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Abstract

Let ® be a uniformly distributed randoSAT formula withn variables andn clauses. We prove
that theWal ksat algorithm from Papadimitriou (FOCS 1991)/Sxting (FOCS 1999) finds a satisfying
assignment ofp in polynomial time w.h.p. ifim/n < p - 2% /k for a certain constani > 0. This is an
improvement by a factor & (k) over the best previous analysisWil ksat from Coja-Oghlan, Feige,
Frieze, Krivelevich, Vilenchik (SODA 2009).
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1 Introduction

Let ® = ®,(n,m) be ak-CNF onn Boolean variableg, ..., z, with m clauses chosen uniformly
at random k£ > 3). The interest in random-SAT stems largely from thexperimentabbservation that
for certain densities the random formulap is a challenging algorithmic benchmark [7, 15]. However,
analyzingalgorithms on random formulas is notoriously difficult. &etl, the current rigorous results for
randomk-SAT mostly deal with algorithms that are extremely simpi¢hbto state and to analyze, or with
algorithms that were specifically designed so as to allovafagorous analysis. More precisely, the present
analysis techniques are essentially confined to simpleittiges that aim to construct a satisfying assign-
ment by determining the value of one variable at a tforegood without any backtracking or reassigning
variables at a later time. By contrast, most ‘real-life’isi@bility algorithms actually rely substantially on
reassigning variables.

Maybe the simplest example of a natural algorithm that edutie standard analysis techniques is
Wal ksat [17, 18]. Similar local search algorithms are quite sucitgsa practical SAT-solving [19].
Starting from the all-true assignmemél ksat tries to find a satisfying assignment of its ing+CNF
formula® = ®; A --- A @, as follows. If the current assignmettis satisfying, then clearly there is
nothing to do and the algorithm terminates. Otherwise, tgerdhm picks an index such that clause
®; is unsatisfied uniformly at random among all such indicesau€¢®; is a disjunction ofk literals
®;1 V-V WAl ksat picks anindex € {1, ..., k} uniformly at random and flips the value assigned
to the variable underlying the literdl;;. Of course, this ensures that under the new assignmenteclaus
o, is satisfied, but flippingb;; may create new unsatisfied clauses. If after a certain nuffigr of
iterations no satisfying assignment is foultd| ksat gives up and concedes failure. The pseudocode is
shown in Figure 1. In the worst case, it can be shown(that2/k)(+°(1))” executions ofMl ksat with
independent coins tosses will find a satisfying assignmeatsatisfiable input formul® on n variables
with probability1 — o(1), for a suitablel},,.x = Tinax(k) = O(n) [18].

Although Wal ksat is conceptually very simple, analyzing this algorithm ondam formulas is a
challenge. Indeedjal ksat does not follow the naive template of the previously analysgorithms that
assign one variable at a time for good, because its randoimeshmay (and will) leathal ksat to flipping
quite a few variables several times over. This causes sttichdependencies that seem to render the
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Algorithm 1.1 VAl ksat (@, Tihax)
Input: A k-CNF® = & A --- A &, Over the variables, ..., z, and a numbel .« > 0.
Output: An assignment : V — {0, 1}.
Initially, leto(x;) = 1fori=1,...,n.
1 Repeat the followind .. times (with independent random choices)
2 If o is a satisfying assignment, then halt and output
3. Otherwise, choose an indésuch that claus@; is unsatisfied under uniformly at random.
4 Suppose thab, = ®;; V- -V &y,

Choose an index € {1, ..., k} uniformly at random.

Flip the value of the variable underlying the lited); in the assignment.
Return ‘failure’.

©

o

Figure 1: Thanal ksat algorithm.

differential equation method, the mainstay of the previaoalyses of randork-SAT algorithms, useless.
The goal of the present paper is to present an analysloksat via a different approach that allows us
to deal with the stochastic dependencies. Our main resagt fsllows.

Theorem 1.2 There is a constant, > 3 such that for any: > &y and
1
< —.2F/K
0<m/n< 25 /k,
Wl ksat (@, [n/k]) outputs a satisfying assignment w.h.p.

1.0.1 Related work.

To put Theorem 1.2 in perspective, let us compare it withotésults on randomk-SAT algorithms. The
simplest conceivable one is presumahlyi t Cl ause. Considering all variables unassigned initially,
Uni t Cl ause sets one variable at a time as follows. If there is a clauséhicink — 1 variables have been
assigned already without satisfying that clause (a ‘uaitist’), the algorithm has to assign #th variable

so as to satisfy the unit clause. If there is no unit clauseari@ently unassigned variable is chosen randomly
and is assigned a random truth value.Us t Cl ause is extremely simple and does not backtrack, it can
be analyzed via the method of differential equations [1]e Tésult is thatni t Cl ause finds a satisfying
assignment with a non-vanishing probability so longia&: < (1 — 0x(1))$ - 2¥/k, whereo(1) hides

a term that tends t0 ask gets large [6]. Furthermor&hort est G ause, a natural generalization of
Uni t O ause, succeeds fom/n < (1—o4(1))e?/8-2% /k with high probability [8]. Indeed, the algorithm
can be modified so as to succeed with high probability evemfbr < (1.817 — o4 (1)) - 2% /k by allowing
averylimited amount of backtracking [11]. Finally, the algorthFi x from [9], which was specifically
designed for solving random+SAT instances, succeeds uprtg'n < (1 — ox(1))2¥ In(k)/k. By com-
parison, non-constructive arguments show that the thteé$biothe existencef a satisfying assignment is
(1+o0x(1))-2*In2[2, 3].

In summary, Theorem 1.2 shows thétl ksat is broadly competitive with the other known algorithms
for randomk-SAT. That said, the main point of this paper is not to prodadetter algorithmic bound for
randomk-SAT, but to address the methodological challenge of aiadyalgorithms such agéal ksat
that may reassign variables. This difficult aspect did nauoor was sidestepped in the aforementioned
previous analyses [1, 8, 9, 11]. Indeed, the lack of tectesdar such analyses is arguably one of the most
important shortcomings of the current theory of randomreigcstructures.

Theorem 1.2 improves substantially on the previous analgéé\al ksat , at least for generat.
The best previous result for this case showed that whapksat will find a satisfying assignment with
Tmax = n if m/n < p’ - 2¥ /K2, for a certain constant’ > 0 [10]. The proof of this result is based on a
rather simple observation that allows to sidestep the aisadyf the stochastic dependencies that arise in the
execution oMal ksat . However, it is not difficult to see that this argument is coefl to clause/variable
densitiesn/n < 2¥/k%. Theorem 1.2 improves this result by a factoigufk).



Furthermore, the techniques of Alekhnovich and Ben-Sapgoshow that for anyk Wal ksat will
w.h.p. find a satisfying assignment within(n) iterations ifm/n < ry_pyre, Wherery_ ... is the ‘pure
literal threshold’. The analysis in [4] depends heavily ba fact that the combinatorial structure of the
hypergraph underlying the randomCNF & is extremely simple fom/n < r5_pure. Furthermore,
because_,,r. — 0inthe limit of largek [16], this result is quite weak for general Yet [4] remains the
best known result for ‘smalk. For instance, in the cage= 3 the pure literal bound i83_ e ~ 1.63 [5].

Monasson and Semerjian [20] applied non-rigorous teclasidrom statistical mechanics to study the
Wal ksat algorithm on random formulas. Their work suggests Wdtksat (®, O(n)) will find a satis-
fying assignment w.h.p. ifn/n < (1 — 0x(1))2%/k. Theorem 1.2 confirms this claim, up to the constant
factor1/25.

In contrast to the previous ‘indirect’ attempts at analgaithl ksat on random formulas [4, 10], in
the present paper we develop a technique for tracing theumaoof the algorithm directly. This allows
us to keep track of the arising stochastic dependenciegciékplBefore we outline our analysis, we need
some notation and preliminaries.

2 Preliminaries

We let 2 (n,m) be the set of alk-SAT formulas with variables frolV’ = {z4,...,x,} that contain
exactlym clauses. To be precise, we consider each formula an ordettegle of clauses and each clause
an ordered:-tuple of literals, allowing both literals to occur repediein one clause and clauses to occur
repeatedly in the formula. Thug,(n, m)| = (2n)*™. Let X (n,m) be the power set d®,(n, m), and
let P = Py(n, m) be the uniform probability measure. Throughout, we assimaeit = [rn] for a fixed
numberr > 0, thedensity

As indicated above, we denote a uniformly random elemeii};df, m) by ®. In addition, we use
the symbol® to denote specific (i.e., non-random) elementpfn, m). If ® € Qp(n,m), then®d;
denotes théth clause of®, and®;; denotes thgth literal of ®;. If Z C [m] is a set of indices, then we
letdy = N;cp @i Il € {21,21,...,2,, T, } Is a literal, then we denote its underlying variable|Hy
Furthermore, we definggn(l) = —1 if [ is a negative literal, andgn(l) = 1 if [ is positive.

Recall that Hiltration is a sequencéF; )<<, of o-algebrasF;, C Xx(n,m) such thatF, C Fi44
forall 0 < ¢t < 7. For a random variabl& : Q;(n,m) — R we letE [X|F;] denote theconditional
expectation Thus,E [X|F] : Qr(n,m) — R is a F;-measurable random variable such that for any

A € F; we have
S EBX|R(@) =) X(®).

PcA dcA

Also remember thal [-|7;] assigns a probability measurd:| F;] () to any® € Qx(n, m), namely
P[|F] (®): A € Zg(n,m) — E[1a]|F] (D),
wherel 4 is the indicator of the everd. We need the following well-known bound.

Lemma 2.1 Let(F;)o<.<- be afiltration and le{ X ), <,<. be a sequence of non-negative random vari-
ables such that eacR; is F;-measurable. Assume that there are numigers 0 such thaf [ X |F; 1] <
LGforalll <t < 7. ThenE[H1gth X |Fo] < ngtg &

Proof. For1l < s < 7 we letY, = Hle X,. Lets > 1. SinceY,_; is F,_i-measurable, we obtain
E[Y[Fo] = E[Yso1Xs|Fo] = E[E Y1 Xs[Fs1]|Fo] = E[Yso1E[X|Fsa][Fo] < GE Yoo [Fo],

whence the assertion follows by induction. a
We also need the following tail bound (“Azuma-Hoeffding’ge[13, p. 37]).

