MULTICOLOURED TREES IN RANDOM
GRAPHs

Alan Frieze*
Department of Mathematics,
Carnegie Mellon University,
Pittsburgh, U.S.A.

and

Brendan D. McKay
Department of Computer Science,
Australian National University
Canberra, Australia

March 1, 2001

1 INTRODUCTION

Let $G = (V, E)$ be a graph in which the edges are coloured. A set $S \subseteq E$ is said to be multicoloured if each edge of S is a different colour. A spanning tree of G is said to be multicoloured if its edge set is. In this paper we study

*Supported by NSF grant CCR-9024935
the existence of a multicoloured spanning tree (MST) in a randomly coloured random graph.

In fact, our main result will concern a randomly coloured graph process. Here \(e_1, e_2, \ldots, e_N \) is a random permutation of the edges of the complete graph \(K_n \) and so \(N = \binom{n}{2} \). Each edge \(e \) independently chooses a random colour \(c(e) \) from a given set of colours \(W \), \(|W| \geq n - 1 \).

The graph process consists of the sequence of random graphs \(G_m, m = 1, 2, \ldots, N \), where \(G_m = ([n], E_m) \) and \(E_m = \{e_1, e_2, \ldots, e_m\} \). We identify the following events:

\[C_m = \{ G_m \text{ is connected} \} \]

\[\mathcal{N}_m = \{|W_m| \geq n - 1\} \], where \(W_m \) is the set of colours used by \(E_m \).

\[\mathcal{MT}_m = \{ G_m \text{ has a multicoloured spanning tree} \} \].

Let \(\mathcal{E}_m \) stand for one of the above three sequences of events and let

\[m_{\mathcal{E}} = \min\{m : \mathcal{E}_m \text{ occurs}\}, \]

provided such an \(m \) exists. Clearly, if \(m_{\mathcal{MT}} \) is defined,

\[m_{\mathcal{MT}} \geq \max\{m_C, m_N\}, \]

and the main result of the paper is

Theorem 1 In almost every (a.e.) randomly coloured graph process

\[m_{\mathcal{MT}} = \max\{m_C, m_N\}. \]
To establish the existence of an MST we use a result of Edmonds [2] on the matroid intersection problem. In this scenario M_1, M_2 are matroids over a common ground set E with rank functions r_1, r_2 respectively. Edmonds’ general theorem on this problem is

$$\max(|I| : I \text{ is independent in both matroids}) = \min_{E_1 \cup E_2 = E \atop E_1 \cap E_2 = \emptyset} (r_1(E_1) + r_2(E_2)).$$

For us M_1 is the cycle matroid of a graph $G = G_m$ and M_2 is the partition matroid associated with the colours. Thus for a set of edges S, $r_1(S) = n - \kappa(S)$ where $\kappa(S)$ is the number of components of the graph $G_S = ([n], S)$ and $r_2(S)$ is the number of distinct colours occurring in S. If $i \in W$ then C_i denotes the set of edges of colour i and for $I \subseteq W$, $C_I = \bigcup_{i \in I} C_i$. We will use Edmonds’ theorem as follows:

Theorem 2 A necessary and sufficient condition for the existence of an MST is that

$$\kappa(C_I) \leq |W| + 1 - |I| \quad \text{ for all } I \subseteq W. \quad (2)$$

Proof To see this, w.l.o.g. restrict attention in (1) to E_2 of the form C_J and then take $I = W \setminus J$ in (2). \hfill \Box

