path. Thus R is addable for $G - R$ and $(G, R) \in \mathcal{F}$.

Lemma 7 Let $H \in \Psi$. Let $S(H) = \{S : H + S \in G_r\}$. Let S be chosen u.a.r from $S(H)$. There exists a constant $\delta > 10^{-7}$ such that

$$\Pr(S \in \text{Add}(H)) \leq e^{-\delta rn}.$$

Proof

Given y_0 let $P_{y_h} = y_0 y_1 \ldots y_h$ be a longest path starting at y_0 in H. A *Pósa rotation* $P_{y_h} \rightarrow P_{y_{h+1}}$, [19, 6] gives the path $P'_{y_{h+1}} = y_0 y_1 \ldots y_h y_h y_{h-1} \ldots y_{i+1}$ formed from P_{y_h} by adding the edge $y_h y_i$ and erasing the edge $y_i y_{i+1}$.

Let $END(a)$ be any set of endpoint vertices formed by Pósa rotations with a fixed, of a longest path $a Pb$ in H. We prove that $|END(a)| \geq n/210$.

The Pósa condition for the rotation endpoint set U of a longest path P requires that $|N(U)| < 2|U|$, where $N(U)$ is the disjoint neighbour set of U. Let $u = |U|$ and let $\nu = |U \cup N(U)|$. Thus $u > \nu/3$. The condition (D2) guarantees that $U \cup N(U)$ induces at least $ru/4 > r\nu/12$ edges in H. Thus (C1) implies $\nu > n/70$ and $u > n/210$.

11
Let the degree sequence of R be $\mathbf{d} = (d_1, ..., d_n)$ and that of H be $(r-d_1, ..., r-d_n)$. We choose a replacement set of edges S of size $D = |R| = (d_1 + d_2 + \cdots + d_n)/2$ uniformly among all edge sets with degree sequence \mathbf{d} such that $H + S \in G_r$. If we generate a random configuration F on \mathbf{d}, then conditional on $H + \gamma(F)$ being simple, $\gamma(F) = S$ is a u.a.r element of $S(H)$.

The probability that $H + \gamma(F)$ is simple.

We generate u.a.r. a configuration F from the set L, size $|L| = 2D$, of configuration points corresponding to the degree sequence \mathbf{d}, of R. We show that

$$Pr(H + \gamma(F)\text{ is simple}) \geq n^{-2}e^{-4r^2}. \quad (7)$$

We generate the first $rn/12$ random pairings using CONSTRUCT and the rest of F using GENERATE (see Remarks 2, 3). Our reason for this approach is as follows. The ordering $\sigma = (x_1, x_2, ..., x_{2D})$ of L in GENERATE is deterministic. At step $i = 1$, the algorithm GENERATE defaults to Choice A. We cannot ignore the possibility that H already contains the edge $\{\phi(x_1), \phi(x_2)\}$. Similarly, if at step $i + 1$, GENERATE uses Choice B, then as the edges of H are fixed, we cannot argue that the existing edges of F_i avoid neighbours of $\phi(x_1), \phi(x_2)$ in H until $i \gg r^2$.

Assuming that the u_i are chosen randomly for each of the first $rn/12$ iterations, we claim that the probability that CONSTRUCT inserts a loop or parallel edge is at most

$$\frac{r/2 + r^2/2}{(15)rn} \leq 4r/n. \quad (4)$$

Indeed, when CONSTRUCT starts there are $2D \in (\lceil .32rn \rceil, (34)rn]$ configuration points to be paired. At the last iteration of CONSTRUCT there are $2D - rn/6 \geq (15)rn$ points remaining. Each vertex occurs at most $r/2$ times in the sequence (by D2).

CONSTRUCT picks a point u_i and then a random point v_i. Given u_i there are $\leq r/2$ choices which make a loop. In the worst case $d(u_i) = r - 1$ in $H + \gamma(F_{i-1})$ and each neighbour is missing $r/2$ points. This leads to at most $r/2 + r^2/2$ bad choices out of at least $(15)rn$ choices for v_i.