Lemma 2.2 Let(M;)o<:<- be asuper-martingale with respect to afiltratiof; )<<, such thatV/, = 0.
Suppose that there exist numbersuch that M; — M;_1| < ¢; forall 1 < ¢ < 7. Then for anyA > 0 we
haveP [M, > A] < exp [-A?/(2>°]_, })] .



A k-CNF® = &, A --- A Dy, gives rise to a bipartite graph whose vertices are the Vagaband the
clauses{®; : i € [m]}, and in which each clause is adjacent to all the variablegsttwur in it. This is the
factor graphof ®. For a vertexv of the factor graph we denote By (v) = N4 (v) the neighborhood of
in the factor graph. For a s¢t C [m] we letN(®z) = U, , N (®;) be the set of all variables that occur
in the sub-formulab .

Let A, B be two disjoint sets of vertices of the factor graph. Redwslt &/-fold matching fromA to B
is a setM of A-B-edges such that eaehe A is incident with precisely edges from\/, while eacth € B
is incident with at most one edge froid. We will make use of the following simple expansion property
of the factor graph of random formulas.

i€z

Lemma 2.3 There is a constant, > 0 such that for allk > ko and form/n < 2¥In2 the random
formula® has the following property w.h.p.

For any setZ C [m)] of size|Z| < n/k? there is a0.9k-fold matching from® , to N (® ). (1)
Proof. We start by proving that w.h.p. the random formd@idhas the following property.
For any setU of < n/k variables we hav€{i € [m] : N(®;) Cc U}| < 1.1|U|/k. (2)

To prove (2) we use a ‘first moment’ argument. Foridet V weletXy = 1if [{i € [m] : N(®;) C U}| >
1.1|U|/k, and we sefX;; = 0 otherwise. Then

EXy]=P[Xy=1] < (1,173|/k)(lUl/n>l‘1U-

Furthermore, for any < u < n/k we letX, =3 ;. =, Xv. Assuming thak > ko is sufficiently

large, we obtain
> b= (3) (1) ()

UCV:|U|=u

1.1 1.17 %
- en em 1/k u - en e2kk1n 2 n 1k u
- u 1.1u/k n T u 1.1 u n
uNO1-1/k [ e2FE1n 2\ MR w 0.097%
- Db < |e2 (2
|ﬁ(n> ( 1.1 > - {e (n) } '

Summing the last expression oveK u < n/k and assuming that > k is large enough, we see that

E[X.]

IA

IA

wy 0.097% “
E L < 2(7) 27,—0.097%
> oxos X @® e X @
1<u<n/k 1<u<In?n In? n<u<n/k
2
< In®n-e*(In%n/n)"% + % : [ezk_o'og]ln " =o(1).

ThUS,Zlgugn/k X, = 0w.h.p. by Markov’s inequality. Hence, (2) holds true w.h.p.

Now, assume thaf satisfies (2). LetZ C [m] be a set of sizéZ| < n/k?. LetY C Z and
letU = N(®y). Then|U| < n/k, andN(®;) C U for any: € Y. Therefore, (2) implies that
Y| < 1.1{U|/k, i.e.,|U| > £ |Y| > 0.9k|Y|. Hence, the assertion follows from the marriage theorem.
The following lemma states a second expansion-type prippert

Lemma 2.4 There exists a constaat > 0 such that for allk > k¢ and for anye > 0, A\ > 4 satisfying
e < k=% ande* < 1(2e)~** the random formulap with m/n < 2" In 2 has the following property w.h.p.

Let Z C [m] be any set of siz&| < en. Ifiy,...,i; € [m]\ Z is a sequence of
pairwise distinct indices such that

3
IN(®:.) N N(®z001,m<j<0)| > A forall 1 <s <1, 3)

then! < en.



Proof. It is clearly sufficient to prove that the desired propertydisov.h.p. for all setsZ of sizeprecisely
|Z] = en. Assume that there is a sgtand a sequence= (iy,...,4;) of pairwise distinct indices in
[m] \ Z of lengthl = en such thaf N (®;,) N N(@1y;,.1<j<s3)| > Aforalll < s < 1. Then the sets

Y = Ué.:l N(®;,)\ N(®z) C V andZ have the following properties.
a. Y| <elk—Mn.
b. Thereisaset C [m]\ Z of size|I| = en such thatV(®;) C N(®z)UY foralli € I.

Property a. holds because each claiseadds no more thah — A ‘new’ variables toY’, and b. is true for
thesetl = {i; : 1 <j <I}.

To prove that w.h.p. there do not exigtandi of lengthl = en as above, we are going to show by a
first moment argument that w.h.p. the random form@laloes not feature set§ 7 that satisfy a. and b.
More precisely, for set& C [m] of size|Z| = en,Y C V of size|Y| = e(k — A\)n, andI C [m] \ Z of
size|I| = en we let€(Z,Y, I) be the event thaV (®;) C N(®,) UY forall i € I. Then for any fixed
Z,Y, I we have

Kz +1Y]

k|1|
Y < (et -

PIEGZY.D)] < (

because each of thigI| variable occurrences in the clausks is uniformly distributed ovel”. Hence, by
the union bound, for large enough

PRZYIEGY.D] < 3 PGV < () (o )ik =2
- [ () emn]
: :(?)%W)hh(%ﬂm
< _(f>2exp(2k)(2k5)*]e7lg[(2@2’“5*/2]5"7 (4)

where the last inequality follows from our assumption that £~ with & > k, sufficiently large. Due

to our assumption that* < le(2e)~**, (4) yieldsP [32,Y,] : £(Z,Y,I)] < exp(—en) = o(1), whence

the assertion follows. a
Finally, it will be convenient to assume in our proof of Thewr 1.2 that the formula density= m/n

is ‘not too small’ and that the clause lengths sufficiently large. These assumptions are justified as the

case of smalk or very smallr is already covered by [10].

Theorem 2.5 ([10]) There is a constant, > 3 such that for allk > kq, and allr < % 2% /K2 w.h.p.
Wal ksat (@, n) will find a satisfying assignment.

3 Outline of the analysis

Throughout this section we assume that k, for some large enough constakf > 0, and thatr =
m/n ~ p-2%/kwith k=2 < p < pg = 1/25. We can make these assumptions as otherwise the assertion
of Theorem 1.2 already follows from Theorem 2.5. Furtheemlat

A = Vk ande = exp(—k?/3). (5)

The standard approach to analyzing an algorithm on ranbd@AT formulas is thenethod of deferred
decisionswhich often reduces the analysis to the study of a systemdfiary differential equations that



capture the dynamics of the algorithm [1]. Roughly speakihg method of deferred decisions applies
where the state of the algorithm after a given number of stepsbe described by a simple probability
distribution, depending only on a very few parameters deitezd by the past decisions of the algorithm.
This is typically so in the case of simple backtrack-freeatfpms such athi t Cl ause.

However, in the case Méal ksat , this approach does not apply because the algorithm is btouiig
many variables more than once. This entails that the alguost future steps depend on past events in a
more complicated way than the method of deferred decisianaccommodate. Hence, our approach will
be to use the method of deferred decisions to trace the efféigiping a variableor the first time But we
will need additional arguments to deal with the dependenttiat arise out of flipping the same variable
several times.

To get started, let us investigate the effect of finst flip that WAl ksat performs. Leto = 1 be
the assignment that sets every variable to true. Clearllawse®; is unsatisfied under iff it consists
of negative literals only. A% consists ofmn uniformly random and independent clauses, the number of
unsatisfied clauses has a binomial distribufn(m, 2=%), and thus there will bél +0(1))2~*m ~ pn/k
all-negative clauses w.h.p. To perform its first flial ksat chooses an indek € [m] such that®; is
all-negative uniformly at random, then chooses a literdéiy € [k] uniformly, and sets (|®,;|) to false,
thereby satisfying clause;.

But, of course, flipping®; ;| may well generate new unsatisfied clauses. We need to steidyitimber.
As @; is just a uniformly random all-negative clause, the rand@miable|®;;| is uniformly distributed
over the set of alk variables, and thus we may assume without loss [fgt| = x;. Furthermore, if a
clause®; becomes unsatisfied because variahlgot flipped, thenz; must have been the only variable
that appears positively i#®;. Now, the number of clauses whose only positive literalidias distribution
Bin(m, k/(n2¥)+0(1/n?)). Indeed, the probability that a random clause has preaiseypositive literal
is k /2%, and the probability that this positive literal happenséarbis 1/n; the O(1/n?) accounts for the
number of clauses in which variablg occurs more than once. Hence, #agectechumber of newly
created unsatisfied clauses equals- o(1)) 22 ~ p.

In summary, as we are assuming thak pg = 1/25 < 1, the expected changm the number of
unsatisfied clauses as a result of the first flip is bounded &boove by

p—1+o0(1) <0.

(The precise value is even smaller becausenay occur in further all-negative clauses.) Thus, we expect
that the first flip will indeed reduce the number of unsatistildises. Of course, this simple calculation
does not extend to the further step3/éfl ksat because knowing the outcome of the first flip renders the
various above statements about clauses/literals beirfigromy distributed invalid.

To analyze the further flips, we will describ&l ksat as a stochastic process. Our time parameter
will be the number of iterations of the main loop (Steps 2-Bigure 1), i.e., the number of flips performed.
To represent the conditioning of the random input formulpdsed up to time, we will define a sequence
of random map$m;),>o. These maps reflect for each péirj) € [m] x [k] the conditional distribution of
the literals®;;, given the information thafél ksat has revealed after performing the fitstips. More
precisely, the value of, (7, j) will either be just thesign of the literal®,;, or the actual literafp,; itself.

In the initial mapr, we haver (i, j) = sign(®,;) forall (i, j) € [m] x [k].

At timest > 1 the mapr, will feature the occurrences of all variables that have Héeped thus far.
That is, for any pai(z, j) such thaMal ksat has flipped the variablgp;;| at least once by time, we
let (i, j) = ®,;. This information will be necessary for us to investigate #ffect of flipping the same
variable more than once.