2 Proof of Theorem 1

Observe first that if $\omega = \omega(n) \rightarrow \infty$ slowly, then in a.e. randomly coloured graph process

$$m_c \geq m_0 = \left[\frac{1}{2} n (\ln n - \omega) \right] \text{ and } m_N \leq m_1 = \left[n (\ln n + \omega) \right].$$
Fix some \(m \) in the range \([m_0, m_1]\) and let \(w_m = |W_m| \). We define the event
\[
\mathcal{A}_k = \{ \exists I \subseteq W_m, |I| = k : \kappa(C_I) \geq w_m - |I| + 2 \}.
\]
We know that if \(m \geq \max\{m_C, m_N\} \) and there is no MST then \(\mathcal{A}_k \) occurs for some \(k \in [3, w_m - 1] \) (\(\mathcal{A}_1 \cup \mathcal{A}_2 \) cannot occur since the colours of \(W_m \) are all used and \(\mathcal{A}_{w_m} \) cannot occur if \(G_m \) is connected.) Take a minimal \(k \), corresponding set \(I \) and let \(S = C_I \).

Claim 1 \(G_S \) has no bridges.

Proof If there is a bridge, remove it and all edges of the same colour. Clearly \(\mathcal{A}_{k-1} \) occurs, contradicting the minimality of \(k \). \(\square \)

With the notation of Claim 1 suppose then that \(G_S \) has \(i \) isolated vertices and \(n - k + x - i \) non-trivial components, \(x \geq 1 \). Since non-trivial components without bridges have at least three vertices,
\[
i + 3(n - k + x - i) \leq n \quad (3)
\]
or
\[
i \geq n - \frac{3}{2}k + \frac{3}{2}x
\]
\[
\geq n - \frac{3}{2}k + \frac{3}{2}.
\]

So now let \(\mathcal{B}_k \) denote the event
\[
\{ \exists I \subseteq W_m, |I| = k, T \subseteq [n] : t = |T| \leq 3(k - 1)/2, \text{ all edges coloured with } I \text{ are contained in } T, \text{ there are } u \geq \max\{k, t\} \text{ } I\text{-coloured edges} \}.
\]

Here \(T \) is the set of vertices in the non-trivial components of \(G_{C_I} \). Thus,
\[
\mathcal{N}_m \cap \mathcal{A}_k \subseteq \bigcup_{i=3}^{k} \mathcal{B}_i \quad \text{for } k \geq 3. \quad (4)
\]

For large $k \geq 9n/10$ we consider a slightly different event.

We first rephrase (2) as

$$
\kappa(C_{W,J}) \leq |J| + 1 \quad \text{for all } J \subseteq W.
$$

(5)

So if $m \geq \max\{m_C, m_N\}$ and there is no MST then there exist $\ell \geq 1$ colours whose deletion produces $\lambda \geq \ell + 2$ components of sizes n_1, \ldots, n_λ ($\ell = 0$ is ruled out by the connectivity of G_m).

Claim 2 Some subsequence of the n_i's sums to between $\ell + 1$ and $n/2$.

Proof Assume $n_1 \leq n_2 \leq \cdots \leq n_\lambda$.

If $n_\lambda \geq \ell + 1$, one of $n_1, \ldots, n_{\lambda-1}$ and n_λ suffices.

Suppose then that $n_i \leq \ell$, $1 \leq i \leq \lambda$.

Choose r such that

$$
n_1 + \cdots + n_r \leq n/2, \quad n_1 + \cdots + n_{r+1} > n/2
$$

and then

$$
n_1 + \cdots + n_r \quad > \quad n/2 - n_{r+1}
\geq \quad n/2 - \ell
\geq \quad \ell.
$$

and we can take n_1, \ldots, n_r. \qed

Note next that if J is minimal in (5) then each colour in J appears at least twice as an edge joining components of $G_{C_{W,J}}$.

