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Abstract

We introduce and analyze the Walker-Breaker game, a variant of Maker-Breaker games where Maker is con-
strained to choose edges of a walk or path in a given graph G, with the goal of visiting as many vertices of the
underlying graph as possible.

1 Introduction

Maker-Breaker games were introduced by Erdős and Selfridge [5] as a generalisation of Tic-Tac-Toe. Since then there
have been many results on variations on this theme. In a standard version, played on the complete graph Kn, Maker
and Breaker take turns acquiring edges, with Maker trying to build a particular structure (e.g., a clique) in her own
edges, and with Breaker trying to prevent this. See the recent book by Beck [1] for a comprehensive analysis of
Maker-Breaker games.

We consider the following variant on the standard Maker-Breaker game. In this variant, the Walker-Breaker
game, the “Walker” acquires the edges of a walk consecutively; i.e., at any given moment of the game we have her
positioned at some vertex v of a graph G and on her turn, she moves along an edge e of G that is (i) incident with
v and (ii) has not been acquired by Breaker. If she has not already acquired e, then she is now considered to have
acquired it. On Breaker’s move, he can acquire any edge not already owned by Walker. In some cases we will allow
him to acquire β edges in one move; in this case the bias of the game is 1 : β.

In this paper, we consider Walker-Breaker games where Walker’s goal is to visit as many vertices as she can.
Breaker’s goal is to reduce the number of vertices that she visits. The game ends when there is no path from Walker’s
current position to an unvisited vertex along edges not acquired by Breaker.

We also consider a variant of this game, the PathWalker-Breaker game, in which Walker cannot revisit any
previously visited vertices; this game ends when there is no path from Walker’s current position to an unvisited
vertex along edges not acquired by Breaker, and vertices not previously visited by Walker. (Obviously, Walker can
visit at least as many vertices in the Walker-Breaker game on a graph as in the PathWalker-Breaker game on the
same graph). In this situation, we sometimes refer to Walker as PathWalker to avoid ambiguity.

In a fictional scenario, Walker represents a missionary who is traversing a network, trying to convert as many
people (≡ vertices) to his beliefs. Breaker represents the devil, whose only way to block Walker is to burn untraversed
edges of the network.

Our first Theorem can be seen as a strengthening of the result of Hefetz, Krivelevich, Stojaković and Szabó [8],
that in a Maker-Breaker game on Kn, Maker can construct a Hamilton path in n− 1 moves.

Theorem 1. Under optimum play in the 1 : 1 PathWalker-Breaker game on Kn (n > 5), PathWalker visits all but
two vertices.
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The bias has a substantial effect on the PathWalker-Breaker game:

Theorem 2. Under optimum play in the 1 : β PathWalker-Breaker game on Kn for 1 < β = O(1), PathWalker
visits all but s vertices for c1 log n ≤ s ≤ c2 log n, for constants c1, c2 depending on β.

In the Walker-Breaker game, the effect of bias is not so drastic:

Theorem 3. Under optimum play in the 1 : β Walker-Breaker game on Kn (n > 2β2), Walker visits n − 2β + 1
vertices. Here 1 ≤ β = O(1).

For the sake of a graph which is not complete, consider the cube Qn, which is the graph on the vertex set {0, 1}n,
where two strings are adjacent iff they have Hamming distance 1.

Theorem 4. In optimum play in the Walker-Breaker game on Qn, Walker visits at least 2n−2 vertices, and at most
2n−1 vertices.

Finally, we consider a one-player game the Random-Walker game, in which the moves of Walker are made according
to a random walk on the edges not acquired by Breaker. Breaker acquires one edge per move and he has the goal of
minimizing the typical number of vertices visited by RandomWalker. The game ends when there is no path between
the position of RandomWalker and an unvisited vertex along edges not acquired by Breaker. For a graph G, we let
the co-degree of vertices u, v be their number of common neighbors.

Theorem 5. If G has minimum co-degree at least αn for some absolute constant α > 0 then under optimum play
(by Breaker), RandomWalker visits at least n− c log n vertices of G w.h.p., for a constant c depending on α.