In addition, we need to pay particular attention to claubas tontain many variables that have been
flipped at least once. The reason is that these clauses lavittie randomness’ left for a direct analysis,
and thus we will need to study them separately. More pregigelour mapm; we will fully reveal all
clauses®; in which at least

k1 =0.57k (6)

literals @,; have been flipped at least once. Furthermore, we will alsorsaely reveal all clauses that
contain at leash variables from clauses that were fully revealed before.s Tacursive process ensures



P10. Ifthe assignment; ; satisfies®, then the process terminates.

PI1. Otherwise, choose an indéxsuch that®,, is unsatisfied under;_, uniformly at random from the
set of all such indices. In addition, choggecs [k] uniformly at random. Define; : V' — {0, 1} by
Iettlng Ut(|q)i1,jt|) =1- Ut—1(|‘1’itjz|) andot(x) = O't_l(x) for all = # |¢)it,jt|'

PI2. Initially, let 2, = Z,_, andN; = N;_;.

While there is an index € [m] \ Z, such tha®, is (A4;—1 UN; U {|®,,;,|})-negative and either

e there are at leadt, indices; € [k] with |®;;| € A,y U {|®;,;,|}, or
e there are more thakindices; € [k] with |®;;| € N,

add the least such indeéx,, to Z; and add the variableg®; . ;| : j € [k]} toN;.
PI13. LetA; = (At—l @] {|‘I’“Jt|}) \M
Define the magpr; : [m] x [k] — {—1,1} U L by letting

LN 'I)U if |¢'1]| S .At U.A/:f7
m (i) = { sign(®,;) otherwise

Figure 2: the construction of the maps

that we can separate the analysis of clauses that are ‘hWeavitlitioned’ by the past steps @&l ksat
from the bulk of the formula.

Throughout this process that mirrors the executioddfksat , all variables whose occurrences have
been revealed will be labeled either with an asterisk or &itrero. Those variables that got revealed
because they occur either in a ‘heavily conditioned’ clamisen another clause that got revealed by the
recursive process described in the previous paragraplogvithbeled). All other variables that have been
flipped by\Wal ksat at least once are labeled We will let A, denote the set of all variables labeled
and\; the set of all variables labeled

Let us now define the maps and the sets!;, \; formally. Eachr; is a mapm| x [k] — {—1,1}UL,
with L = {x1, Z1,..., 2, %, } the set of literals. As mentioned above, wertgti, j) = sign(®;;) for all
(i,4) € [m] x [k]. Additionally, let Ay = Ny = Z, = 0, and leto : V — {0,1}, = — 1 be the all-true
assignment. For a sétC V' we call a clause; S-negativeif for all j € [k] with sign(®;,) = 1 we have
®,; € S. (In other words®; is S-negative if all of its positive literals lie it5.) Fort > 1, we define the
mapsr; along with the setsd;, NV, Z; inductively via the process shown in Figure 2. Intuitivethye set
Z,; contains the clauses that are ‘heavily conditioned’ at tipad.\; is the set of variables that occur in
such clauses. Moreoved; is the set of all variables that have been flipped at least bydenme ¢ except
the ones that belong ;.

Let T be the stopping time of this process, i.e., the minintisuch that; satisfies® (or oc if there is
no sucht). Fort > T, we definer; = nr, 0y = o7, Ay = Ar, N; = N7, andZ; = Zr.

StepsPI0-PI1 mirror the main loop of théMal ksat algorithm; in particular, the stopping timg
equals the total number of iterations of the main loop\if ksat before a satisfying assignment is found.
The purpose of the remaining steps is to ‘update’ the detand Z, and the mapr; as described above.
Before we continue, it may be useful to illustrate the camgton of the maps; with an example.

Example 3.1 Let us go through the example of a 5-SAT formula Withauses ol 0 variables. For the
sake of this example, we will work with = 2 and A = 2. (Recall that in our proof we actually assume
thatk > k is large enoughk; is as in (6) and\ = v/k.) We will represent the maps by tables whose
columns correspond to the claus®s. Thus, thejth entry in columni represents the value; (i, j). To
improve readability, we just write- and — instead oft+-1. Suppose that the initial mag,, containing the



signs of all literals, reads

I

I

I
+
+

M= - — — -

++ + 4+ +

_|_
+
The initial assignment is the all-true assignment, andy, = Ny = Z, = 0. Throughout, we will mark
the variables in4; by an asterisk and the variables in\V; by a0.

Being all-negative, clause®,; and ®5 are unsatisfied under,. Therefore, at time¢ = 1 stepPI1
choosesi; € {1,3} randomly; say, the outcome is = 1. In addition, PI1 choosesj; € [k] =
{1,2,3,4,5} uniformly at random. Suppose the resultjis= 5. To carry on, we need to reveal the
variable |®15|. Thus far, the process has not imposed any conditioningbgg|, and therefore this vari-
able is uniformly distributed over the set of all our= 10 variables. Assume that indeé#5| = z;.
ThenPI1 setso;(z1) = 0andoy(z) = 1 forall x # 2.

To implemenPI12 we need to reveal all occurrences ©f in our random formula. As there is no
previous conditioning on any of variablé®; ;| with (7, j) # (1,5), these variables remain independently
uniformly distributed over the set of all variables, anddtthe eventg|®,;| = =1} occur independently
with probability 1 /n. Suppose that; occurs at the following positions:

- - - x1 + +
- xx - + - +
- - - - X1 +
- - - - 4+ +
)_(1 — — — + X1

Then there is no clause with at ledstoccurrences of a variable frordy U Ny U {z1} = {x1}, and thus
stepPI2 is void. Hence, at the end of the first iteration we halie= {x1}, V7 = Z; = ), and

"= - - - -

++5 0+
S+ 4+ +

At timet = 2 there are two unsatisfied clause®;, whose only positive literal got flipped to false, and
@3, which was unsatisfied initially. Stéfi1 chooses one of them randomly, say= 2, and also chooses
a random positionys € [k], sayj. = 2. As we already know from the first step, the literal in thisipos
is @9y = m1(2,2) = x1. In effect, the second iteration reverses the flip made iritbeone and thug,
is the all-true assignment. Since we have revealed all ticaeroences ofr; already, ste@12 is void and
o = T, .,42 = {ZEl}, and/\/'g =29 = (Z)

At the start of the third iteration the unsatisfied clauses &y, 3. Supposél1l chooses; = 1 and
js = 1. Then we need to reveal the variab;;|. At this point, the only conditioning imposed on this
variable is that it is different fronx,, because all occurrences of have been revealed already. Thus,
|®1,| is uniformly distributed ovets, . .., z19. Suppose thdth;| = x5. Thenos(zs) = 0 andos(z) =1
for all x # x5. To reveal the occurrences of all over the formula, note that by the same argument we
applied to|®1,]| all spots markedt in 72 hide variables that are uniformly distributed ove, . .., z1¢.
Let us assume that, occurs in the following positions.

Xg — — xy + +
- - + = 4+
- - X2 - I +
- - - - 4 xs
3y - - - +

As clause®; is As UN, U {x2} = {z1,z2}-negative and containk; = 2 occurrences of variables
from Ay U{z2} = {z1, 22}, P12 setsZ5 = {1}, reveals the remaining three variablesdn , and adds all



variables that occur inP; to N3. Suppose that the remaining variableshn are |®12| = x3, |®13] = 24,
|®13| = z5. ThenN; = {1, x9, 23,24, x5}; In particular, x1, z, are now labeled). The new) label
‘overwrites’ thex becauseP13 ensures thaids = (A, U {x2}) \ N3 = 0. In order to carry outPI2, we
need to reveal all occurrences of variables frofig. Suppose this yields

2 - - 29 + +
ig x(l) - X5 - +
X - - - 3 +
0 — - x% x% 49
) - xp x§ x§ af
Then clauseéb 4 has becomels UN3U{z2} = {x1, ..., z5}-negative (as there is ng-sign leftin column

four), and thusP12 setsZ3; = {1,4}. To proceed, we need to reveal the remainingign of®,, add the
underlying variable toV3, and reveal all of its occurrences. Suppose that this yields

2 - - 29 4+ +
z3 @) - m —
Ty - - X T Xg
:?gffzigxgwg
- 7§ T o7y

At this pointPI2 stops, because clausds;, & have+-signs left and clause®,, 5 contain only one
variable labeled). Thus, at the end of the third iteration we hate = 0, N3 = {z1,...,26},25 = {1,4},
and

Hn - - I + +
fg x(l] — :cg - 4+
m=2, — - z3 20 2
Tyo— - & oay
2 - 2 2 2y 2

As the fourth iteration commences, the only unsatisfiedseldeft is®3, whencei, = 3. Moreover,
assume thaj, = 1. As we have revealed all occurrencestof. . ., x4, at this point we know thgd®s |
is uniformly distributed ovefxr, x5, 29, z19}. Suppose that indee@®;; | = 7. Thus,PI1 setso(x2) =
o4(x7) = 0andoy(x) = 1 forall z # x4, x7. Suppose that revealing all occurrencescefyields

.fg — X7 .13(1) + X7
2y 20 — 2 % o+
) % — oz T
562 - - x4 l'g 9
20— 22 2 2§ 2

Then there are nol; U N3 U {z7}-negative clause®; with : ¢ Z; that have at least two occurrences of
a variable fromA; U {z7}. ThereforePI2 is void, and at the end of the fourth iteration we have

) — 3 2) o+ a2
) 29 - 22 3 o+
m=29 7 — 23 9 ¥,
zyo - = @ a3 ah
2 — 72 7% 2] )

Ay ={x7}, Ny = {x1,..., 26}, and 24 = {1,4}. Aso, is satisfying the process stops afd= 4. O

To trace the procesBl0—PI3 over time we define a filtratio(F; ),>( by letting 7; be theos-algebra
generated by the random variablesj, andn, (¢, j) with s < ¢t and(i, j) € [m] x [k]. Then intuitively, a
random variableX is F;-measurable if its value is determined by the firsteps of the proce$30—PI3.
In particular, we have the following.