5
So if \(m \geq \max\{m_C, m_N\} \) and there is no MST and \(A_k \) does not occur for \(k \leq 9n/10 \) then there is a set \(L \) of 1 \(\leq \ell < w_m - 9n/10 \) colours and a set \(S \) of size \(s, \ell + 1 \leq s \leq n/2 \) such that (i) all \(t = \eta(S) = |(S : \bar{S})| \geq 1 \) edges are \(L \)-coloured, \((S : \bar{S})\) is the set of edges joining \(S \) and \(\bar{S} = V \setminus S \), (ii) the lexicographically first \(\max\{2\ell - t, 0\} \) non-\((S : \bar{S})\) edges joining up components (of the \(W \setminus L \) coloured edges) are also \(L \)-coloured. Let \(D_\ell \) denote this event. Then

\[
C_m \cap \left(\bigcup_{k=9n/10}^{w_m-1} A_k \right) \subseteq \bigcup_{\ell=1}^{w_m-9n/10} \Pr_m(D_\ell).
\]

(6)

It follows from (4) and (6) that

\[
\Pr(m_{\mathcal{MT}} > \max\{m_N, m_C\}) \leq o(1) + \sum_{m=m_0}^{m_1} \left[\sum_{k=3}^{9n/10} \Pr_m(B_k) + \sum_{\ell=2}^{w_m-9n/10} \Pr_m(D_\ell) \right] + \Pr \left(\bigcup_{m=m_0}^{m_1} (C_m \cap A_{w_m-1}) \right).
\]

(7)

Here \(\Pr_m \) denotes probability w.r.t. \(G_m \) and the \(o(1) \) term is the probability that \(G_{m_0} \) is connected or that \(m_N > m_1 \). (Our calculations force us to separate out \(A_{w_m-1} \).)

We must now estimate the individual probabilities in (7). It is easier to work with the independent model \(G_p, p = m/N \), where each edge occurs independently with probability \(p \) and is then randomly coloured. For any event \(\mathcal{E} \) we have (see Bollobás [1] Chapter II) the simple bound

\[
\Pr_m(\mathcal{E}) \leq 3\sqrt{n \ln n} \Pr_p(\mathcal{E}),
\]

(8)

where \(\Pr_p \) denotes probability w.r.t. the model \(G_p \).
2.1 Few colours

We thus consider $p = \alpha \ln n/n$, $1 - o(1) \leq \alpha \leq 2 + o(1)$. We will initially assume that $|W| = n + c$, $-1 \leq c \leq \epsilon n$ where ϵ is some small fixed positive number ($\epsilon = .01$ is suitable). Then

$$
\Pr_p(B_k) \leq \sum_{t=1}^{3(n-1)/2} \sum_{u=\max\{t,k\}} \binom{n}{t} \binom{n+c}{k} \binom{\binom{t}{2}}{u} \left(1 - \frac{kp}{n+c}\right)^{u-\binom{t}{2}} \left(\frac{kp}{n+c}\right)^u
$$

$$
\leq \sum_{t=1}^{3(n-1)/2} \sum_{u=\max\{t,k\}} n^t e^t n^k e^{(1+\epsilon)k} \left(\frac{t^2 e}{2u}\right)^u n^{-\kappa a (1-\epsilon)/2} \left(\frac{\alpha k \ln n}{n^2}\right)^u .
$$

(9)

Case 1: $3 \leq k \leq k_0 = n/(3 \ln n)$.

$$
\Pr_p(B_k) \leq \sum_{t=1}^{3(n-1)/2} \sum_{u=\max\{t,k\}} \left(\frac{e^3 n^{1-\alpha (1-\epsilon)/2}}{k}\right)^k \left(\frac{t^2 e}{2u}\right)^u \left(\frac{\alpha e k \ln n}{2n}\right)^u
$$

$$
= \sum_{t=1}^{3(n-1)/2} \sum_{u=\max\{t,k\}} \left(\frac{e^3 n^{1-\alpha (1-\epsilon)/2}}{k}\right)^k \left(\frac{t^2 e}{2u}\right)^u \left(\frac{\alpha e k \ln n}{2n}\right)^u
$$

$$
\leq \sum_{t=1}^{3(n-1)/2} \sum_{u=\max\{t,k\}} \left(\frac{e^3 n^{1-\alpha (1-\epsilon)/2} \alpha e k \ln n}{2kn}\right)^k \left(\frac{t^2 e}{2u}\right)^u \left(\frac{\alpha e k \ln n}{2n}\right)^u
$$

$$
= O \left(\left(\frac{e^5 \ln n}{n^{\alpha (1-\epsilon)/2}}\right)^k\right).
$$