Theorem 6. If G has minimum degree at least αn for some absolute constant α > 0 then under optimum play (by
Breaker), RandomWalker visits at most n− c log n vertices w.h.p., for any constant c < α.

1.1 Some notation

We let Vt (resp. Ut) denote the set of vertices that have been visited (resp. not visited) by Walker after Walker has
made t moves. Walker is at vertex vt after t moves. The graph induced by Breaker’s edges is denoted by ΓB and the
graph induced by Walker’s edges is denoted by ΓW .

2 Proof of Theorem 1

Here at time t the graph ΓW is a path Pt. To show that who goes first does not matter, we assume that Breaker
goes first for any lower bound on the number of visited vertices, and that Walker goes first for any upper bound on
the number of visited vertices.

2.1 Lower bound

Walker’s strategy is as follows: If |Ut| > 2 and Breaker chooses ft and ft ∩ Vt−1 = ∅ then Walker moves to vt ∈ ft.
Otherwise, Walker moves to an arbitrary vertex. So long as Walker is able to follow this strategy, we will have after
each Walker move that:

Every Breaker edge contains a member of Vt. (1)

We now check that this strategy is feasible for |Ut| > 2. We begin with the first type of Breaker’s edge, which is
disjoint from Vt. Fix t and let vt−1 = x and vt = y. Suppose that Breaker chooses an edge (b1, b2) where b1, b2 /∈ Vt
and such that for i = 1, 2, (y, bi) is a Breaker edge. Assume that this is the first time this situation happens. Suppose
next that (y, bi) is the si-th edge chosen by Breaker. Assume that s1 < s2. We now have a contradiction to (1) after
the choice of x. For after x is chosen, (y, b1) is a Breaker edge that does not contain a member of Vt−1.

We now consider the case where Breaker’s edge is incident with Vt. (1) implies that Breaker’s choice is at most
the second edge between vt and Ut. In particular, |Ut| > 2 implies that Walker can move to an unvisited vertex, and
Walker will succeed at visiting all but 2 vertices of the graph.
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2.1.1 Upper bound

Breaker plays arbitrarily until his move at time n − 4, when |Un−4| = 4. In his next two moves he chooses the two
edges of a matching in Un−4. After these two moves (with one Walker move in between), it is again Walker’s turn,
and 3 unvisited vertices remain. Regardless of which vertex of Un−3 Walker might move to next, that vertex will
already be adjacent along one of Breaker’s 2 matching edges to a vertex in Un−2; thus, with one additional move,
Breaker will ensure that both edges from vn−2 to Un−2 are occupied by Breaker.

3 Proof of Theorem 2

3.1 Lower bound

We assume that Breaker goes first and describe Walker’s strategy. We suppose that Walker is at some vertex x and
describe the next sequence of moves B,W,B,W (Breaker,Walker,Breaker,Walker.) We call such a sequence a round.
We keep track of two sets L,R that partition the set of unvisited vertices Ut. Let βR(v) be the number of Breaker
edges (v, z), z ∈ R. At the outset of the game, L = ∅. Before Breaker’s first move in each round, we move vertices
satisfying βR(v) ≥ α|R| from from R to L one by one, (updating R each time), until no such vertices remain, for
α = 1

3(β+1) .

We describe Walker’s strategy for a round as follows. Suppose that Breaker has made his first move of the round
and let R = {w1, w2, . . . , wr} at the end of this move. We assume that βR(wi) ≥ βR(wi+1), 1 ≤ i < r.

For his first move of the round, Walker moves to a vertex z ∈ R such that none of (z, wj), 1 ≤ j ≤ β + 1, is a
Breaker edge. Breaker’s response consists of just β edges; Walker’s final move is to move from z to one of the vertices
wj 1 ≤ j ≤ β + 1.

We will prove that it is possible to follow this strategy until most vertices have been visited. This proof is based
on two ingredients:

Claim 1. There is a constant cβ such that so long as Walker follows this strategy and so long as |R| > cβ log n, at
most β vertices are moved from R to L in any given round.

