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Abstract

We consider the problem of generating a random g-colouring of a graph G = (V,E). We
consider the simple Glauber Dynamics chain. We show that if the maximum degree A > ¢;Inn
and the girth g > caIn A (n = |V|) for sufficiently large c1,cz, then this chain mixes rapidly
provided g/A > 3, where 8 = 1.763 is the root of 8 = e!/8. For this class of graphs, this beats
the 11A /6 bound of Vigoda [14] for general graphs. We extend the result to random graphs.

1 Introduction

Markov Chain Monte Carlo (MCMC) is an important tool in sampling from complex distributions. It
has been successfully applied in several areas of Computer Science, most notably volume computation
[5], [12] and estimating the permanent of a non-negative matrix [10]. It was used by Jerrum [8] to
generate a random g-colouring of a graph G, provided g > 2A. This has led to the challenging
problem of determining the smallest value of ¢ for which it is possible to generate a (near)-uniform
sample from the set Q of proper g-colourings of G in polynomial time. Vigoda [14] recently improved
Jerrum’s result by reducing the lower bound on g to 11A /6. In this paper we obtain an improvement
in this bound for a restricted class of graphs.

For any constants ¢1,c2 > 0, let G(c1,¢2) be the class of graphs G = (V, E) such that, when n = |V|,
G has maximum degree A > c¢;lnn and girth g > coIn A. We consider Glauber dynamics on the
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set Q, for ¢ an integer such that 8 < gq/A < 2, where § &~ 1.763 is the root of g = el/P. Let the
colour set @ = [g], where throughout we use [m] to denote the set {1,2,...,m}. Specifically we will
consider the heat bath dynamics, which may be described as follows. We start from an arbitrary
proper g-colouring Xy € Q. At step ¢ > 0 of the process, in state X;_; € Q, we choose a vertex
vy € V uniformly at random. (We will say v; is visited at time ¢t.) Then we choose j; uniformly at
random from the colours with which v; may be properly coloured, given X; 1(V \ v;). We recolour
v; with j; to give X; € Q. We show that this process converges to a distribution close to uniform
on Q when t = O(nlnn) if ¢1,cy are large enough. Note that 3 < 11/6 = 1.833, the best lower
bound known on ¢/A for rapid mixing of any dynamics on degree-bounded graphs, a result due to
Vigoda[14]. We prove

Theorem 1.1 Let e > 0 be a constant. There exist constants A(e), &1(€),&2(€) such that the Glauber
dynamics with ¢ > (B8 + €)A colours converges to within variation distance e~ from uniform in at
most Anlnn steps for all G € G(c1,ca), whenever ¢c1 > &1, c2 > &a.

Our result easily extends to graphs in which no vertex v lies on more than c circuits, for constant c.
We will show that this class includes the class of random graphs G(n,p) [7] with p = O((Inn)"/n)
for constant r. The class of graphs we consider is clearly rather special, but we believe that our
results may be the first step on the way to proving a corresponding theorem for more general graphs.

Counting Colourings: Generating random colourings is closely related to approximately counting
them, as is well known in a more general context (Jerrum, Valiant and Vazirani [11]). For any edge
e of G we can estimate the proportion p of proper colourings of H = G \ e which are also proper
colourings of G. This is done by (near) random sampling and relies on the fact that p > %.
See Jerrum [8] for the argument. Applying this in a standard way [8], we obtain the following result.

Theorem 1.2 Suppose ¢ > max{B8A,ci;Inn} and the girth of G is at least c3In A, then there is a
fully polynomial randomized approximation scheme for the number of proper g-colourings of G.

2 Basic Model

Consider the following model for the selection of colours in the neighbourhood N (v) = {w : {v,w} €
E} of any vertex v € V.

Experiment

Let @ = [q], and let S; C @ (i € [A]) be such that |S;| > ¢ — A > 0. Select s; € S; independently
and uniformly at random, and let C = {s; : i € [A]}.

1 A(g—A)/q
Lemma 2.1 Let D =|Q\ C|, then E[D] > q<1 — q—A> .



Proof: Let m; = |S;|, and let a;; = 1 if j € S;, a;; = 0 otherwise. Thus m; = Z‘;:l a;j, and

E(D] = E_jf (1- nll) 1)

J

Using the inequality between the arithmetic and geometric mean, this implies

1/q

v

wor = il 2)”

But (1—1/m;)™ > (1—1/(g— A))9=2 for all i € [A], since (1 — 1/m)™ increases with m, and the
conclusion follows. |

Corollary 2.2 If g— A = ©(A), then E[D] > ge=2/1 — O(1).