It follows from this and (8) that

$$
\sum_{m=m_0}^{m_1} \sum_{k=4}^{k_0} \Pr_p(B_k) = \text{O}((n \ln n)(\sqrt{n \ln n}((\ln n)^4/n^{2\alpha (1-\epsilon)}))
$$

$$
= o(1).
$$

(10)
For \(k = 3 \) we compute \(\Pr_m(B_3) \) directly, but since now \(u = t = k = 3 \) is forced,

\[
\Pr_m(B_3) \leq \left(\frac{n}{3} \right)^2 \left(1 - \frac{3}{n + c} \right)^{m-3} \left(\frac{3}{n + c} \right)^3 \left(\frac{N-3}{\binom{N}{m}} \right)
\]

\[
= O(e^{3\alpha}(\ln n)^3n^{-3/2})
\]

and so

\[
\sum_{m=m_0}^{m_1} \Pr_m(B_3) = o(1).
\] (11)

Case 2: \(k_0 < k \leq n/2 \).

We now write (9) as

\[
\Pr_p(B_k) \leq \sum_{i=1}^{3(k-1)/2} \sum_{u=\max\{i,k\}}^{(i)} \left(\frac{e^{3n^{1-\alpha(1-\epsilon)/2}}}{k} \right)^k \left(\frac{t}{n} \right)^u \left(\alpha ekt \ln n \right)^u
\]

\[
\leq \sum_{i=1}^{3(k-1)/2} \sum_{u=\max\{i,k\}}^{(i)} \left(\frac{e^{3n^{1-\alpha(1-\epsilon)/2}}}{k} \right)^k \left(\frac{t}{n} \right)^u \left(\alpha ekt \ln n \right)^u
\]

(after maximising the last term over \(u \))

\[
= \sum_{i=1}^{3(k-1)/2} \sum_{u=\max\{i,k\}}^{(i)} \left(\frac{e^{3n^{1-\frac{3}{2}(1-\frac{1}{n}-\epsilon)}}}{k} \right)^k \left(\frac{t}{n} \right)^u
\]

\[
\leq \sum_{i=1}^{3(k-1)/2} \sum_{u=\max\{i,k\}}^{(i)} \left(\frac{e^{3n^{1-\alpha(1-\epsilon)}}}{k} \right)^k
\] (12)

since \(t \leq 3(k-1)/2 \leq 3n/4 \).

(13) and (8) clearly imply

\[
\sum_{m=m_0}^{m_1} \sum_{k=k_0}^{n/2} \Pr_m(B_k) = o(1).
\] (14)
Case 3: $n/2 < k \leq 9n/10$

Claim 3 Choose any constant $A > 0$. Then, in a.e. process, simultaneously for each $m \in [m_0, m_1]$, the sets of $s \leq A$ vertices of G_m which span at least s edges together contain at most $(\ln n)^{A+1}$ vertices.

Proof We need only prove this for G_{m_1} and since the property is monotone decreasing we need only prove it for G_{p_1}, $p_1 = m_1/N$ ([1], Chapter II.) But

$$E_{p_1}(\text{number of vertices}) \leq \sum_{k=3}^A \binom{n}{k} \binom{k}{2} p_1^k k = O(e^{2A}(\ln n)^A).$$