Fact 3.2 For anyt > 1, anyz € V, and anyi € [m] the event{o.(z) = 1}, {®; is satisfied undes; },
{z € A}, {i € 2}, {x € N}, and{T =t} are F;-measurable.

Proof. The construction in stepBl2 andPI3 ensures that for any > 1 we have®,,;, € A; UN; and
thusm, (i, j:) = ®,,;, This implies that for any variable € V' the event{o;(x) = 1} is F;-measurable.
In fact, we haver;(x) = 1 iff the number|{1 < s <t : |m (is, js) | = «}| of timesz has been flipped is
even (because is the all-true assignment).

This implies that for any € [m] the even{ ®, is satisfied undes, } is 7;-measurable. In fact, if there
is an index;j € [k] such thatr, (i, j) = 1, then®;; is a positive literal whose underlying variable has not
been flipped before, wheneg satisfies®;. Moreover, if there is an index € [k] such that®,; # +1,
then by the previous paragraph the event that the li@al= =, (z, j) is true undew, is F;,-measurable.
If there is such a satisfied literd,;, then®, is satisfied. Conversely, if there is rice [k] such that either
m(i,7) = 1L orm(i, ) is a literal that is satisfied undet, then clausep, is unsatisfied. Hence, the event
{0, is satisfying is 7;-measurable as well, and therefore so is the e{/@nt ¢}.

Furthermore, observe thate Z; iff for all j € [k] we haver.(i,j) ¢ {—1,1}. Forifi € Z, then
for all j € [k] we have|®,;;| € N, and thusm,(i,j) = ®,; # +1 due toPI3. Conversely, ifk > kg
is large enough, any € [k] such thatr,(i,5) ¢ {—1,1} for all j € [k] must satisfy one of the two
conditions that leadPI2 to addi to Z,. Hence, for anyi € [m] the event{i € Z,;} is F;-measurable.
As by constructionV; = {m(i,7) : ¢ € Z,j € |k]}, we conclude that for any variable € V the event
{z € N;}is F;-measurable.

Finally, the construction ifP13 ensures thatd;, = {|m:(is,js)| : 1 < s <t} \ N;. As for anyz the
events{z € {|m(is,js)| : 1 < s < t}} and{z € N;} areF;,-measurable, soisthe evept € A,}. O

If m,(4,7) = £1, then up to time the proces®10-PI3 has only taken the sign of the literd,; into
account, but has been oblivious to the underlying variabie only conditioning is thai®,;| ¢ A; UN,;
(because otherwisel3 would have replaced th&1 by the actual literal). Since the input formulais
random, this implies thai®; ;| is uniformly distributed oveit” \ (A; U N;). In fact, for all (¢, j) such
thatm,(i,7) = +1 the underlying variables are independently uniformlyritisted overl” \ (A; U N).
Formally, we can state this key observation as follows.

Fact 3.3 Lett > 0. Let&, be the set of all pairgi, j) such thatr, (4, j) € {—1,1}. The conditional joint
distribution of the variables|®;;|); j)cs, givenF; is uniform over(V \ (A; UN;))%. Thatis, for any
mapf: & — V\ (A, UN;) we have

PV(i,j) € & : |®i] = f(i,5)|F] = [V \ (A UN)|~IEL,

Let
T* = 6n with 6 = 0.38/k.

Our overall goal is to prove that the stopping time of the pes®10-PI3 satisfiesT” < T* w.h.p. (The
numberd is chosen somewhat arbitrarily; for the analysis to worle#ras to be essential thtat= ¢/ k for
somec > 0 that is neither “too small” nor “too large”. The concrete stant above happens to work.) To
prove this, we will define non-negative random variatfigst; such thatS; + H; = 0 implies thato, is a
satisfying assignment. We will then trasg, H, for 1 < ¢ < T*.
For anyt > 1 let
D; = {i € [m] : ®; is A; U N;-negative .

As PI3 ensures tha®; is A, U N;-negative iffr,(i,7) # 1 for all j € [k], the event{i € D,} is F;-
measurable for any< [m]. We define
So = |D0| and Sy = |Dt| — |.At‘ fort > 1. (7)

Any clause®; with i ¢ D, is satisfied undes,. For if j € [k] is such thatr.(i,j) = 1, then®;; is a
positive literal andr, (®;,) = 1, becaus&al ksat starts with the all-true assignment and the variable
®,; has not been flipped up to time Clearly, in order to study the random varialflgit is crucial to
estimatgD;|. This is the purpose of the following proposition, whoseginwe defer to Section 4.
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Proposition 3.4 W.h.p. we havéD; | < 22~*m forall t < T*.

To define the random variablé$;, let us call an assignment: A; — {0,1} rich for Z, if in each
clause®; with i € Z; at leasi.8k literals ®,; are satisfied under.

Proposition 3.5 W.h.p. there is a sequen¢e ), <;<r- with the following properties.
1. Foranyl <t < T*, 7, is arich assignment fog;.
2. Foranyl <t < T* and anyz € N;_; we haver,(z) = 7,_1(z).
Moreover,r; is F;-measurable for alt.
Assuming that there is a sequerieg); <<~ as in Proposition 3.5, we defiré, = 0 and
Hy={x € Ny : o¢(x) # ()} for1 <& < T,

andH,; = |Ny| fort > T*. For the sake of completeness, we alsdet= | V| if there is no such sequence
(11)1<1<7+. The proof of Proposition 3.5 hinges upon the following fact

Proposition 3.6 W.h.p. we havez;| < enforall ¢t < T*.

We defer the proof of Proposition 3.6 to Section 5. AssumirapBsition 3.6, we can derive Proposition 3.5
rather easily.

Proof of Proposition 3.5 (assuming Proposition 3.8y Lemma 2.3, we may assume th&thas the
expansion property (1). Furthermore, by Proposition 3.6weg assume thdZ,| < en for all t < T*.
Under these assumptions we will construct the sequéng¢e<,<r- by induction ort > 1. Thus, suppose
thatl <t < T* and that we have already got assignmentwith 1 < s < ¢ that satisfy 1.-2.

The setZ = Z; \ Z;_, of indices thatZ; gained at time has sizdZ| < |Z;| < en. Therefore, (1)
ensures that there is0e9%-fold matchingM from Z to the set

N =N(®z) ={|®i|: (i,)) € Z x [k]} CN;

of variables that occur in the claus#s with i € Z. The construction ifPI2 ensures that none of these
clauses®; has more than occurrences of a variable froi;_; (as otherwiseé € Z,_;). Therefore, in
the matching\/’ obtained from)M by omitting all edges = {i,z} with i € Z andz € N;_; each clause
®, with ¢ € Z is incident with at leash.9% — \ > 0.8k edges. Now, for each edge= {i,xz} € M’ let
7:(x) be the truth value that makes the corresponding liter@ jrevaluate to true. Furthermore, for all
y € Ni—1 let(y) = 7—1(y), and for all other variables’ € N; let 7.(2’) = 1. This ensures that,
satisfies the conditions in Proposition 3.5. ]

Having defined the random variabl8s, H;, we are now going to verify that they suit their intended
purpose, i.e., that; + H; = 0 implies thato, is satisfying.

Proposition 3.7 Let1 <t < T*. If S; + H; = 0, thenoy is a satisfying assignment.

Proof. Let U; be the number of clause indices [m] \ Z; such that®; is unsatisfied under;. We claim
that

U, < S =|Dy— | Al (8)

To see this, recall that any indéx [m] such that®; is unsatisfied under, belongs toD;. Therefore, to
prove (8) it suffices to construct injective magps A; — D; such that for any: € A; the clauseb,, ,) is
satisfied undes;. In fact, the map; will have the property that for eache A, there is an indey € [k]
such thatr = |®,,(,;| and such that the literak,, (,; is true undew;.

The construction of the maps is inductive. Fort = 0 we haveA, = () and thus there is nothing to
do. Thus, suppose that< ¢t < 7" and that we have defined_, already. Lety = |®,,;,| be the variable
flipped at timet. If i; ¢ Z;, theny € A, and we define,(y) = ;. Moreover, we let;(x) = s, (z) for

11



allz € A\ {y} C A;—;1. (Note that it is possible that € .A;_, asy may have been flipped before.) For
t > 1T we sets; = s¢_1.

To verify thats; has the desired properties, assume that ¢ and observe thaI1 ensures thad;,
was unsatisfied under,_,. Thus,i; € D,_; C D;. ButasPIl setso;(y) = 1 — 0y—1(y), ®;, is satisfied
undero;. Furthermore, for alk € A; \ {y} we haveo,(z) = o:_1(x), and thus each of these variables
contributes a true literal to its claude,, ) = ®,,_, () by induction. Sinces;, is injective but®;, was
unsatisfied under;_;, we havei; ¢ Im(s;_1), whences; is injective. This establishes (8).

As (8) shows,S; = 0 impliesU,; = 0, i.e., o, satisfies all clause®; with i ¢ Z,. To complete the
proof, we need to show that if; = 0, theno, also satisfies all clauseb; with : € Z;. Butif H; = 0,
theno,(z) = 7 (z) for all z € N}, andr, is a satisfying assignment d z, . O

Finally, we have all the pieces in place to prove Theorem 1.2.

Proof of Theorem 1.2 (assuming Propositions 3.4 and R&)position 3.7 shows that
PT>T=P[T>T"AV1<t<T*:S;+ H; >0].

We are going to bound the probability on the r.h.s. To this @medwork with two random variable$;, H;
that are easier to analyze than the origifialH;. Namely, we letS, = H) = 0, and

b w1 i (i, ) = 1,
Sp =51 { 0 otherwise (t=1).

