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Abstract

We do a probabilistic analysis of the problem of distributing a
single piece of information to the vertices of a graph G. Assuming that
the input graph G is Gn,p, we prove an O(lnn/n) upper bound on the
edge density needed so that with high probability the information can
be broadcast in ⌈log2 n⌉ rounds.

1 Introduction

Let G = (V,E) be a graph, and for v ∈ V , let N(v) denote the set of

v’s neighbours in G. We will study the problem of distributing a piece of

information ı, residing initially at one given vertex v0, to the rest of the

vertices. At each time step, any vertex knowing ı can share it with one of its

neighbours.
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Let Vt, t = 0, 1, 2, . . . denote the set of vertices which have ı at the beginning

of step t. Thus V0 = {v0}.

Clearly |Vt+1| ≤ 2|Vt|, and so if |V | = n then it takes at least ν = ⌈log2 n⌉

rounds before every vertex has ı. For the purposes of this paper let a graph

have property B if is is possible to distribute a piece of information in ν

rounds, from every possible starting vertex.

We will study the probability that the random graph Gn,p has property B.

Observe first that if c < 1 is constant and p ≤ c ln n/n then whp1 Gn,p has

isolated vertices and so does not have B. In terms of an upper threshold for p,

Scheinermann and Wierman [4] and Dolan [1] showed that if p ≥ c(ln n)2/n

for some constant c > 0 then Gn,p has B whp Recently Gerbessiotis [3]

reduced the upper bound to c(ln ln n) ln n/n.

In this paper we give a simple proof of

Theorem 1 There exists a constant c > 0 such that if p ≥ c ln n/n then

Gn,p has B whp.

Proof In the proof we assume p = 18 ln n/n. We define a broadcast tree

T rooted at a vertex v ∈ [n]. The tree defines an increasing sequence of sets

{v} = W0 ⊂ W1 ⊂ . . . ⊂ Wν = [n]. Here |Wt| = 2t for 0 ≤ t < ν. The edges

of T consist of matchings M0,M1, . . . ,Mν−1, where Mt is a perfect matching

between Wt and Wt+1 \ Wt for 0 ≤ t < ν − 1, and Mν−1 is a matching of

Wν \ Wν−1 into Wν−1.

1An event En is said to occur whp (with high probability) if Pr(En) = 1 − o(1) as
n −→ ∞.
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Given a broadcast tree rooted at v one can clearly distribute the information

by sending it along Mt in round t.

We prove the theorem by proving

Pr(∃ broadcast tree rooted at vertex 1) = 1 − o(n−1)

We decompose Gn,p as the union of independent copies of Gn,p1
, Gn,p2

, Gn,p3
,

where p2 = p3 = (4.5 ln n)/n and 1 − p = (1− p1)(1 − p2)(1− p3). Note that

this yields p1 ≥ (9 ln n)/n.

We (try to) construct our tree in three phases, where in Phase i, we use the

edges of Gn,pi
, i = 1, 2, 3.

Phase 1

Here we use a simple greedy approach to construct W1,W2, . . . ,Wν−2.

In the following algorithm when a vertex v ∈ Wt needs to find a vertex w to

be matched to in Mt it searches for the next vertex in order that (i) is not

in Wt, and (ii) is in N(v). The pointer sv keeps track of where we are in v’s

list.

GREEDY SEARCH

begin

sv := 0 for all v ∈ [n];

W0 := {1};

for t = 0 to ν − 3 do

begin

Wt+1 := Wt;
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for v ∈ Wt do

begin

A: sv = sv + 1;

if sv > n then FAIL;

B: if sv ∈ Wt+1 then goto A;

C: if (v, Sv) /∈ Gn,p1
then goto A;

Wt+1 := Wt ∪ {sv}

end

end

end

Phase 2

Find a matching Mν−2 of Wν−2 into [n] − Wν−2 using the edges of Gn,p2
.

Wν−1 is equal to the set of vertices covered by Mν−2.

Phase 3

Find a matching Mν−1 of [n] − Wν−2 into Wν−1 using the edges of Gn,p3
.

Probability of Failure

If Phase 1 fails then sv reaches n + 1 for some v ∈ [n]. Now |Wν−2| < n/2

and so for this v, Statement B has caused a jump to A less than n/2 times.

So we must have executed Statement C at least n/2 times and there have

been at most ν − 3 cases where an edge of Gn,p1
was found. Now when C is

executed, the edge (v, sv) has not been previously examined, and so occurs

with probability p1 independently of the history of the process so far. Thus

if B(·, ·) denotes a binomial random variable then
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Pr(Phase 1 fails) ≤ nPr(B(n/2, p1) ≤ ν − 3)

= o(n−1)

on using the Chernoff bound Pr(B(m, q) ≤ (1 − ǫ)mq) ≤ e−ǫ2mq/2.

The failure probabilities for Phases 2 and 3 can be estimated as in Erdős and

Rényi [2]. For both Phases we must match ≤ n/2 vertices into ≥ n/2 vertices.

Thus our failure probability is dominated by that for no perfect matching in

a random bipartite graph with n/2 + n/2 vertices and edge probability p2.

This is o(n−1) as required, completing the proof of our theorem. 2

Of course we do not believe that 18 is the correct constant. One can easily

reduce it by being a little more careful with estimates. It does seem however

that our method will not give us the least constant and we leave it at 18 for

readability.
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