Now use the Markov inequality. \hfill \qed

It follows that we may rewrite (3) as

$$i + 3(\ln n)^{A+1} + (A + 1)(n - k + x - i) \leq n$$

and so

$$i \geq n - \frac{A + 1}{A}k - O((\ln n)^{A+1})$$

$$\geq n - \frac{A}{A - 1}k.$$

By making A sufficiently large we see that if $k \leq 9n/10$ then $t \leq 19n/20$ in (12) and consequently

$$\sum_{m=m_0}^{m_1} \sum_{k=n/2}^{9n/10} \Pr_m(B_k) = o(1).$$

(15)
Case 4: $k \geq 9n/10$

\[
\Pr_p(D_t) \leq \sum_{s=t+1}^{n/2} \binom{n}{s} \left(\frac{n+c}{\ell} \right)^s \binom{s(n-s)}{t} \left(\frac{\ell p}{n+c} \right)^t (1-p)^{s(n-s)-t} \left(\frac{\ell}{n+c} \right)^{\max\{2t-t,0\}}.
\]

Let $u(s, \ell, t)$ denote the summand in the above and let $p = \alpha \ln n / n$ and note that $\alpha \in [1 - \omega / \ln n, 2 + \omega / \ln n]$.

Case 4.1: $t \leq 2\ell$

It will generally be convenient to split s into two ranges:

Case 4.1.1: $s \leq n^{1/10}$

\[
u(s, \ell, t) = \binom{n}{s} \left(\frac{n+c}{\ell} \right)^s \binom{s(n-s)}{t} \left(\frac{\ell p}{n+c} \right)^t (1-p)^{s(n-s)-t} \left(\frac{\ell}{n+c} \right)^{2t}.
\]

\[
\leq \left(\frac{ne}{s} \right)^s \left(\frac{(n+c)e}{\ell} \right)^t \left(\frac{s(n-s)e^{1+p\alpha \ln n}}{tn} \right)^t n^{-as(n-s)/n} \left(\frac{\ell}{n+c} \right)^{2t}.
\]

\[
\leq \left(\frac{n^{1-\alpha+as/n}e}{s} \right)^s \left(\frac{\ell e}{n+c} \right)^t \left(\frac{e^2 s(n-s) \ln n}{tn} \right)^t \left(\frac{\ell}{n+c} \right)^{2t}.
\]

\[
\leq \left(\frac{n^{1-\alpha+as/n}e}{s} \right)^s \left(\frac{e^4 s^2 (n-s)^2 \ln n}{n^3 \ell} \right)^t.
\]

(16)

Now

\[
n^{1-\alpha+as/n} \leq (1 + o(1))e^\omega
\]

(17)

where $\alpha \geq 1 - \omega / \ln n$ and $\omega \to \infty$ slowly.

So if $s \leq 3e^\omega$ then (16) implies that

\[
u(s, \ell, t) \leq n^{-(1-\alpha) \ell},
\]
and if $s > 3e^\omega$

$$u(s, \ell, t) \leq \left(\frac{e^\omega s(n - s)^2(\ln n)^2}{n^3 \ell}\right)^t = O\left(\left(\frac{s}{n^{1-\alpha(1)}}\right)^t\right).$$

Case 4.1.2: $s > n^{1/10}$.

Claim 4 In a.e. process, every $G_m, m \in [m_0, m_1]$ is such that $\eta(S) \geq \gamma|S| \ln n$ for all $n^{1/10} \leq |S| \leq n/2$, where $\gamma > 0$ is some absolute constant.

Proof (outline) For $|S| \geq n^{2/3}$ one can use the Chernoff bounds on the tails of the binomial $\eta(S)$. If $|S| \leq n^{2/3}$ we use the fact that with high probability (i) G_{m_0} has $n\epsilon'$ vertices of degree $\leq \epsilon \ln n$ where $\epsilon' = \epsilon'(\epsilon) \to 0$ with ϵ, and (ii) in G_{m_1} no set S of size $\leq n/(\ln n)^2$ contains $3|S|$ edges. □

So if $s \geq n^{1/10}$ then we can take $t \geq \gamma s \ln n > 2\ell$ for some constant $\gamma > 0$ and this case is vacuous.