Claim 2. There is a constant Cβ such that so long as Walker follows this strategy, we will have |L| ≤ Cβ log n.

Let us first see how these two claims imply that Walker can follow this strategy until she has visited all but
c2 log n vertices for some c2 depending on β.

We first check that Walker can always move to a suitable intermediate vertex z. After Breaker’s opening move
of the round, at most (β + 1)α|R|+ β = |R|/3 + β vertices of R can be Breaker neighbors of w1, w2, . . . , wβ+1 ∈ R.
Moreover, the fact that x was in R at the beginning of the previous round, together with Claim 1, means that if
|R| > cβ log n, then x has at most β + α(|R| + β) ≤ β + |R| /3 neighbors in R, leaving at least 1

3 |R| − 2β choices
for z. So, Walker will be able to move to such a z as long as |R| > max(6β, cβ log n). For β = O(1), Claim 2 now
implies that Walker can follow this strategy until all but (Cβ + cβ) log n vertices have been visited.

It remains to prove Claims 1 and 2. We do this via a simpler box game.

3.1.1 Box game

We analyze Walker’s strategy via a box game, similar to the box game of Chvátal and Erdős [3]. There will now be
only one player, whom we call BREAKER. Any move by Breaker in the Walker-Breaker game will be modelled by
a BREAKER move in this box Game.

Consider a sequence b1 ≥ b2 ≥ · · · ≥ bn of non-negative integers. The box game is played as follows: At the
beginning of each turn of the game, BREAKER has a loss phase, in which he may, at his option, designate terms
with value at least α = 1

3(β+1) times the remaining number of terms in the sequence as lost.

Following the loss phase, BREAKER increases each of the first β terms of the sequence by an amount up to 4β.
In addition he also increases terms bi for i > β by a total amount up to 4β. After this he deletes one of the currently
largest β + 1 terms b1, b2, . . . , bβ+1 of the sequence, and up to one other term from anywhere in the sequence. (At
any point, the sets of remaining, lost, and deleted terms of the original sequence form a partition of the terms of the
original sequence.)

The relevance of this game stems from the following:
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Claim 3. If Breaker can play the PathWalker-Breaker game on a graph with n vertices against Walker which is
following the strategy described earlier such that |L| increases by `t in each round t, then in this box game, beginning
with the all zeroes sequence of length n, BREAKER can maintain that `t terms become lost in turn t.

Proof. At any point, the sequence (bi) represents Breaker degrees of vertices not yet visited by Walker and not in
L, in decreasing order. In any round, Breaker places 2β edges in the graph, which increases the total degrees by 4β;
thus, BREAKER can produce the exact same resulting (degree) sequence with an allowed alteration of the terms
of the sequence. In any round, Walker will visit two vertices, the second of which is a vertex of among the highest
possible β + 1 degrees; this corresponds to the deletion of the two terms on each turn of the box game. If in each
loss phase of the box game, BREAKER loses as many terms as possible, then BREAKER will lose exactly as many
terms as vertices that enter L in the PathWalker-Breaker game.

Note that our definition of the box game allows much more freedom to BREAKER than is necessary for Claim
3. This extra freedom does however simplify the analysis, by enabling us to decouple consideration of the first β
“boxes” from the rest. In particular, call a term in the box game sequence a tail term if it is not among the β largest.
We will prove Claims 1 and 2 by proving the following lemma regarding the box game:

Lemma 1. There is a constant Aβ such that after any number of steps t in the box game, the tail terms are all at
most Aβ log t.

First let us observe that Lemma 1 implies both Claims 1 and 2, via Claim 3.

Proof of Claim 1. Let cβ = Aβ/α, and suppose Breaker can play the PathWalker-Breaker game on a graph with n
vertices against Walker which is following the strategy described earlier, and achieve that on some turn, more than
β vertices become lost, i.e. move from R to L. Claim 3 implies that he can play the box game and achieve that on
some turn, more than β terms bj become lost, which would be a contradiction since |R| > Aβ

α log n at the beginnning
of the turn and bj ≤ Aβ log t ≤ Aβ log n for j > β implies that bj < α |R| for j > β; in particular, only the β largest
terms can become lost on any given turn.