Let S_1 be the subgraph of S produced by CONSTRUCT. It follows that

$$Pr(H + S_1 \text{ is simple}) \geq e^{-r^2}. \quad (5)$$

We now continue with GENERATE for the remaining $D - rn/12$ edges to be inserted. The subgraph H remains fixed, and GENERATE is initialized with configuration $F_{rn/12}$ of S_1 on $\{u_1, u_2, ..., u_{rn/6}\}$. For steps $i = rn/12 + 1, \ldots, D$ we run GENERATE with the minimum degree ordering σ of $L - \{u_1, u_2, ..., u_{rn/6}\}$ similar to the ordering described in the proof of Lemma 2. Observe that

$$Pr(H + \gamma(F_i) \text{ is simple} | H + \gamma(F_{i-1}) \text{ is simple}) \geq \left(1 - \frac{1}{2i-1}\right) \left(1 - \frac{25r}{n}\right). \quad (6)$$

12
The probability that the algorithm makes a Type B choice at step i is $1 - \frac{1}{2i-1}$. Given a Type B choice, the probability that a loop or multiple edge is formed is at most $25r/n$ for reasons that we now explain. To create a loop we must choose $\phi(z_t) = \phi(x_{2i+t-2})$, for $t = 1$ or 2 and there are at most $2r$ choices of $\{z_1, z_2\}$ that will lead to this. To create a parallel edge $\phi(z_t)$ must be a neighbour of $\phi(x_{2i+t-2})$, for $t = 1$ or 2 and there are at most $2r^2$ choices of $\{z_1, z_2\}$ that will lead to this. These choices are made randomly from a set of edges of F_i of size at least $rn/12$.

Now $\prod_{i=rn/12+1}^{D} \left(1 - \frac{1}{2i-1}\right) \geq n^{-2}$. The number of edges inserted by GENERATE is at most $(.087)rn$ and $(1 - \frac{25r}{n})^{(.087)rn} \geq e^{-3r^2}$ and so (7) follows.

The probability that $\gamma(F)$ is admissible for H.

Let x_0 be an end vertex of longest path P in H. Now let $Y = \{(a, b) : a \in END(x_0), b \in END(a)\}$. Then $S \in Add(H)$ implies $\gamma(F) \cap Y = \emptyset$. For otherwise the edge ab would close some longest path of H to a cycle.

We will use CONSTRUCT to generate a configuration F with the required degree sequence (d_1, \ldots, d_n).

Since $|END(x_0)| \geq n/210$, the sum of the values d_v over vertices $v \in END(x_0)$ is at least $\frac{r}{1680} \frac{n}{4}$. Thus, we can choose u_j so that $\phi(u_j) \in END(x_0)$ for each of the first $\nu = rn/1680$ steps. For $j \leq \nu$, writing a for $\phi(u_j)$, let Y_j be the set of remaining configuration points y such that $\phi(y) \in END(a)$. Then $|Y_j| \geq \frac{r}{4} \frac{n}{210} - 2j$. As F contains at most $rn/2$ configuration points,

$$\Pr(\gamma(F) \cap Y = \emptyset) \leq \prod_{j=1}^{\nu} \left(1 - \frac{|Y_j|}{rn/2}\right)$$

$$\leq \exp \left(-\frac{\nu}{420} - \frac{1}{4j} - \frac{1}{4j} \frac{rn}{2} \right)$$

$$= e^{-\delta_1 rn}$$

where $\delta_1 \approx 1/(1680 \times 840)$.

Thus

$$\Pr(S \in Add(H)) \leq e^{-\delta_1 rn} \times n^2 e^{4r^2}$$

and the lemma follows.

\[\square \]

We can now complete the proof of Theorem 1(b). Suppose G is chosen u.a.r. from \mathcal{G}_n^* and then R is chosen by selecting edges independently with probability $1/3$. From
Lemma 6, we see that
\[
\Pr(\mathcal{E}) = \sum_{G \in \mathcal{G}} \sum_{R \in \text{Del}(G)} \Pr((G, R)) \\
\geq e^{-n} \Pr(\mathcal{N}).
\]

From the definitions (6), inequality (5) and Lemma 7 it follows that
\[
\Pr(\mathcal{F}) \leq \Pr(|R| \notin [(0.16)n, (0.17)n]) \\
+ \sum_{H \in \Psi} \sum_{S \in \text{Add}(H)} \Pr((H + S, S) \mid G - R = H) \Pr(G - R = H) \\
\leq \sum_{H \in \Psi} e^{-\delta n} \Pr(G - R = H) + e^{-\delta n} \\
\leq 2e^{-\delta n}.
\]

Now, by Remark 4, \(\mathcal{E} \subseteq \mathcal{F} \) and so \(\Pr(\mathcal{E}) \leq \Pr(\mathcal{F}) \), thus
\[
\Pr(\mathcal{N}) \leq 2e^{n-\delta n} = o(1)
\]
and the theorem follows from Lemma 5.

\[\square\]

Remark 5 We note that by following Frieze [10] we can, at the expense of complicating the proof, prove the existence of a polynomial time algorithm for finding a Hamilton cycle.

Acknowledgement: We wish to thank an anonymous referee for several very careful and thorough reviews, which contributed greatly to the clarity of exposition and accuracy of the paper.

References