Case 4.2 : $t > 2\ell$.

$$u(s, \ell, t) \leq \left(\frac{ne}{s}\right)^t \left(\frac{(n + c)e}{\ell}\right)^t \left(\frac{s(n - s)e^{1+p\alpha \ln n}}{tn(n + c)}\right)^t n^{-\alpha s(n-s)/n} = \left(\frac{n^{1-\alpha + \alpha s/n}e}{s}\right)^t \left(\frac{(n + c)e}{\ell}\right)^t \left(\frac{s(n - s)e^{1+p\alpha \ln n}}{tn(n + c)}\right)^t (18)$$

Case 4.2.1: $t \leq 2n$ and so $((n + c)e/\ell)^t \leq (3ne/t)^{1/2}$.

$$u(s, \ell, t) \leq \left(\frac{n^{1-\alpha + \alpha s/n}e}{s}\right)^t \left(\frac{30s\ell \ln n}{\ell^{3/2}n^{1/2}}\right)^t. (19)$$
Case 4.2.1.1: $s < n^{1/10}$. Now (17) gives
\[
\left(\frac{n^{1-\alpha+\alpha s/n} \ell}{s} \right)^s \leq \left(\frac{(1 + o(1)) \omega^{\alpha+1}}{s} \right)^s \leq (1+o(1))\omega^\alpha = \omega^{\alpha}, \text{ say,}
\]
and so (19) implies
\[
u(s, \ell, t) \leq \left(\frac{s}{n^{2-\alpha(1)}} \right)^t. \tag{20}
\]

Case 4.2.1.2: $s \geq n^{1/10}$.

Using Claim 4 and (19),
\[
u(s, \ell, t) \leq n^{-s/11} \left(\frac{\ell}{\sqrt{tn}} \right)^t.
\]

Case 4.2.2: $t \geq 2n$ and so $((n + c)\ell)/t \leq e^{n+c} \leq e^{(1+c)/2}$.

From (19),
\[
u(s, \ell, t) \leq \left(\frac{(1 + o(1)) \omega^{\alpha+1}}{s} \right)^s \left(\frac{30s\ell \ln n}{tn} \right)^t.
\]

Case 4.2.2.1: $s < n^{1/10}$.

Arguing as in (20),
\[
u(s, \ell, t) \leq \left(\frac{s}{n^{1-\alpha(1)}} \right)^t.
\]

Case 4.2.2.2: $s \geq n^{1/10}$.

From Claim 4
\[
u(s, \ell, t) \leq \left(\frac{(1 + o(1)) \omega^{\alpha+1}}{s} \right)^s \left(\frac{A\ell}{n} \right)^t.
\]
for some constant $A > 0$. Now this clearly implies

$$u(s, \ell, t) = O(2^{-n})$$ \hfill (21)

for $\ell \leq n/(3A)$. For $\ell > n/(3A)$ we have $s \geq \ell$ and

$$u(s, \ell, t) \leq n^{-s/2} A^n$$

and so (21) holds here also.

Summarising,

$$\Pr(\mathcal{D}_t) = O \left(\sum_{t=1}^{2t} \sum_{s=\ell+1}^{n^{1/10}} \left(\frac{s}{n^{1-o(1)}} \right)^{t} + \sum_{t=2\ell+1}^{2n} \sum_{s=\ell+1}^{n^{1/10}} \left(\frac{s}{n^{2-o(1)}} \right)^{t} \right. \left. + \sum_{t=2\ell+1}^{2n} \sum_{s=n^{1/10}}^{n/2} \left(\frac{s}{\sqrt{tn}} \right)^t + \sum_{s=1}^{n^{1/10}} \sum_{t=2n+1}^{n/2} \left(\frac{s(n-s)}{n^{1/2-o(1)}} \right)^{t} \right)$$

$$= O \left(\frac{n}{\log n} \right)^{(9-o(1))}.$$

where the double summations correspond to the five cases enumerated above.

Thus, we see that

$$\sum_{m=m_0}^{m_1} \sum_{t=2}^{n/10} \Pr_m(\mathcal{D}_t) = O((n \log n)(\sqrt{n \log n})n^{-1.7}) = o(1).$$ \hfill (22)

We are thus left with $\Pr \left(\bigcup_{m=m_0}^{m_1} (C_m \cap A_{w_{m-1}}) \right)$.