Proof of Claim 2. It suffices to prove that the claim holds so long as |R| > 2cβ log n (with cβ = Aβ/α, as before),
since Claim 2 will then remain true even if all remaining vertices in R are moved to L. In particular, we may assume
that in any given round, only vertices from among the β maximum Breaker-degree vertices of R become lost.

Using Claim 3, we carry out our analysis in the box game. At the beginning of a turn, some terms bi for i ≤ β
may become lost. If the term bi became one of the β largest (for the last time) at turn t0 when r0 terms remained,
and became lost at turn t1 = t0 + k, when a total of r1 terms remain, then Lemma 1 implies that the term had at
most Aβ log t0 balls at turn t0. To become lost at time t1 requires the term to have at least αr1 balls; thus, we have
that

αr1 −Aβ log t0 ≤ 4βk.

Since r1 ≥ r0 − k(β + 2), we have

k ≥ αr1 −Aβ log t0
4β

≥ αr1
8β
≥ α(r0 − (β + 2)k)

8β
,

since r1 ≥ 2cβ log n ≥ 2cβ log t0. In particular,

k ≥ αr0
8β + α(β + 2)

≥ αr0
10β

. (2)

In particular, when a term enters the largest β for the last time, it takes at least a number of steps k which is a
constant fraction of the number r0 of remaining terms when it entered, before it can become lost. Once it becomes
lost, say, when there are r1 remaining terms, some other term enters the largest β terms, and to become lost this
term requires at least a number of terms to become lost which is a constant fraction of r1. Continuing in this manner,
we see the terms r1, r2, . . . , of this sequence must satisfy (with k as in (2)) ri+1 ≤ ri − k ≤ ri(1− α

10β ) by (2), since
at least one term is deleted on each turn of the box game. In particular, with r0 = n, we have that this sequence can
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have at most logn

log( 10β
10β−α )

terms. We can have β different such sequences producing lost terms (one for each of the β

initially largest terms), giving a maximum of

β

log
(

10β
10β−α

) log n

lost terms produced.

We will use the following lemma to prove Lemma 1:

Lemma 2. Suppose that e1 ≥ e2 ≥ · · · ≥ es and b1 ≥ b2 ≥ · · · ≥ br are two states of the box game where s ≤ r and
ei ≤ bi for all 1 ≤ i ≤ s, and f : N → N is an arbitrary function. If BREAKER has a strategy in the first state to
ensure that for some t, some tail term has value ≥ f(t), then he has a strategy in the second state to ensure that for
some t, some tail term is ≥ f(t) by the turn t.

Proof. BREAKER simply mimics his strategy for the sequence {ei} with the sequence {bi}. Terms deleted or lost
for the game on the first sequence are deleted or lost, respectively, for the game on the second sequence. (Note that
the freedom BREAKER has to choose not to lose terms is important here.)

We are now ready to prove Lemma 1.

Proof of Lemma 1. Lemma 2 implies that it suffices to prove Lemma 1 for the case where, on each turn, after the loss
phase, only one term is deleted by BREAKER, and this term is the (β + 1)’st largest term. Under this assumption,
the terms bβ+1, bβ+2, . . . are reproducing the classical box game of Chvátal and Erdős [3], see also Hamidoune and
Las Vergnas [6], since the largest of these terms is deleted on each turn. In particular, a simple potential function
argument shows that bβ+1 ≤ Aβ log t throughout, for Aβ = 1

log( 4β
4β−1 )

.