Proof: Since ¢ — A = O(A), (1-1/(g— A))7A =e~! —O(1/A). The conclusion follows using
the binomial theorem and A/q = O(1), ¢ = O(A). |

In the context of Glauber dynamics, for a given vertex v € V, we interpret @ \ S; as the colours
used in N (w;), where N'(v) = {w; : ¢ € [A]}. Thus S; is the set of colours available for recolouring
w;. If the experiment actually models the process for selecting colours in N'(v), then we expect
more unused colours than the ¢ — A worst case. This will be true, for example, if G is triangle-free
and all colours in N (v) are chosen simultaneously. But colour selections in the dynamics take place
sequentially, and it is possible that earlier choices can influence later ones. In extreme situations,
this will completely invalidate our model. Consider, for example, colouring N (v) for v a vertex of
a (A + 1)-clique. The model predicts more than the (¢ — A) unused colours that we know must
always occur. Therefore, our aim will be to show that this model is a close approximation to the
truth for the class of graphs to which we have restricted our attention. Let D, ; be the number of
colours unused in N(v) after step t of the Glauber dynamics. We will first show, in section 3, that
our experiment is at least a good approximation in expectation.

3 Lower bounding E[D, ]

We will use “with high probability” to mean “with probability (1 — O(1/n%))”. We will generally
assume that high probability events actually occur, and account for the resulting errors in section 5.

Furthermore, we assume throughout that n, A are always sufficiently large to justify any inequality.



The following bounds, Theorem A.1.15 of [1] will be used several times. Let X be a Poisson random
variable with mean p. Then for any € > 0,

Pr(X < (1—e)u) <e™#2,  Pr(X > (1+ep) < (e5(1+¢)~FI), 2)

It will be helpful to modify the dynamics slightly. First, we move to a continuous time model for
vertex selection. The vertex sequence will be chosen by n independent Poisson processes, one for
each vertex, each with rate 1/n. All processes are run for fixed time 75 = Anlnn, where A is a
large enough constant. The observed total number of steps 7" is then a Poisson random variable,
with mean Tp. Moreover, T will be sharply concentrated around Tj. From (2) we obtain
Pr(T ¢ To + n3/4 Inn) = =),

Thus there is little difference from the original vertex choice process, using a fixed number of steps
Ty, but we have gained independence of choices. We have also shown that a bound of T on the
mixing time of this continuous-time version implies a bound of Ty + n%/*logn on the mixing time
of the discrete-time version.

Suppose now that each vertex v independently generates a list of colours, chosen uniformly and
independently from @. At any visit to v, we attempt to recolour it with the first colour on its list.
If this is impossible, we remove this colour and proceed to the next. Otherwise, we recolour v and
remove the colour from the list. For any v € V| let (,, denote the number of visits to v during time
To. Then, if 7 > ¢'Inn and ¢’ is large enough,

Tge To/m Alnn\® 1
Pr(EIU:Cv>r)§nZOe§n1_AZ(e nn> < —. (3)

nss! s nb
s>r s>r

The probability that the first colour on the list is used at any visit is at least (¢ —A)/q = (8—1)/8.
Thus, with high probability, the maximum list length required by any vertex is O(Inn), since the
probability there is a vertex requiring a list of more than 10¢’ Inn colours is at most

10 Inn\ . g/ 1nn 10e\°™" 1
_ < 10e <« L
n( cdlnn )'B =n B° nS’
if ¢/ is large enough. So we assume that each vertex initially generates a list of O(Inn) colours.
Given the sequence of vertices chosen at each step, these lists completely determine the dynamics,

but now all random choices are made ab initio. We will couple processes by giving them the same
colour lists and sequence of vertex choices.

Consider a fixed vertex v and (continuous) time ¢. Let us define the phase P(v,t) for v ending at
time t by P(v,t) = [t/,t], where t —t' = 4dnlnA. If t < 4nln A, P(v,t) is undefined. We first bound
the probability that some neighbour of v is not visited during P(v, t).

Lemma 3.1 Let W be the event that there is a w € N (v) not visited in P(v,t). Then Pr(W) < A~3.