In other words, we lef; = S;_, — 1 if the variable flipped at time had not been flipped before and does

not occur in any of the ‘exceptional’ claus®s:, ,. OtherwiseS; = S;_;.
We claim that

Sy < Dy +k|Z|+S;  foranyt > 0. )

To see this, recall from (7) theff, = |D;| — |.A;|. By PI3, the setA, contains all variables®; ;.| such
thatms_1(4s, js) = —1 with s < ¢, except the ones that belongA§. Since|N;| < k| Z;|, we obtain (9).
Furthermore, we letl/; = 0 and

—1 if |®;,;, € Niy andoy(|®i,.]) = 72(|®i,),
H{ = H;—l + 1 if ‘¢itjt| € '/\/;‘/*1 andat(|¢itjt|) 7é Tt(|¢itjt‘)’ (t Z 1)
0 otherwise

Thus, starting af, we decrease the value & by one if the variable flipped at timelies inV;_; and its
new value coincides with the ‘ideal’ assignmentwhile we increase by one if these values differ.
We claim that

H, < k|2/|+H, foranyt>0. (10)
For Hy = H{, and

Hi—Hiy = [{zeN o) # (@)} — o € Nimr s ora (@) # -1 (2)}
Wi \Nial + H — Hy_y <K|Z\ 24|+ H — H;_, forany? > 1.

A

Combining (9) and (10) with Propositions 3.4 and 3.6, we baew.h.p.
S+ H, < |Dy|+2k|Z|+S,+H,

4
< 227Fm 42k (2| + S, + H) < % + 2ken + S; + Hj foranyt <T*. (11)

Hence, we are left to analyz& + Hj.
The sequenceS; + H;); is a super-martingale. More precisely, we claim that with 0.429 we have

E[S; + H{|Fi1] < S,y +H,_; —~ forallt <min {7, T"}. 12)

There are two cases to consider.
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Case 1:i; ¢ Z,_1. The construction in stepI2 ensures that there are fewer thaindices; such that
|®;,;| € N;—1. FurthermorePI2 ensures that there are less thanindices; such thaf®,, ;| €
A;_1. Moreover, there is no indeksuch thatr; 4 (i;, j) = 1, because otherwise claude, would
have been satisfied undey_,. This means that for at least— k; — X indices; € [k] we have
m—1(it,j) = —1. Therefore, ag; € [k] is chosen uniformly at random, with probability at least
1— (k1 +AN)/k > 0.43 — \/k we haveS; = S;_, — 1. In addition, as®;, contains at mosh
variables fromV;_1, the probability tha#d; = H]_, + 1 is bounded from above by/k < 0.00001.
Thus, (12) holds.

Case 2:i; € Z;,_1. As the assignment,_, is rich, there are at least8k indices; such thatr (®;,,) =
Ti—1(®;,;) = 1. However, for all of these indices we haves,_;(®,,;,) = 0, because®;, is
unsatisfied undes,_,. Hence, the probability that,(®;,;,) = 1 ando,_1(®;,;,) = 0 is at least
0.8, and if this event indeed occurs thep(®;,;,) = 7.(®;,;,) = 1. Therefore,H; — H/_; has
expectatior< —0.8 + 0.2 < —0.6. Moreover,S; < S;_, with certainty. This implies (12).

To complete the proof, we are going to apply Azuma’s inequdliemma 2.2 in Section 2) to the
random variables’.. + H’... The inequality applies because (12) shows t#t+ H;),>, is a super-
martingale. However, there is a minor technical intricaoyuse the inequality, we need an upper bound on
theexpectatiorE [S).. + H/..]. Butas (12) only holds for < min {7", 7%}, this would require knowledge
of the probability thafl” > 7, the very quantity that we want to estimate.

To circumvent this problem, we define further random vagal®; by letting R, = S; + H/ for
t <min{T*,T}andR; = R,_1 — v fort > min {T*,T}. ThenRy = 0 andE [R;|F;—1] < Ri—1 — 7
forall ¢ > 0. Thus,E [Ry-] < —yT*. Recalling the definition (5) of, we obtain fork > k, sufficiently
large andp < py = 1/25 the bound

E[Rp-] < —y-T* < —4pn/k — 10ken. (13)

Furthermore|R; — R;—1| < 2 for all ¢ > 0 by the definitions of5}, H;. Therefore, Azuma’s inequality
and (13) yield

‘ 4/3
P[Rp- > —4pn/k — 2ken] < P {RT* > E[Ry-] +n2/3] < exp [—ZT*} =o(1). (14)
Finally, we obtain from (9), (10), and Proposition 3.7
P[T>T*] < PNt<T*:|Dy|+2k|Z| + Ry > 0] < P[|Drs| + 2k | Z7+| + Ry« > 0]
< P[|Dr-| + 2k |27+ > dpn/k + 2ken] + P [Ry- > —dpn/k — 2ken] T o(1),
thereby completing the proof. ]

Our remaining task is to establish Propositions 3.4 andR@n a formal point of view, we should start
with Proposition 3.6 because the proof of Proposition 3pkdes on it. However, the argument that is used
in the proof of Proposition 3.4 is conceptually similar ta bechnically far simpler than the one that we
use to prove Proposition 3.6. Hence, for didactical reasanwiill start with the proof of Proposition 3.4
in Section 4 and postpone the proof of Proposition 3.6 toiGeét

4 Proof of Proposition 3.4

In this section we keep the notation and the assumptionsProposition 3.4.

Our goal is to bound the numbgpP-| of A7~ U N7--negative clause®;, i.e., clauses whose positive
literals all belong tads- U N7, Thus, we need to study how the proc®6-PI3 ‘hits’ the positions
(1,7) € [m] x [k] that represent positive literals by adding their undedyiariable taAr« U Nr-. To this
end, we consider the two random variables

i 1 ifmoa(ig) = 1and®; € A,

Ki(i,j) = { 0 otherwise, =
o o J 1 ifmi(ij) =1and®;; €N,

K (i,j) = { 0 otherwise, =
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for any (i,j) € [m] x [k] andt > 1. Recall thatr,_q (i, j) = sign(®;;) iff ®;; is a literal such that
|®;;] & Ai—1 UN;_1 (cf. PI3). To simplify the notation, we define for a SBtC [m] x [k]

K@) = [[ KiG.j). K@= ] KGj).

(i,5)€T (i,9)€T
If Z*,7° C [m] x [k] are both non-empty, then
K} (T*) - K)(Z°) = 0. 17

Indeed, suppose that? (Z°) # 0. ThenP12 must have added at least one clausgtoBut the construction
in P12 ensures that the first clause that gets addeg} wontains the variablg®;, ;, | flipped at timet. Thus,
Ay € Aq—1 by PI3, and thus there cannot be a péirj) with K (i, 5) = 1. In effect, K (Z*) = 0.

Lemmad.llett > 1and( # Z* C [m] x [k]. Let&(Z*) be the event tha®,;| = |®;,;,| &
Ai—1 UN;_4 forall (¢,5) € Z*, and that(i;, j;) &€ Z*. Then

P& (T)|Fioa] < max{L [V \ (At UN_)} F] (18)

Proof. Since clause,, is unsatisfied under;_;, ®;, is A;_1 UN;_1-negative and thus;_, (i, j:) # 1.
Hence,PI3 ensures that eitheé®;,;,| € A;—1 UN;_1 or m_1(iy,5:) = —1. If & (Z*) occurs, then
|®;,,,| & Ar—1 UN;_1 and thusr,_1 (is, j;) = —1. Furthermore, ifZ* occurs, then®; ;| ¢ A,_1 UN;_1
for all (i,j) € Z*, and thusm;_1(4,j) € {—1,1} by PI3. Thus, by Fact 3.3®;,,,| and|®;,| with
(,7) € Z* are independently uniformly distributed ovér\ (A;_; UA;_1). Therefore,

P& (T Fi—1] < max{l,|V\ (Ai—1 U-/V;&_1)|}_|I*| :
as claimed. o
Corollary 4.2 Foranyt > 1,Z* C [m] x [k] we have

E[K;(T*)|Fia] < max{L,|[V\ (A1 UN_)]}

Proof. If [](; ez K7 (i,7) = 1, then the event} (Z*) occurs. Hence, Lemma 4.1 implies that

2%

< PIET)|Foa] < max {1, [V \ (A UN_) ), (29)

E { T &G )IFe

(i,)€Z*

as claimed. O

Lemma 4.3 Foranyt > 1,5, > 0 andZ® C [m] x [k] we have

o)
B[R 1020 Fnl <80 < (G o)

Proof. We may assume that® # (). We may also assume that_,(i,j) = 1 for all (i,5) € Z° as
otherwiseK? (Z") = 0. We are going to work with the conditional distribution

pl]=PLFa].

Let £° be the event thak? (Z°) = 1 and|Z; \ Z,_;| < &,. Then our goal is to estimate[£°].

If the event€® occurs, thenr; (i, j;) = —1 and|®;,;,| € N;. Indeed, being unsatisfied under
the assignment, 1, clause®;, is A; 1 U N;_i-negative, and thus; (i, j;) # 1. Furthermore, if
i1 (it, jr) = ®;,5,, then|®;,;,| € A,_1 UN;_1 by PI3, and thusZ; = Z,_; andN; = N;_; by the
construction in ste12. But if N = N;_1, thenK} (Z") = 0 by definition.
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Thus, assume that,_ (i, j;) = —1 and|®;,;,| € NV;. We need to trace the process describedli
that enhances the set§ and Z;. This process may add a sequence of clause indices to th# setd
the variables that occur in these claused/{o As these variables get added to theSgtone by one, we
will study the probability that they occur in one of the pasis (i, j) € Z°. The first clause tha®12 adds
to Z; necessarily contains the newly flipped variajskg, ;, |, and thus we may assume that this is the first
variable that gets added Ag,. In addition, if| 2, \ Z;,_1| < &;, PI2 may add up td&4,; — 1 further variables
to V;. To track this process, we need a bit of notation.

Letsy,...,s, be the clause indices thRI2 adds toZ,, in the order in which they get added by the
process. Ley* = min{y,d,}. Foreachl <i <y*letl <j;1 <--- < j;1;, <k bethe unique sequence
of indices such that,_1(s;,j:,4) = —1 and

i—1
¢ {|®i,5,[} UNim1 U | N(@s,) U{| @45, | - u< g} forallg <1
h=1

|(I)Sz‘jz‘,q

This means tha{|<I>sijiﬁq| 1 <¢g< li} are the new variables thdt,, contributes toV; and that did not
belong to.A;_, already. Let{, = |®;,;,| and let{y,. .., £, be the sequence of variablgB,,;, .| with
g=1,....;andi = 1,...,y*. Hencety,...,& is the sequence of variables notih_, thatPI2 adds
to V¢, in the order in which the process adds these variabldé tdBy our choice ofy*, the total number
of these variables satisfies

L+1<ky* <kb.