We consider G_{m_0}. We know that a.e. G_{m_0} consists of a giant connected component C plus $O(e^\omega)$ isolated vertices T. If $\bigcup_{m=m_0}^{m_1} (C_m \cap A_{w_{m-1}})$ occurs at some time during the process then either
(i) there exist \(u, v \in T\) such that the first edges of the process that are incident with each of \(u\) and \(v\) are the same colour,

OR

(ii) there exists a colour \(r\) and a set \(S, 2 \leq |S| \leq n/2\) such that in \(G_{m_0}\) the \(t \geq 2 (\overline{S} : \overline{\overline{S}})\) edges are all of colour \(r\).

(Suppose that deleting the edges of colour \(r\) from \(G_m\) produces at least three components. If colour \(k\) has not occurred by time \(m_0\) then two of these components must be vertices from \(T\), contradicting (i). If \(G_{m_0}\) has edges of colour \(r\) then deleting these edges must break \(C\) into at least three pieces.)

Clearly

\[
\Pr((i)) = o(1) + O(e^{2\omega}/n) = o(1).
\]

Furthermore

\[
\Pr_p((ii)) \leq \sum_{s=2}^{n/2} \binom{n}{s} \sum_{t=2}^{s(n-s)} \left(\binom{s(n-s)}{t} \left(\frac{p}{n+c} \right)^t (1-p)^{s(n-s)-t} \right)
\leq \sum_{s=2}^{n/2} \binom{n}{s} \sum_{t=2}^{s(n-s)} \frac{(s(n-s))^t}{t!} \left(\frac{\alpha \ln n}{n^2} \right)^t n^{-\alpha s}
\leq n \sum_{s=2}^{n/2} \left(\frac{n^{1-\alpha}}{s} \right)^s \sum_{t=2}^{s(n-s)} \left(\frac{s \alpha \ln n}{n} \right)^t
= O(n^{-(1-\alpha(1))}).
\]

The upper bound is good enough to apply (8) and so \(\Pr_{m_0}((ii)) = o(1)\). Thus

\[
\Pr \left(\bigcup_{m=m_0}^{m_1} (\mathcal{C}_m \cap \mathcal{A}_{w_{m-1}}) \right) = o(1). \tag{23}
\]

The result for \(|W| \leq (1 + \epsilon)n\) follows from (7),(10),(11),(14),(15),(22) and (23).
2.2 Many colours

We now deal with the case where $|W| > (1 + \epsilon)n$. Our main tool is a monotonicity result that in essence says ”the more colours, the more likely an MST exists”. We frame it in a general context. Assume that we are given a fixed collection X_1, X_2, \ldots, X_M of subsets of a finite set X. The elements of X are randomly coloured with s colours. We identify the event

$$\mathcal{E} = \{ \exists i, 1 \leq i \leq M : X_i \text{ is multicoloured} \},$$

and let

$$\pi(s) = \Pr(\mathcal{E}) \quad \text{for } s \geq 1.$$

Theorem 3

$$\pi(s + 1) \geq \pi(s).$$

\[\square \]

We defer the proof of this theorem and show how it can be used to finish the proof of Theorem 1.

When we apply Theorem 3 we have a connected graph G and X_1, X_2, \ldots, X_M is the collection of edge sets of spanning trees of G. The theorem then implies that when we randomly colour such a graph, the more colours we choose from, the more likely we are to produce an MST.