3.2 Upper bound

Breaker’s strategy is as follows: Breaker chooses a vertex w1 /∈ {v1, v2}. He will spend the next (n − 1)/β moves
making sure that Walker cannot visit w1. In a move, Breaker claims the edge from w1 to vt, if necessary, plus
β − 1 other edges incident with w1. This takes approximately n1 = (n− 1)/β moves. Breaker then chooses another
unvisited vertex w2 and spends approximately n2 = (n−1−n1)/β moves protecting w2. It takes only n2 rather than
n1 moves because Walker cannot use n1 of the edges to w2, because she has visited the other endpoint. Continuing
in this manner Breaker protects wk in nk moves where

nk =
n− 1− (n1 + n2 + · · ·+ nk−1)

β
=
n− 1

β

(
1− 1

β

)k−1
.

It follows from this that

n1 + n2 + · · ·nk = (n− 1)

(
1−

(
1− 1

β

)k)
.

Thus we can take k = c1 log n where c1 = 1/ log(β/(β − 1)). This will be our value of c1 in Theorem 2.
This completes the proof of Theorem 2.

4 Proof of Theorem 3

In this section, Walker is not constrained to a path (her walk may use an edge more than once).
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4.1 Lower bound

Walker builds a tree T in a depth first manner. She starts at the root v1 at depth 0. All depth/parent/child
statements are with respect to this root. A vertex v ∈ T will have a parent w = π(v) where the depth of v is one
more than the depth of w. If Walker is at vertex x and there is a vertex y ∈ Ut such that Breaker has not claimed
the edge (x, y) then Walker moves to y. We let x = π(y). Otherwise, if no such move is possible, Walker moves to
π(x) and repeats the search for y ∈ Ut on her next move. The game is over when Walker finds herself at v1 and all
edges v1 to Ut have been taken by Breaker.

Suppose that the game ends with |Ut| = k. Then Walker has made 2(n − k − 1) moves. Each edge of T has
been traversed twice, once in a forward direction and once in a backwards direction. Breaker has captured at least
k(n− k) edges between T and Ut. We therefore have

k(n− k) ≤ 2β(n− k − 1).

It follows from this that k < 2β. This shows that Walker visits at least n− 2β + 1 vertices.

4.2 Upper bound

The argument here has some similarities to that in Section 3.2. Breaker’s strategy is as follows: Assuming Walker
goes first and claims an edge {v1, v2}, Breaker chooses a vertex w1 /∈ {v1, v2}. He will spend the next (n − 1)/β
moves making sure that Walker cannot visit w1. In a move, he claims the edge from w1 to vt, if necessary, plus
β − 1 other edges incident with w1. This takes approximately (n − 1)/β moves. Then he chooses w2, not visited
and protects it from being visited in the same way. He does this for w1, w2, . . . , wβ−1. Altogether, this takes up at
most (β− 1)d(n− 1)/βe moves, leaving at least b(n− 1)/βc+ 1 vertices unvisited. Breaker then chooses β unvisited
vertices y1, y2, . . . , yβ (possible since n > 2β2) and a move consists of capturing the edges (vt, yi), i = 1, 2, . . . , β.
This protects y1, y2, . . . , yβ and so Walker visits at most n− 2β+ 1 vertices. This completes the proof of Theorem 3.

5 Proof of Theorem 4

5.1 Lower bound

We use a similar argument to that in Section 4.1. Walker builds a Depth First Search tree T . Again, the edges
between T and Ut will all be Breaker’s edges. Suppose now that T has k vertices. Then

2(k − 1) ≥ e(T,Ut) ≥ k(n− log2 k).

The lower bound follows from Harper’s theorem [7]. It follows that

log2 k ≥ n− 2 +
2

k

and so at least 2n−2 vertices are visited by Walker.

5.2 Upper bound

Suppose that Walker goes first and assume w.l.o.g. that she starts at (0, 0, . . . , 0) and then moves to (0, 1, . . . , 0).
Breaker will not allow her to visit any vertex whose first component is 1. When Walker moves to (0, x2, x3, . . . , xn),
Breaker acquires the edge ((0, x2, x3, . . . , xn), (1, x2, x3, . . . , xn)). Breaker can acquire the edge ((0, 0, . . . , 0), (1, 0, . . . , 0)
on his last move, if not before. It follows that at most 2n−1 vertices are visited by Walker. This completes the proof
of Theorem 4.