Of course,L and&, ..., &y, are random variables.

If £° occurs, then each of the variabies; with (i, j) € Z° occurs in the sequendg, . . ., ... Hence,
there existsamap : 7° — {0,1,...,ké; — 1} such thatf (i, j) < L and®;; = &y, ; forall (i, j) € 7°.
For a givenf let £9( f) denote this event. Then by the union bound,

p[€°] < 3 p[E%(N)] < (ko) T

FiT0—{0,1,....k6;—1}

[£°(H)] - (20)

X p
FT0—{0,1,...,k6:—1}

We claim that
p[E(F)] < max{L|V\ (A1 UNiy)| — ko) 7 (21)

for any f. To prove (21), leZy = f~!(I) be the set of position§, j) € Z° where the variabl€; occurs
(0 <1< L). Moreover, le€)( f) be the event that

a. ®,; = ¢ forall (i, ) € Z, and
b. ®;; # ¢ forall (i,5) € I°\ 7).

As m;_1(i,j) = 1 for all (i,5) € Z7, given F;_; the variablesb,; with (i, j) € Z? are independently
uniformly distributed over/” \ (A;—; U N;_1) by Fact 3.3. Hence, given the evef,_, £0(f), the
variables®;;| with (4, j) € Z are uniformly distributed over the set\ (A;—1 UN;_1 U{&o, ..., &—1})
(for if £2(f) occurs for somer < [, then®,; # &, for all (i, j) € ZP). Therefore, we obtain

p [SP(M N 5B(f)] < max{1,[V\ (A1 UN,_)| —1+1}"F! foranyo <1< L.

v<l

Multiplying these conditional probabilities up for < [ < L < ké;, we obtain (21). Finally, combin-
ing (18), (20), and (21) completes the proof. ]

Corollary 4.4 Foranyt > 1,6, > 0andZ*,Z° C [m] x [k] we have

E [K(T)KP(ZO1{|20\ Zia| < 6} [ Fioa]

-z ko =
< max{L [V (As UNe)[} (max{1,|V\(At_1U/\ft_1)—kdt}) '
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Proof. This is immediate from (17) and Corollary 4.2 and Lemma 4.3. ]

Why does the bound provided by Corollary 4.4 “make sense”8t,Fobserve that the only reason we
need to take the max of the respective expression and oneasige a priori it could happen that, e.g.,
V\ (A1 UN;—1) = 0. Apart from this issue, the first factor basically comes frtira fact that for
each pair(i, j) with 7,1 (i, j) = 1 the variable®,; is uniformly distributed ove# \ (A;—1 U N;_1).
Hence, it seems reasonable that the probability that orfe ®yucequals the variable flipped at tintgs
1/|V \ (Ai—1 UN:—1)|, and that these events occur independently. With respebetsecond factor, a
similar intuition applies. Due to the{|Z; \ Z;_,| < ¢;} factor on the left hand side, at mds}; variables
are added toV; that were not already in;_;. Hence, for eacl®;; with 7;_;(¢,j) = 1 there are now
kd, “good” cases that would makiEy (i, j) = 1. Moreover, as we reveal the, variables, there remain at
least|V \ (A;—1 UN;_1)| — kd; “possible” cases. We will now establish the following.

Proposition 4.5 W.h.p. we have eithe€r- > en or [Dr-| < 22 Fm,

Proof. Let £ be the event thdZ7| < en but|Dz-| > 22~ Fm. Our goal is to show tha [£] = o(1). To
this end, we will decomposé into various ‘sub-events’ that are sufficiently detaileddis to bound their
probabilities via Corollary 4.4. In order to bound the prbitity of £ we will then use the union bound.
As a first step, we need to decompd@saccording to the sequen€gZ; \ Z,_1]);>1 of increments of
the setszZ,. More precisely, le\ be the set of all sequencés= (J,)1<;<7- Of hon-negative integers with
Zth*l 5 < en. Let&(5) bethe eventthdz, \ 2, ;| < ¢, forall1 < ¢ < T* and|Drp-| > 22~*m. If the
event€ occurs, then there is a sequencguch that the everdt(d) occurs. Hence, by the union bound

PlE] < DO PIEE) < A - maxP[£()].

SEA

As itis well known thafA| = (/7" 1) < ("7, we obtain

Ple] < (5”;T*) max P [£(9)] (22)

Fixing any sequencé € A, we now decompose the evef(ty) further according to the precise seft
of clauses that end up iPr-, and according to the precise ‘reason’ why each clauseM belongs to
Dr-. More precisely, lef C [m] be a set of sizg = 22~%m. Moreover, for disjoinQ*, Q° ¢ M x [k]
let £,(Q*, Q°) be the event that

(i, §) = 1 for (i,5) € Q* UQ°, while (i, j) = —1for (i, j) € M x [k] \ (Q* U Q).
Furthermore, for maps* : Q* — [T*], 7% : Q¥ — [T*] let£(5, 7%, 7°) be the event thdZ, \ 2, ;| < &,
foralll1 <t <T7T*and

777*(1‘,‘7‘)71(7:’].) =1 while P, c -A‘r*(i,j) for all (Z,]) € Q"
ﬂro(i,j)fl(iaj) =1 while &;; € NTO(Z',J') forall (,75) € QO.

If the event&(d) occurs, then there exigd*, Q° and 7*, 7" such that the event§(Q*, Q") and
E(6,7*,7%) occur. In fact, if€(5) occurs, thenDy-| > u. Thus, select a subsatl C Dr- of size
w. By the definition ofDr-, eachi € M is Ay U Np«-negative. Thus, for any € [k| such that®,; is
a positive literal there is a timeé < ¢ = t(4,j) < T* such thatr;_1(i,7) = 1 butm(4,75) € A UN;.

If m¢(i,§) € Auij), theninclude(s, j) in Q* and setr* (i, j) = t. Otherwise, addi, j) to Q° and let
79(4,7) = t. Then indeed both,(Q*, Q°) and& (4, 7*, 7°) occur. Thus, by the union bound,

PEGI< Y. PE@,Q)NEW ). (23)
Q*,QO,T*,TO

The event, (Q*, Q") depends only on the signs of the literals and is thereforeneasurable. Fur-
thermore, as signs of the literals;; are mutually independent, we get

P [£(Q*,Q%)] =27~
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Therefore, (23) yields
PlE@) <27h Y P[E@, 70 F) . (24)
Q*.Q0 7+ 70
Thus, we are left to estimate [£(5, 7%, 7°)| F .
We defined the random variablés (-, -), K?(-, -) so that if the evenf (5, 7*, 7°) occurs, then

I ErapnGi)- [] Erowpd)- Hl{\Zt\Zt <6} =1.

(4,5)€Q* (1,7)€QO

In order to apply Corollary 4.4 to the above expression, veegaing to reorder the product according to
the time parameter. More precisely, @f = 7* ~1(¢) and@Qy = 7° ~1(¢). Then

P [5(5,7'*,7'0”}—0} < |: H K *(773) 7 j H KTO(’LJ) 7 j H1{|Zt Zt 1‘ < 51&} = 1|.7:0
(4,5)€Q* (4,§)€QO t=1

T,
E lH Ki(Q)E(Q)) - 1{|Z:\ Zi1| <6} = 11

t=1
If |2\ Zi-1| < &, forallt < T* then|N;_1| + kdy < kY .., 0 < kenforallt < T*. Furthermore,
|Ay| <t <T* = Zforallt > 0. Hence [V \ (Ai—1 UN;_1)| — kb > n(1 — ke — 1/k) > n/1.01 for all
t < T*, provided that > k is large enough. Thus, Corollary 4.4 entails in combinatiith Lemma 2.1
(o
(1.01) H 1.01k670(; 5

P [5(5, T*,TO)|]-'0} = - -

(25)
(1,7)€QP
For anyM C [m] of sizey and any two disjoin®*, Q° C M x [k] let
Q"
1.01 1.01k00(;
* M0y _ LUl . 70 (i,5)
S(M,Q,Q)Z<n) 11 =,
T*,70 (4,7)€QP

with the sum ranging over all maps : Q* — [T*], 7° : Q° — [T*]. Recall that) = T*/n. As
> i<~ 0t < €n, we obtain

Q71 1Q°
1017 1.01k
* 0V < .
S(M,Q*,Q%) < ( ” ) (n) > II 6o

70 (4,§)€Q°

NS Q0 g1\ !
= (LOiT ) <1'Sj’“) (Z@) < (1.010)'9°1 (1.01ek) 9T . (26)
t=1
Combining (24), (25), and (26), we thus get for ang A
PE@)] < 27 ) > S(M,Q", Q")

MC[m]:|M|=p Q*,Q°CMx[k]:Q*NQO=0

— m * 0
< 2 ’W(N) > > (1.016)* (1.01ck)?
q*,q%:q*+¢° <kp Q*,Q%:|Q*|=g*,|Q%|=q°
k .
< 2’W<m> 3 ( 0 e 0)(1.019)‘1 (1.01ke)"
1 e ooy N @ k= 0 =g
§ 1+101(9+k5 g _ 1+101(0+k5) !
- " 2 2
o
1+1.01(0 + ke)\*
< le2“ < + 02( + 5)>] < 0.999" 27)
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provided that: > kg is sufficiently big. Finally, combining (22) and (27), we alit

T 4 0n)\ " ,
P[] < (8”; )0.999ﬂ§<e(5”;m> 0.999% < (e(1+0/£))7"0.999".  (28)

By our assumption thas > £~3 (cf. the first paragraph in Section 3), we have= 22~*m > pn/k >
k~*n. Hence, recalling that < 1/k ande = exp(—k2/?) (cf. (5)), we obtain from (28)

P[] < exp[n(eln(2e/e) - k74)} < exp [n (k: exp(—k?/3) + k4 1n 0.999)} =exp(—Q(n)) = o(1),

provided that: > kg is sufficiently large. ]
Finally, Proposition 3.4 is immediate from Propositions 8nd 4.5.

5 Proof of Proposition 3.6

Throughout this section we keep the notation and the assomspaf Proposition 3.6.