Proof: Pr(W) < Ae~4nlna/n — A=3, m]

Suppose v has degree d < A and label the vertices w; € N'(v) (i € [d]) in the order they are last



visited during P. (We simply write P for P(v,t) when there is no ambiguity.) Note that w; (i > 1)
may be recoloured many times during P, but the last recolouring is the one we will identify with
the choice s; in our experiment, so s; = X (w;).

If dist(v, w) denotes the edge distance from v to w in G, let Ni(v) be the set of vertices v’ with
dist(v,v') < k. Let H, = (W,, F,) be the subgraph of G induced by N(v), where £ = [30InA].
Observe that H, is a tree in view of our assumption on the girth of G. Let N be the total number
of vertices visited in G during P.

Lemma 3.2 Ifn > 100, Pr(N > b5nlnA) <e™ ™

Proof: Using (2) with e =1/4, p =4nln A,

4nln A
Pr(N > 5nlnA) < (61/4(5/4)—5/4) <e™
O
Next we bound the number of visits to vertices close to v in H,,.
Lemma 3.3 Let 1, be the number of visits to w during P. Then
Pr(3w € No(v) : 7y > 16InA) < A77.
Proof: Using (2) with e =3, p =4InA,
Pr(n, > 16InA) < (634_4)4lnA < A710,

Since there are at most A? + 1 such w, the Lemma follows. a

We will assume henceforward that neither of the events whose probability we have bounded in
Lemmas 3.1 and 3.3 occurs, and consider the effect of these errors at a later point in the argument.

We now consider how the colour choices s; (i € [d]) may be correlated. We will do so by coupling the
process X; with a process Y; on the graph G’, where G’ is G with all edges incident to v deleted. We
will have Y;r = Xy and, during P, the vertex and colour choices will be coupled as described above.
Note, however, that a colour will be removed from a list if it is considered in either X or Y. Thus the
remaining colour lists are always identical in X and Y at every visit to a vertex. This modification
does not require us to significantly lengthen the lists. The effect of this coupling propagates through
G as X; and Y; disagree on choice of colour. This occurs through a path of disagreement, as in the
“disagreement percolation” technique of van den Berg and Steif [13]. First we show that, with high
probability, no path of disagreement leaves H, during P.

Lemma 3.4 Suppose c; > 100, and let H be the event

{3IreP,w¢ H,: X, (w) # Y- (w)}.

Then Pr(H) < A=20 for all large enough n.



Proof: We overestimate the probability of a disagreement at any vertex in N7 (v) by assuming that
this occurs with probability 1. Then a path of disagreement leaving H,, starts from some v’ € N'(v),
and has length at least £ — 1. Consider one of the (at most) A(A — 1)*~! such paths from N (v) to
the boundary of H, along which a disagreement is propagated. Then

(a) the vertices of the path must be visited in outward sequence during P;

(b) if w is the vertex of disagreement furthest from v at any step in P, the colours of N (w') \ w
agree for each w’ € N(w) \ z where z is the neighbour of w on the path to v, (because H, is
a tree);

(c) there are at least ¢ — A available colours at w’, so the probability that the coupling disagrees
is at most 1/(q — A);

(d) from (a) and (c), an event of probability at most 1/n(q — A) occurs each time the path of
disagreement is extended by one more vertex.

Thus,

Pr(H) < A(A - 1)t (/fl) (ﬁ)el <A (%)Zl <A™ (4)

provided £ > 30In A and n is large enough. |

Henceforward we will restrict attention to the tree H, and correct for this small error later. If
szY = Y;(w;), observe that the s}’ are independent, since they cannot “communicate” through wv.
Thus D, (Y) accords with the experiment of section 2, ! and hence E[D; (V)] > ge~2/7 — O(1).
We will show that E[D;,(X)] does not differ too much from E[D,,(Y)]. To see this, consider the
colour disagreements in N(w;). Vertex u € N (w;) will disagree only if a path of disagreements
reaches w;. Suppose this happens. The probability that the path is then extended to u is at most
1/(g — A). Let p be the maximum over ¢ of the total number of disagreements in N (w;). Then,

from Lemma 3.3,for 7 > 80In A,

Again we will assume this is actually true and correct later.