Suppose now that $|W| = s > s_0 = \lceil (1 + \epsilon)n \rceil$. Let \Pr_s denote event probabilities when s colours are used. Observe first that

$$\Pr_{s_0}(m_N > m_0) = o(1).$$
Let \(\mathcal{G}_m \) denote the set of connected graphs with vertex set \([n]\) and \(m\) edges. Then

\[
\Pr_s(m_{MT} > \max\{m_C, m_N\}) = o(1) + \Pr_s(m_{MT} > m_C > m_0 > m_N),
\]

\[
\leq o(1) + \sum_{m=m_0+1}^{m_1} \sum_{G \in \mathcal{G}_m} \Pr_s(G = G_{m_C}, \text{ no MST}, m_0 > m_N),
\]

\[
\leq o(1) + \sum_{m=m_0+1}^{m_1} \sum_{G \in \mathcal{G}_m} \Pr(G = G_{m_C}) \Pr_s(G \text{ has no MST}),
\]

\[
\leq o(1) + \sum_{m=m_0+1}^{m_1} \sum_{G \in \mathcal{G}_m} \Pr(G = G_{m_C}) \Pr_{s_0}(G \text{ has no MST}),
\]

\[
\leq o(1) + \Pr_{s_0}(m_0 \leq m_N)
\]

\[
+ \sum_{m=m_0+1}^{m_1} \sum_{G \in \mathcal{G}_m} \Pr_{s_0}(G = G_{m_C}, \text{ no MST}, m_0 > m_N),
\]

\[
= o(1) + \Pr_{s_0}(m_{MT} > \max\{m_C, m_N\}),
\]

\[
= o(1),
\]

and this completes the proof of Theorem 1.

We now prove Theorem 3. We first generalise the colouring of \(X\) to non-uniform colourings i.e. given \(p_1 + p_2 + \cdots + p_{s+1} = 1, p_i \geq 0, 1 \leq i \leq s+1\), let

\[
\rho(p_1, p_2, \ldots p_{s+1}) = \Pr(\mathcal{E} \text{ when the elements of } X \text{ are independently }
\]

\[
\text{coloured } j \text{ with probability } p_j, 1 \leq j \leq s+1).
\]

Then

\[
\pi(X, s) = \rho\left(\frac{1}{s}, \ldots, \frac{1}{s}, 0\right),
\]

and

\[
\pi(X, s + 1) = \rho\left(\frac{1}{s+1}, \ldots, \frac{1}{s+1}, \frac{1}{s+1}\right).
\]
The theorem follows fairly easily from symmetry and
\[
\rho(p_1, p_2, \ldots, p_{s+1}) \leq \rho \left(p_1, p_2, \ldots, p_{s-1}, \frac{p_s + p_{s+1}}{2}, \frac{p_s + p_{s+1}}{2} \right). \tag{24}
\]

We prove (24) by conditioning on the set of elements \(Y \subseteq X \) which are coloured with the first \(s - 1 \) colours and how \(Y \) is coloured. Let \(Z = X \setminus Y \) and \(Z_i = X_i \setminus Y, 1 \leq i \leq M \).

We first eliminate from further consideration those \(i \) for which \(X_i \cap Y \) is not multicoloured. As for the rest, unless \(|Z_i| = 2 \),

\[
\Pr(X_i \text{ becomes multicoloured } | Y) = 0 \text{ or } 1.
\]

We have thus reduced the problem to the case where \(|Z_i| = 2 \) for all \(i \), and each element is independently coloured \(s \) with probability \(p = p_s/(p_s + p_{s+1}) \) or \(s + 1 \) with probability \(1 - p \). The \(Z_i \) can be thought of as the edges of a graph \(H \), the vertices of which are randomly coloured. There is now a multi-coloured \(X_i \) if and only if one of the components of \(H \) contains two vertices of a different colour, for then, trivially, there is an edge with endpoints of a different colour.

But for a component \(C \) with \(r \) vertices,
\[
\Pr(C \text{ is mono-coloured}) = p^r + (1 - p)^r \geq \left(\frac{1}{2} \right)^r + \left(\frac{1}{2} \right)^r
\]
and (24) and the theorem follows.

Acknowledgement: We thank Andrzej Ruciński for pointing out an error in an earlier version of the paper, and Noga Alon and Rodney Canfield for their help in proving Theorem 3.
References