6 Proof of Theorem 5

Here we will assume that Walker does a random walk on a graph G. When at a vertex v she chooses a random
neighbor w for which the edge (v, w) is not a Breaker edge.
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Let β = α3/36 and consider the first t0 = 4β−1n log n moves. We will show that Walker will w.h.p. visit the
required number of vertices within this time. Let Gt be the subgraph of G induced by the edges not acquired by
Breaker after t moves. Let Lt be the set of vertices incident with more than αn/3 Breaker edges after the completion
of t moves by Breaker. Clearly |Lt| ≤ C0 log n, where C0 = 12(αβ)−1.

Recall that vt denotes the current vertex being visited by Walker. We re-define, for the purposes of this proof,
Ut to be the set of vertices that are not in Lt and are currently unvisited. Then

(a) If vt /∈ Lt then the probability that Walker visits Ut within two steps is at least β|Ut|/n. To see this let
Z = |N(vt+1)∩Ut|. Then E(Z) ≥ α|Ut|/3. This is because vt and any w ∈ Ut have at least αn− 2αn/3 = αn/3
common neighbors in Gt. Thus, if Z̄ = |Ut| − Z then E(Z̄) ≤ (1 − α/3)|Ut|. It follows from the Markov
inequality that Pr(Z̄ ≥ (1 − α2/9)|Ut|) ≤ 1

1+α/3 and so Pr(Z ≥ α2|Ut|/9) ≥ α
3+α . Finally observe that

Pr(vt+2 ∈ Ut | Z) ≥ (Z − 1)/n, where we have subtracted 1 to account for Breaker’s next move.

(b) We divide our moves up into periods A1, B1, A2, B2, . . . , where Aj is a sequence of moves taking place entirely out-
side Lt and Bj is a sequence of moves entirely within Lt. During a time period Aj , the probability this period ends

is at most C0 logn
αn . So the number of time periods is dominated by the binomial Bin(4β−1n log n,C0 log n/(αn))

and so with probability 1− o(n−3) the number of periods is less than 5C0(αβ)−1 log2 n.

(c) We argue next that

with probability 1− o(n−3) each Bj takes up at most O(log6 n) moves. (3)

Suppose that Bj begins with a move from v /∈ Lt to w ∈ Lt. Let L∗ = Lt ∪ {v} and let H∗ denote the subgraph
induced by the edges contained in L∗ that have not been acquired by Breaker. Walker’s moves in period Bj
constitute a random walk on (part) of the graph H∗. This is not quite a simple random walk, since H∗ changes
due to the fact that Breaker can delete some of the edges available to Walker. Nevertheless, Walker will always
be in a component of H∗ containing vt. This is because Walker has arrived at the current vertex via a walk from
vt. Now consider running this walk for C1 log5 n steps, where C1 is some sufficiently large constant. Observe
that Breaker can claim at most C2

0 log2 n edges inside this component of H∗. Hence there will be an interval
of length C2 log3 n, C2 = C1/C

2
0 where Breaker does not claim any edge inside H∗. This means that in this

interval we perform a simple random walk on a connected graph with at most 1 + C0 log n vertices. If we start
this interval at a certain vertex x, then we are done if the random walk visits v. It follows from Brightwell and
Winkler [2] that the expected time for the walk to visit v can be bounded by C3

0 log3 n. So, if C2 > 2C3
0 then v

will be visited with probability at least 1/2.

Suppose that time has increased from the time t when Bj began to t′ when v is first re-visited. If v /∈ Lt′ then
Bj is complete. If however v ∈ Lt′ then we know that v is incident with at most αn/3 +C1 log5 n Breaker edges.
So the probability that Walker leaves Lt′ in her next step is at least

dG(v)− (αn/3 + C1 log5 n)

dG(v)
≥ 1

2
. (4)

So the probability that Bj ends after C1 log5 n steps is at least 1/4. Suppose on the other hand that Bj does not
end and that we return to v for kth time where k ≤ 20 log n. The effect of this is to replace C1 log5 n in (4) by
kC1 log5 n. This does not however affect the final inequality. So if C1 is sufficiently large, the probability that
Bj does not end after 20C1 log6 n steps is at most (3/4)20 logn = o(n−4). Estimate (3) follows immediately.