5.1 Outline

The goal in this section is to bound the size of theZgt. There are two reasons why stef{2 may add

a clause index € [m] to the setZ, for somel < t < T*. First, the claus&; may feature at least
variables from the set,_, U{|®,,;,|}, i.e., variables that have been flipped at least once. Sedanday
contain at leash variables that also occur in clauses that were addet] fareviously. The key issue is to
deal with the first case. Once that is done, we can bound théauaf clauses that get included for the
second reason via Lemma 2.4, i.e., via the expansion piep@iftthe random formula.

Thus, we need to investigate how a cladsecomes to contain a lot of variables fray_, U {|®;,;,|}
for somet < T*. There are two ways in which this may occur. Fik&al ksat may have tried to satisfy
®; ‘actively’ several times, i.es, = i for severals < t. Second®; may contain several of the variables
|®,. ;.| flipped at timess < t ‘accidentally’, i.e., withoutWal ksat trying to actively satisfyi. More
precisely, for any > 0 we call a pair(i, j) € [m] x [k]

e t-activeif there isl < s <t such thati, j) = (is, js) andms_1(i,7) = —1.

e t-passiveif there is1 < s < t such that(i, j) # (is,js) but |[®;;] = [®; ;.| andms_1(i,5) €

{~1,1}.

Furthermore, we say thdt € [m] is t-activeif there arek, = k; — 1075k indicesj such that(i, 5)
is t-active. Similarly, we say that is ¢-passiveif there arek; = 10~°k indices; such that(i, j) is t-
passive. These definitions ensure that ary[m/| for which there are at least indices;j € [k] such that
|®,;] € A1 U {|®;,;,|} is eithert-active ort-passive.

To prove Proposition 3.6, we will deal separately withctive andi-passive clauses. Let; be the
number oft-active clauses, and I} be the number of-passive clauses.

Lemma5.1 Foranyl <t < T* we haveP [A; < en/4V |Z,| > en] > 1 —1/n%
We defer the proof of Lemma 5.1 to Section 5.2.
Lemma5.2 Foranyl <t < T* we haveP [P, < en/4V |Z;_1| > en] > 1 —1/n?.
Proof. As in the proof of Proposition 4.5, we are going to break thenéwf interest, i.e.,
E={P, >en/AN|Zi_1| <en},
down into sub-events whose probabilities can be estimatetemma 4.1. Then we will use the union

bound to estimate the probability &f
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For asetM C [m] of u = en/4 clause indices lef (M) be the event thdtz; ;| < en and alli € M
aret-passive. If€ occurs, then there is a s&f such that the everi(M) occurs. Hence, by the union
bound

PEel < Y PrEO < (") maxP (). 29)
MC[m]:|M|=p (u) M

Thus, fix a setM C [m] of sizeu. Let@ C M x [k] be a set such that for ea¢he M there are
preciselyks indicesj € [k] such that(i, j) € Q. LetE(M, Q) be the event thdiZ;_;| < en and all pairs
(1,7) € Q aret-passive. If the everf (M) occurs, then there exists a €gtsuch thai€ (M, Q) occurs.
Therefore, again by the union bound

E\*
Ple(M) < %P[ew,@]s(,%) max P [E(M, Q)] (30)

Foramapr: Q — [t] letE(M, Q, 7) be the event thatZ; | < en and
7(i,7) = min{s € [t] : (i,7) is s-passivé forall (i,7) € Q.

If the event€ (M, Q) occurs, then there is a mapsuch that the everfi(M, @, 7) occurs. Consequently,
for any M, QQ we have

PEM,Q) < Y PIE(M Q7)) <t maxP [E(M,Q,7)]. (31)
Combining (29), (30), and (31), we see that
PlE] < <m>(k )Mtki‘“ max P [E(M,Q,7)]. (32)
1) \ks @7

Hence, fix anyM,Q, 7. Let Qs = 771(s) foranyl < s < ¢, and let*(Q;) be the event that
|®i| = |®i,,| & A1 UN_ forall (4,7) € Qs, and(iy, i) € Qs. If E(M,Q, ) occurs, then the
eventsE’(Q),) occur for alll < s < t. Moreover, the constructioRI0—PI3 ensures thaft4d;| < s, and
that|NV;_1| < k|Zs_1| < kenforall 1 < s < t. Therefore, Lemma 4.1 implies

t

t
() €5(Q) N{INa-a| < kan}] < [[max{1,n—s+1—ken}™9°(33)
s=1

s=1

PE(M,Q,7)] < P

Ass <t <T* < n/k, e = exp(—k?/?), and because we are assuming that  is sufficiently large,
we haven — s + 1 — ken > n/1.001. Hence, (33) yields

PEM,Q,7)] < H max{l,n—s+1-— ksn}f‘Qs‘ < (1.001/n)rks. (34)

s=1

Finally, combining (32) and (34) and recalling tifat 7* /n, we get

m\ [ k\" em (1.001ek0\™]"  [4e2tp /1.001ek0)"]"
< 3H . pks < | —. - < .
el s (N) <k3> ERALO0L/m) < [# ( ks ) ] | ek ( k3 )

By our choice of) we havel.001ekf < 10. Hence, we obtain fok > &, large enough

k I
PlE] < [4efkp k;"“‘“’/ﬂ < exp(—p) = o(1),

thereby completing the proof. a

Proof of Proposition 3.6.In order to bound 2| for 0 < ¢ < T*, we are going to consider a superset
Vi D Z, whose size is easier to estimate. To defihewe let); be the set of all that are eithet-active
or t-passive. Now)/; is the outcome of the following process.
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Initially, let ), = V).
While there is a clausee [m] \ ), such that{j € [k] : |®;;| € N(®y,)}| > A, addi to ).

Comparing the above process with the constructidhl?) we see that indeed
Vi D 2. (35)

Also note that), D Y;_; forall ¢t > 1.
To bound|)|, we proceed by induction oh LetY; be the event that either the random formdia
violates the property (3), dp:| > en. We claim that [Y5] = o(1) and that

PIY;] <P[Y;_i]+2n"2 foralll <t<T* (36)

Since trivially Yy = 0, Yy is simply the event thad® violates (3). Hence, Lemma 2.4 shows directly
that
P [Yo] = o(1). (37)

Now, consider someé < ¢t < T*. Lemmas 5.1 (applied to— 1) and Lemma 5.2 (applied % show that
PlAi+ P, <en/2V|Z_ 1| >en] > 1—2/n?

Furthermore, ifY;_; does not occur, then we know that; 1| < |):—1| < en and that (3) is satisfied. If
in additionA; + P; < en/2, then (3) ensures th&;| < en, and thusY; does not occur. Therefore,

EN
P[Y)] = P[Yi_i+P[Y;\Yii] <P[V;_4]+P [At + P> A 2] < gn} <P[Y,_1] +2/n*

Finally, (36) and (37) yield

P (V-] > en] < P [Yye] < P[Yo] + Y 2/n® = o(1) + 27" n? = o(1).

t=1

In combination with (35), this implies the assertion. m|

5.2 Proof of Lemmab.1

How can a claus@; becomet-active? If this occurs, theWal ksat must have tried ‘actively’ to satisfy
®, at leastks times by flipping one of its variables. But each time, thealle thatWal ksat flipped to
satisfy®; got flipped again because flipping it rendered another clansatisfied.

More precisely, if®,; is t-active, then there exist distinct ‘slotg, . . ., jx, € [k] andtimessy, ..., sk, €
[t] such that(s, j;) is s;-active forl = 1,. .., ks. This means that at the timeg Wl ksat actively tried
to satisfy®; by flipping |®;;,| (( = 1,...,k:). However, adfal ksat had to makek, attempts, each
of the variableg®,;, | with [ < k; must have been flipped once more by tisae;. Hence,|®;;,| occurs
positively in a claus@y, that is unsatisfied at some time< ¢; < s;+;. In particular,h; € Dy, C D;.

Thus, in order to prove Lemma 5.1 we are going to bound thegfnitity that there are at least/4
clauses®; that admitjy, . . ., ji, € [k] such that for each < | < k, there is another claus®;, with the
following properties.

Al. We havesign(®,;,) = —1, and there is an indek e [k] such thasign(®;,;) = 1 and®;,,; = [®;;,].
A2. hy € Dy, i.e., ®y, is A, UN;-negative.

In order to deal withA1 we will need to refine our filtration. Given a subggtC [m] x [k] and a map
g:Q — [m] x [k], we letQ), be the event that

sign(®;;) = —1, sign(®,(;,;)) = 1 and|®;;| = |<I>g(m.)| forall (4,5) € Q.
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Since the literals of the random formufaare independently uniformly distributed, we see that
P[Q,] < 9-1QUI(Q)],,— QI (38)

We considef?, as a probability space equipped with the uniform distrifmutin other words, we are going
to condition on(2,). Further, we define a filtratioiF, ;):>0 onQ, by letting 7, ;, = {ENQ, : € € Fi}.
In other words,F, ; is the projection ofF, onto(2,. Hence, Fact 3.2 directly implies the following.

Fact 5.3 For anyt > 0, anyx € V, and anyi € [m] the eventdo,(z) = 1}, {®; is satisfied undes, },
{x e A}, {i € 2}, {z € N;}, and{T = t} are F, ;-measurable.

Moreover, since the only conditioning we imposé&lpconcerns the literal®, ; with (i, j) € QUg(Q),
Fact 3.3 yields the following.

Fact5.4 Lett > 0. Leté&, be the set of all pairgi, j) € [m] x [k] \ (Q U ¢(Q)) such thatr, (i, j) €
{—1,1}. The conditional joint distribution of the variable$®;;|):; jyce, given F; , is uniform over
(V\ (A; UNY))E:. Thatis, for any magf : & — V' \ (A; UN;) we have

PV(i,j) € & : @il = F(5,5)|Frg) = |V \ (A UNG)[7EL,

Similarly, with respect to the random variabl&s (-, -) and K?(-, -) defined in (15) and (16), Corol-
lary 4.4 implies the following.