Finally, we bound the difference between E[D; ,(X)] and E[D; ,(Y)]. Note that s # s} only if, at
its last visit, w; chooses the colour

(a) Xi(v);
(b) X:(u) or Y;(u), where X;(u) # Y:(u), for some u € N'(w;).

But, by (5), there are at most 1+ 1601In A such colours for each w;. Thus, since there are at least
q — A possible colour choices for w;,

Pr(X, (w;) # Ye(ws)) < H;E# ~0 (%) . (6)

1Strictly speaking we should replace the factor (l — mii)a“ by (1 — le + O(A‘zo)) i to account for the con-
ditioning on 7, but this will not affect our lower estimate for E[Dy,,(Y)]



Hence we conclude that
|E[D¢(X)] — E[D¢,(Y)]| = O(InA). (7)

We must now account for the errors associated with Lemmas 3.1 to 3.4 and equation (5). The
probability that any of these “bad events” occurs is O(A™3). Now D, > g — A deterministically,
so such events can only decrease E[D, ;] by O(A~2). Thus (7) remains valid. Hence we have

E[D;,(X)] > ge"2/7 — O(In A). (8)

4 Concentration

We must show that the lower bound implied by our experiment holds approximately with high
probability. This requires showing that some of the error probabilities from section 3 are much
smaller than we needed to bound the expectation. We will show that they can all be bounded as
O(1/n®), though this will involve some weakening of the conclusions.

First, we will revisit Lemma 3.1. Recall A > ¢;Inn and Ty = Anlnn.

Lemma 4.1 Lett € [0,Ty] andv € V. Let U, be the number of vertices in N (v) not visited during
P(v,t). Then, if c1 is large enough,

Pr (maéx Upt > A/InA) < 1/nf,
Proof: With high probability, O(n1nn) vertex choices occur during [0,Tp]. Thus for £ > 2A/In A,

Pr (mazx Uyt > k) < O(n’lnn) (2) e dkIn A

k
< O(n’lnn) (k—23> )
1
< F

O
Henceforward we assume the conclusion of Lemma 4.1 is satisfied. We now strengthen Lemma 3.3.

Lemma 4.2 If, for anyv € V and t € [0,Tp], Ny is the number of visits to w during P(v,t) then,
provided ¢y is large enough,

1
Pr(Jv,t,w:my > A) < 5

Proof: Using (2) with e = ;21 — 1, p=4InA,

4elnA)A2/(4lnA) 1

Pr(Jv,t,w : my > A) < O(nInn) ( A



We now reconsider Lemma 3.4. Let H* = H, \ Nj,_1(v). Thus H? = H,. We consider a process Y;
on H} coupled with X, inside H} as before. However, we will require that the boundary colourings
of X; and Y; are the same, i.e. X;(v') = Y;(v') for every leaf v’ of H}.

Let asequence (z;,¢;,t;),i =1,...,k be bad if

e 1; is visited at time ¢; where t; <ty < --- <ty < t.
® T1,T3,...,Tk is a path in H2.
e Fori>2,¢; € {ci—1,é—1} where &_; is the colour of z;_; at time ¢;_1 — 1.
Then let w € N'(v) be bad if there is a bad sequence of length 1c;In A for which z; € N(w),z1 # v.

Let B C NM(v) be the set of bad vertices. if w ¢ B then a disagreement at w cannot reach the
boundary of H, during P. We now argue that |B| < A/In A with high probability.

Arguing similarly to (4) with £ = %62 InA and N = 5nlnA (see Lemma 3.2), we see that for

w € N(v), B
e s (1) () <o

since |V (w)| < Aand there are (g) < 2A? possible colour pairs for the disagreement at u.

Since all vertex and colour choices in H? are independent, it follows that

A 1 \A/ma eln A\A/InA
< — <[ == —
Pr(|B| > A/InA) < (A/lnA) (AIS) < ( INE > < 67

provided c; is large enough.

Now condition on the colour lists for H3 and the times when these vertices are visited. This defines
the bad set B. Now note that if vertex v is deleted, the colours assigned to the sets N(w),w ¢ B
are (conditionally) independent. Thus, without having conditioned the vertex or colour choices for
Nz (v), we will partition the vertex and colour choices for V \ N3(v) on the observed set B. In each
element of this partition we will have a specific set B, and we may assume |B| < A/InA.