(d) Combining the discussion in (b), (c) we see that w.h.p.
∣∣∣⋃j Bj∣∣∣ = O(log8 n), which is negligible compared with

t0; i.e., Walker spends almost all of her time outside Lt0 . Let Xi, 1 ≤ i ≤ k = n−C0 log n, be the time needed to
add the ith vertex to the list of vertices visited by Walker. (Here we exclude any time spent in

⋃
j Bj .) It follows

from (a) that Xi/2 is dominated by a geometric random variable with probability of success (n−i−C0 logn)β
n .

This is true regardless of X1, X2, . . . , Xi−1. So (X1 + · · · + Xk)/2 is dominated by the sum of independent
geometric random variables. Furthermore, E(X1 + · · · + Xk) ≤ 2

βn log n and it is not difficult to show that
X1 + · · · + Xk ≤ t0 w.h.p. Indeed, the variance of a geometric random variable with probability of success p is
given by 1/p2 − 1/p ≤ 1/p2. So, by the Chebyshev inequality,

Pr(X1 + · · ·+Xk > t0) ≤ β2

4n2 log2 n

k∑
i=1

4n2

β2(n− i− C0 log n)2
= O

(
1

log2 n

)
.
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This completes the proof of Theorem 5.

7 Proof of Theorem 6

We assume that Walker chooses a vertex a0 to start at and then Breaker chooses an edge to acquire.

Breaker’s strategy will be to choose an arbitrary unvisited vertex v1 and protect it by always on his turn taking
the edge (v1, w) where w is the current vertex being visited by Walker, if (v1, w) ∈ E(G). If Breaker has already
acquired (v1, w) or (v1, w) /∈ E(G) then he will choose an unacquired edge incident with v1. This continues until
Breaker has acquired all of the edges incident with v1. He then chooses v2 and protects it. This continues until
there are no unvisited vertices to protect.

After Breaker has protected v1, v2, . . . , vk−1 and while he is protecting vk, Walker finds herself doing a random
walk on a dense graph with n − k vertices. Let the moves spent protecting vk be denoted by round k. (More
precisely, round k consists of the moves, after round k−1, until Breaker has acquired all edges incident with vk.)

Fix k = O(log n) and let ζk be the number of unvisited, unprotected vertices when Breaker begins protecting
vk. Because Breaker has taken the edges incident with v1, v2, . . . , vk−1, it will take at most n − k more moves
to protect vk. If w is an unvisited, unprotected vertex at the start of the round, then it remains unvisited with

probability at least
(

1− 1
αn−k

)n−k−1
= e−1/α + O(1/(n − k)). It follows that E(ζk+1) ≈ ζk/e

1/α. To show

that it is close to this w.h.p. we proceed as follows: Suppose that we throw n − k balls randomly into αn − k
boxes, of which ζk are special. Then ζk+1 dominates the number of empty special boxes. Chernoff bounds are
applicable in this case due to negative association (see Dubhashi and Ranjan [4]) and so if ζk � log n, ζk+1 will
be concentrated around its mean.

It follows that w.h.p. ζk ≈ ne−k/α for k ≤ (1 − ε)α log n where 0 < ε < 1 is a positive constant. Thus Breaker
will w.h.p. be able to protect (1− ε)α log n vertices and we can choose any c < α in Theorem 6.

This completes the proof of Theorem 6.

8 Further Questions

Some natural questions spring to mind:

• How large a cycle can Walker make under the various conditions?

• Suppose the goal is to visit as many edges as possible: what can be achieved under various game conditions?

• Which subgraphs can Walker make? How large a clique can she make? Observe that PathWalker cannot even
make a triangle.

• What if we allow Walker to have b moves to Breaker’s one move?

• What happens if Breaker is also a walker?

Acknowledgement: We thank Dennis Clemens for pointing out an error in an earlier version of Theorem 1.
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