Corollary 5.5 Foranyt > 1,46, > 0 andZ*,Z° C [m] x [k] \ (Q U g(Q)) we have

B [K;(T)K)IO1{|Z0\ 2] <0} [ Fpumr] < max{L [V \ (Ao UN_) [}

( ko, >| 0‘
IllaX{l,‘V \(-At—l U./\/;g_l)‘ —k5t} '
As a further preparation, we need the foIIowing lemma.

Lemma5.6 Letl <t < T*. Setu = en/4 and letM C [m] be a set of sizeM| = ;.. Furthermore, let
Q C M x [k],letI C [m] be asetofsizf| < |Q|, andletg : Q — I x [k]. LetE(M, Q, I, g) denote the
event that Z;| < en and the following three statements hold.

a. Forall (i,5) € Q we havesign(®;;) = —1, sign(®,(; ;) = 1, and®(; ;) = |®;;].
b. I CD,.
c. Foreachi € I thereisj € [k] such that(s, j) € g(Q).

ThenP [£(M,Q, I,9)] < 2(T =) (2n)~1Q12= 1% (K]l exp(1.011k0|1]).

Proof. To estimateP [£(M, Q, I, g)], we need to decompose the evéd/, Q, I, g) into ‘more detailed’
sub-events whose probabilities can be bounded directi@oiallary 5.5. To this end, I&E*, Z° be two dis-
joint subsets of x [k]\g(Q), and lett* : Z* — [T*],t° : Z° — [T*] be two maps. Lef (M, Q, I, g, t*,t°)
be the event thdtz;| < en and that the following statements are true.

a. Forall(i, j) € Q we havesign(®;;) = —1, sign(®,(; ;) = 1, and®; ;) = [P;].

b. i If (1,) € T x [K] \ (9(Q) UZ* UT®), thensign(®,) — —1.
i, If (’L,]) S I*, then51gn(<1>”) = ﬂ-t*(i,j)—l(Lj) =1 and@ij S At*(i,j)'
ii. If (Z,]) € 1°, thensign(tﬁij) = Wto(i,j)—l(iaj) =1 and‘in;j € MO(i,j).

c. Foreach € I there isj € [k] such that(i, j) € ¢(Q).
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If the event&(M, Q, I, g) occurs, then there exigt*, Z°,t*,t° such that the ever (M, Q, I, g,t*,t°)
occurs. Indeed, the definition of the gt is such that ifi € Dp-, then for any(i, j) € I x [k] such that
sign(®;;) = 1 we have®;; € Ap- UNp-. Thus, by the union bound,

PIEM,Q,1,9)] < > Y PIEM,QI,g,t"1%]. (39)

T* 7ZO * 7t0

Furthermore, let = (44, ...,d;) be a sequence such th@iz1 §s < en. Let&(6, M, Q, I, g,t*,t%)
be the event thadtZ, \ Z,_ 1| < d, forall 1 < s < t and thatf(M, Q, I, g,t*,t°) occurs. Then by the
union bound,

P[E(M7Q7I7gat*7t0)] < ZP[5(57M7Q7I7gat*at0)]

IN

<T* +en

* 40
o >m§me [£(6,M,Q,1,9,t",1%)] . (40)

The event (5, M, Q, I, g,t*,t°) is sufficiently specific so that we can estimate its probgbéasily.
Namely, if€(, M, Q, I, g, t*, t°) occurs, ther2, occurs and

H K i.5)(0, ) H K*(” i,j H1{|Z\ZS 1| <05 =1. (41)

(4,5) €L (i,5)€Z°

To bound the probability that (41) occurs, we reorder thapob by the time parameter. That is, letting
Ir =t*"1(s), 20 = t°~1(s), we get

P[E(6,M,Q,1,9,t*,t°)| Fy,0]

< H K (5,5(4,7) H K, (4, j H1{|Z \ Zs-1] <85} =11Fy0
(i,5)€T* (i,5)€L° s=1
t

< B[] K:@K@)1{Z.\ 20| < 6. |fg,0] | (42)
s=1

Since for anys < t < T* we have|A,| < s <T* < %, and agN;| < kZ 105 < ken, we see that
|As UNs| + kds < 0.001n for all s < t. Hence, (42) and Corollary 5.5 y|eld

o 101\ %! /1.01ks,\ %!
P[g(57M7Q7I7g7t 7t )|fg¢0] s T n
s=1

" |+12°]
1.01
() II %6 (43)

n o
(i,5)€Z°

A
:H

Furthermore, if the ever (s, M, Q, I, g,t*,t°) occurs, then for alli, j) € I x [k] \ (¢(Q) UZ* UZY)
we havesign(®;;) = —1, while sign(®;;) = 1 for all (i,j) € Z* UZ°. This event isF, ,-measurable.
Hence, as the signs of the literabs; are independently uniformly distributed, we obtain fror8)4

1.01\ F"V7’
P[E(6, M, Q,1,9,t",t°)[Q,] < 27 fx[kl\-q(Q)l( ) kb0 (5.5 (44)
n
(i,7)€Z°
Combining (38) and (44), we get
P[g(évaQaIag7t*at0>] = P[Qg]P[5(57M,Q7I7g,t*,t0)|99]
@l ((LO1) T
10— Tx .
(i,§)€Z°
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As (39) and (40) show, in order to obtath[E(M, Q, I, g)], we need to sum (45) over all possible
choices of, 7+, Z°, t*, t°:

PIE(M,Q.1.9)] < (T*;f”) SCBY Z S PE(,M, Q. 1,g,%,1%)]

T, T0 t*:T*—[t] t0:I0—[t]

T* +en ]_ 01 |I UI *
- ( - )( ~IQIp=lx [kl $ ( ) 7 >0 I #eas
7= .70 t0:70—[t] (4,5)€Z°
, iz Uz ‘ =]
< (T +€n)(2n —1Qlg—I1x k]| Z (101) ¢ 27 (ZM)
£ T* 1'0 s=1
T* .
- ( +€n) (20) 711271 S™ (1.01t/m) T (101ke) T [asY!_, 6, < en
En I*,IO
< (T +€n)< n) 1@ 71 4+ 1.01(0 + ke)) M|
EN
Hence,
T*
PIE(M,Q.1.g)] < 2( jf”) (2n) 7191271 exp(1.011k|716).
as desired. .

Proof of Lemma 5.1Let = en/4 and fix somel < ¢t < T*. Let & be the event thatZ,| < en and
Ay > p. ForasetM C [m] of size|M| = p we let€(M) signify the event that all clausésc M are
t-active. If€ occurs, then there is a s&f of sizey such that (M) occurs. Hence, by the union bound

PlE] < 3 P[e(M)}<(7Z>maxP[5(M)}. (46)

M
McC[m]:|M|=p

To bound the expression on the r.h.s., fix someidetC [m] of sizen. Let Q(M) be the set of all
Q@ C M x [k] such that for each € M we have| {j € [k] : (i,7) € Q}| = ko — 1. Fora setY € Q(M)
let (M, Q) be the event thdiz;| < en and

a. all pairs(i, j) € @ ares(z, j)-active for somes(i, j) < ¢, and
b. for eachi € M there isj’ € [k] such tha{i, j') is s-active at some time satisfying

max s(z,7) <s <t
J:(i,5)EQ (0,9)

If the eventE (M) occurs, then there exist € Q(M) such tha€ (M, Q) occurs. (In fact, i€ (M) occurs,
then by the definition of-active, for anyi € M there are at leadt, indices; such thaf{i, j) is s-active for
somes < t. We can thus lef) contain the pairgi, j) for the ‘earliest'’ks — 1 such indiceg.) Hence, by
the union bound

Ple(M) < S PE(M,Q) < (ka_ 1>”maxp[5(M,Q)]. 47)

Oeo QeQ

Now, fix a setM C [m], |M| = u, and a set) € Q(M). If the eventE (M, Q) occurs, then there exist
1, g such that the ever(M, @, I, g) as in Lemma 5.6 occurs. Indeed, this is precisely what wetpdin
out inAl, A2 above. Thus, by the union bound

k‘gl

PIE(M, Q)] < ZP[ (M, Q. Lgl< > Y PEMQILyg)

v=1 IC[m]:|I|=v g:Q—1Ix[K]
- (ka—1)p PIE(M,Q,1,9)]. 4
< z:: ( ) (kv) [g;\]\:lr,{lga;‘galx[k] [E(M,Q,1,9)] (48)
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According to Lemma 5.6,

PE(M,Q,1,9)] < 2<T ;;En)(Zn)_Q2_|I><[k”exp(1.011kjeu). (49)
Combining (48) and (49), we obtain
T +¢ k2 i
P[E(M,Q)] < 2( . ”) -lel ( )ky ) B2 = DHo=kY 635 (1.011k6v)
v=1
(kg 1),
T +en
< —1QI (ka—1)p
< 2< o >( > (yzk) (k)¢ exp(1.011k0v)
T*+5n ‘Q‘ kZ 1 epn (k: 1)
< 2 ( ) 2= Dk oxp(1.011k6).
en "

Since the largest summand is the one with (k2 — 1)p and ag@Q| = (k2 — 1), We obtain

T* +en) (exp(l+ 1.011k60)p (k2= 1)u
en 2

PIEOM,Q) < m( (50)

Let¢ > 0 be such thaf, * )
get

(2¢)*2—1 and let¢ = exp(1 + 1.011k#). Plugging (50) into (47), we

* (k2*1) *
PlE(M) < 2ku(T “”)( ¢ )“(“) " <ok (T :”‘) (eco)®=" . (1)

ENn k‘g —1 2
Finally, (46) and (51) yield

plel < oku(T 5T (M) e a7 ) [ cen ]
* 1
< %u(T ;an) [4«32’c (Cép )(krz—l):| ) (52)
If p < po=1/25,then
220 (cep) R < exp(—k/100) (53)

for k > kg large enough. Hence, (52) and (53) yield fop k large enough

* * en+1
Ple] < 2k (T ;5") exp(—kay1/100) < g (W) exp(—kaj1/100)
en+1

< 2kp (W) exp(—kap/100)

< exp[2en —enlne — kaop/100 + o(n)]

< exp[n(2e —elne — koe /400 + o(1))] [by our choice ofu]

< exp[—nk2e/401] = o(1), [by our choice of, cf. (5)],
as desired. |
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