We will use the following construction. For each w ¢ B, let T,, be the sub-tree of H]} rooted at
w. We will couple the process X; on G with a process Y;* on a copy 7, of Ty, using the same
coupling as before. Each 7. (w ¢ B) will be connected to G at its outer boundary by identifying
the boundary vertices with those of 7,,, the corresponding tree in G. The processes X;,Y;” disagree
only if V;*(w) = X¢(v) for any t € P. Notice, therefore, that the colours at the boundary of 7, will
always agree with those at the boundary of 7, since w ¢ B. We have not conditioned the vertex or
colour choices of w and its neighbours in 7, and these are independent for different w ¢ B.

By identical calculations to those leading to (5) and (6), we see that

Pr(Y”(w) £ Xi(w) =0 ().

Here, in fact, we first condition on the vertex and choices outside N3 (v), but the argument leading
to () and (6) remains valid. The random variables Y;*(w) and events {Y;*(w) # Xi(w)} are



independent for different w ¢ B. Therefore, if D is the number of unused colours among the X;(w)
(w € N(v)) and D’ the number of unused colours among the Y;*(w) (w ¢ B),

Lemma 4.3 Pr(|D’' — D| > 3A/InA)) = O(1/n®), provided c; is large enough.

Proof: Since there are at most A/In A unvisited vertices in A'(v) during P, and |B| < A/InA,
we need only show that [{w ¢ B: Y;*(w) # X¢(w)}| < A/In A with high probability. But

Pr(lfw ¢ B: Y2 () £ Xe(w)ll > a/m) < (1) (O(IXA))A/M

(O(ln2 A))A/lnA
< - =)
< Az

—-A

IAIA

e
n~6.
O

As each of the Y} (w) (w ¢ B) is exposed, D' changes by at most one. So we may use Hoeffding’s
martingale inequality [6] to bound the probability that D’ is far below its expectation.

Lemma 4.4 Pr(D’ < (1—¢)E[D']) < 1/nS, provided ¢; > 4e~2(8 —1)~2.
Proof: Let y = E[D’]. For any 6 > 0, Hoeffding’s inequality [7, p. 39] gives
Pr(D' — pu < —6) < exp(—26%/A).
Let 6 = ep. Using p > (8 — 1)A, which is true deterministically, we obtain
Pr(D' < (1 —¢)p) < exp(—2e%(8 — 1)2A) < 1/nS.
O

We may now account for the errors introduced by Lemmas 4.1-4.3 and give our desired concentration
bound.

Lemma 4.5 Ift = O(nlnn) and ¢; = Q(e~2), then
Pr (3v,t: Dy < (1 —€)E[Dy,]) = O(1/n%),

Proof: Follows easily from Lemmas 4.1-4.4 and the bound on the probability of a union of events. O

5 Convergence of the dynamics

We will use the method of coupling, due to Doeblin [3], to show that the dynamics approaches the
uniform distribution on Q in O(nlnn) steps. Two copies X;, W; of the chain are coupled, where W



has the stationary distribution 7, but Xy is arbitrary. Convergence is monitored using the coupling
inequality
drv(L(Xy), 7)) < Pr(X, # Wy), 9)

where drv is the variation distance. It is also possible to use the simpler variant of path coupling [2]
here, but it requires some additional argument, so we will not do so.

Given states Xy, W; of the two chains, we measure the difference between X;, W; by the Hamming
distance H (X, W;), i.e. the number of vertices at which they disagree in colour. Suppose the
number of colours available for (properly) colouring any vertex in G is always at least O, for some
O > A. Using the coupling which selects the same random vertex in both X and W, and uses the
maximal coupling on available colour choices, we will show below that

E(H (X411, Wit1)) < (1 — a/n)H(X,, Wh),
for a = (0 — A)/O© > 0. Then, since H(Xo, Wp) < n, it follows that
drv(L(X,), 7)) < Pr(X; # W,) < E(H(X,, Wy)) < (1 — a/n) H(Xo, Wp) < ne™ /™.

Thus the Glauber dynamics will converge to variation distance e™? in at most [a 'n(lnn + 2)]
steps. Jerrum [8] used the deterministic bound ® = ¢ — A to show that there is rapid mixing
for the Metropolis Glauber dynamics if ¢ > 2A. A small improvement (to (2 — €)A for some
constant € > 0) was achieved by Dyer, Goldberg, Greenhill, Jerrum and Mitzenmacher [4], using a
probabilistic bound for © in the path coupling setting.

To achieve our result, we adapt an argument of Jerrum ([9], proof of Proposition 4.5) for proving
rapid mixing of the heat-bath Glauber dynamics. Jerrum again uses © = g¢— A, and we merely need
to use a better estimate for ©.

Let A; be the set of vertices whose colours agree in X and W at time ¢. Thus H(X;, W;) = |V \ A;|.
Define a(v) = {u € N(v) : u € A}| if v ¢ A4, and d(v) = [{u € N(v) : u ¢ A;}| if v € A;. Then,

by simple counting,
Z d(v) = Z a(v).
vEA,L ’UQ.At

Using the coupling described above, the probability that different colours are chosen in X and W
for a vertex v € A; is clearly at most d(v)/©. Similarly, if v ¢ A; the probability that the same
colour is chosen in X and W is at least 1 — (A — a(v))/© = a + a(v)/O. Thus

E[H(Xty1, Wiga)] — H(X, Wi) < Z @ - Z (Z + C:l((?) = —%H(Xt,Wt).
vEAL v A

Our result now follows. Using Lemma 4.5 and (8), for any ¢ > 0 we will have © > (1 —¢)ge™2/4 for
c1 > 872(B —1)72 and n large enough. Let v = ¢/A. Then

A el/v

- =1- >0,
(1—e)ge=2/a (1-e)y

a=1

if e < (1—e7/7). Now e'/7/ decreases with . Thus, if v >  (the root of e!/# = 3), this will be
satisfied for small enough ¢ > 0.

10



In order that P(v,t) is defined for all v, we require a (continuous time) “burn in” period of length
4dnIn A before the coupling can be started. Using (2) this will be at most 5nln A steps, with high
probability. Then, after at most [a 'n(Inn + 2)] + [2nInn] further steps, the dynamics will reach
variation distance e 2 + O(In(n)/n) from the uniform distribution. This is at most e ! for large
enough n, and completes the proof of Theorem 1.1.

6 Graphs with few circuits

Suppose every vertex v € V lies on at most ¢ circuits of length at most cInlnn, for some constant
¢ > 0. Our arguments generalize to this case with minor modification. First H, may no longer be a
tree. For each w € N(v), let Cy, be the connected component of H, \ v containing w. Write w ~ w’
if C,, = C,, and observe that ~ is an equivalence relation with at least (A — ¢) equivalence classes.
Choose one representative from each class. These now comprise the set {w;} whose colours are chosen
in our experiment, and the consequent change to E[D, ;] is O(1). The following modifications are
all that are needed.

(a) In the proof of Lemma 3.4, the vertex w' in claim (b) may now have up to 2c neighbours
disagreeing in X and Y, since there are up to 2c distinct paths from any previous disagreement
to w’. This gives an extra factor 2c in the in the bound on Pr(#). This means we now need
(£ —1) > 200cIn A and hence ¢ > 800c, say.

(b) In the proof of (5), there could be 2¢ paths from w; to u € N(w;) \ {v}. Thus the numerator
of the bracketed term again requires an additional factor 2¢, so that (5) requires r > 160cln A.

The argument then proceeds exactly as before, and Theorem 1.1 follows for this slightly wider class
of graphs.

7 Random graphs

The generalization of section 6 allows us to prove rapid mixing with more than SA colours for random
graphs with average degree (In n)@(l). In such graphs it is easy to show that the maximum degree
A is also (In n)e(l). We will complete the proof by showing that, in random graphs of this density,
there is only a small probability that any vertex lies on two circuits of size O(lnlnn) = O(InA).

Lemma 7.1 Let p = (Inn)°(") /n, and D, be the event that v € G(n,p) lies on two distinct circuits
of length O(Inlnn). If D = J,cy Dy, then Pr(D) — 0 as n — oco.

Proof: If D, occurs, let Cy, Cy be any two such circuits. Since {v} C C;NCy, C = C; UCy
is a connected component of G with at least two distinct circuits and size O(Inlnn). Therefore
the number of edges in C' must exceed its number of vertices by at least one. We will bound the
probability of D by the probability that any such C exists in G(n, p). Thus, letting £k < r = O(Inlnn)

11



be the number of vertices in C,

Pr(D) < i (Z) (k(_%)l)pkﬂ _ w = o(1).

k=1
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