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Abstract

Let X1, X2, . . . , Xn be chosen independently and uniformly at random from the unit d-
dimensional cube [0, 1]d. Let r be given and let X = {X1, X2, . . . , Xn}. The random geometric
graph G = GX ,r has vertex set X and an edge XiXj whenever ‖Xi−Xj‖ ≤ r. We show that if
each edge of G is colored independently from one of n+ o(n) colors and r has the smallest value
such that G has minimum degree at least two, then G contains a rainbow Hamilton cycle a.a.s.

1 Introduction

Given a graph G = (V,E) plus an edge coloring c : E → [q], we say that S ⊆ E is rainbow colored
if no two edges of S have the same color. There has been a substantial amount of research on the
question as to when an edge colored graph contains a rainbow Hamilton cycle. The early research
was done in the context of the complete graph Kn when restrictions were placed on the colorings.
In this paper we deal with the case where we have a random geometric graph and the edges are
colored randomly.

In the case of the Erdős-Rényi random graph Gn,m, Cooper and Frieze [5] proved that if m ≥
21n log n and each edge of Gn,m is randomly given one of at least q ≥ 21n random colors then asymp-
totically almost surely (a.a.s.) there is a rainbow Hamilton cycle. Frieze and Loh [10] improved this
result to show that if m ≥ 1

2(n+o(n)) log n and q ≥ (1+o(1))n then a.a.s. there is a rainbow Hamil-
ton cycle. This was further improved by Ferber and Krivelevich [8] to m = n(log n+log log n+ω)/2
and q ≥ (1 + o(1))n, where ω →∞ with n. This is best possible in terms of the number of edges.
The case q = n was considered by Bal and Frieze [3]. They showed that O(n log n) random edges
suffice.

Let X1, X2, . . . , Xn be chosen independently and uniformly at random from the unit d-dimensional
cube [0, 1]d where d ≥ 2 is constant. Let r be given and let X = {X1, X2, . . . , Xn}. The random
geometric graph GX ,r has vertex set [n] and an edge ij for each pair i, j ∈ [n] (i 6= j) satisfying
‖Xi−Xj‖ ≤ r. Here ‖ · ‖ refers to an arbitrary `p-norm, where 1 < p ≤ ∞. We define the length of
an edge ij to be ‖Xi −Xj‖. Throughout the paper we tacitly assume that the points X1, . . . , Xn

are all different, which happens almost surely, and identify the vertex set with X . (We will use
the terms point and vertex interchangeably when referring to an element of X .) Suppose now that
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each edge of GX ,r is given a random color from [q]. We call the resulting edge-colored graph GX ,r,q.
Bal, Bennett, Pérez-Giménez and Pralat [2] considered the problem of the existence of a rainbow
Hamilton cycle in GX ,r,q. They showed that for r at the threshold for Hamiltonicity, q = O(n)
random colors are sufficient to have a rainbow Hamilton cycle a.a.s. The aim of this paper is to
show that q = n+ o(n) colors suffice in this context.

Let θ = θ(d, p) denote the volume of the unit `p-ball in d dimensions, and let

rd =
(2/d) log n+ (4− d− 2/d) log log n+ f

22−dθn
, (1)

for some f = f(n).

Theorem 1. Let r be as in (1) for some f → ∞. Let η > 0 be an arbitrarily small constant and
q = d(1 + η)ne. Then a.a.s. GX ,r,q contains a rainbow Hamilton cycle.

We actually prove a stronger hitting-time result, for which we need some definitions. For n ≥ 3, let

r̂ = inf {r ≥ 0 : GX ,r has minimum degree at least 2} .

Clearly, r̂ is a deterministic continuous function of the random set of points X and thus a random
variable. The random graph GX ,r̂ can be obtained by taking an empty graph on vertex set X and
adding edges one by one in increasing order of lengths until the minimum degree becomes 2 or
more. (If two or more edges have the same length, they should be added all at once to the graph,
but this does not happen almost surely.) In particular, GX ,r̂ has minimum degree at least 2, so the
infimum in the definition of r̂ can be safely replaced by a minimum. The asymptotic distribution
of r̂ is well known, and can be derived from Theorem 8.4 in [14]. Indeed, with r parametrized in
terms of f as in (1), we have

lim
n→∞

P(r̂ ≤ r) =


0 f → −∞
F (α) f → α ∈ R
1 f →∞,

(2)

where F (α) is a continuous distribution function. (An explicit description of F (α) can be found,
e.g., in Corollaries 3 and 4 of [2].) Also well known are the facts that a.a.s. GX ,r̂ is 2-connected [14]
and contains a Hamilton cycle [4, 13]. Motivated by all the above, we now consider the edge-colored
version GX ,r̂,q of GX ,r̂. Our main result asserts that, if we start with the empty graph on vertex
set X and we add randomly colored edges one by one in increasing order of lengths, then (provided
that we use sufficiently many colors) a.a.s. we obtain a rainbow Hamilton cycle as soon as the
minimum degree becomes at least 2.

Theorem 2. Let η > 0 be any fixed constant and q = d(1 + η)ne. Then GX ,r̂,q has a rainbow
Hamilton cycle a.a.s.

Combining this and (2) immediately yields Theorem 1, so we will devote the remainder of the paper
to the proof of Theorem 2.

Proof sketch. We partition [0, 1]d into small cubic cells of side around εr, where ε > 0 is constant
that is chosen to be sufficiently small given η and d, and r is a deterministic function of n which
is a.a.s. slightly below r̂. These cells are classified into types acording to the number of points
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and color repetitions they contain. Then the set of cells is endowed with a graph structure by
connecting every pair of cells at distance slightly less than r. (Note that similar constructions have
been fruitfully used in [2, 4, 6, 13].) In Section 2, we derive some basic properties of this graph
of cells. Then we use a variation of Pósa’s rotation-extension argument to show that most cells
contain a spanning family of ‘not too many’ rainbow paths that avoid certain forbidden colors.
This type of argument has been widely applied in the study of Hamilton cycles in many other
families of random graphs (e.g. the Erdős-Rényi random graph Gn,m [12], random regular graphs
[7], preferential attachment graphs [11]), but so far not before in the context of random geometric
graphs. In Section 3, we introduce and analyze a greedy procedure (Build), which a.a.s. constructs
a rainbow Hamilton cycle in GX ,r̂,q, based on the structure and properties of the graph of cells. An
unusual and interesting feature of this procedure is that it sometimes introduces errors (i.e. color
repetitions) which are recursively fixed by another procedure (Problem-fix), which may in turn
trigger further errors. We show that typically these errors do not accumulate past a certain bound
and the algorithm succeeds.

Note about parameters d and p. Recall that both Theorems 1 and 2 assume d ≥ 2 and
1 < p ≤ ∞. The former assumption is not superfluous as the 1-dimensional case is significantly
different. Indeed, when d = 1, vertices of degree less than 2 are no longer the main obstruction
to the existence of Hamilton cycles (rainbow or not). In fact, even for r well above the sharp
threshold r̂ for the minimum degree being at least 2, one will typically find many empty “gaps”
in [0, 1] of length greater than r between pairs of consecutive vertices of X . These gaps prevent
GX ,r̂ from being connected and thus from having a Hamilton cycle. On the other hand, our results
may still be true for p = 1. The only reason why we exclude the `1-norm case is because that is
required in some of the technical lemmas from earlier papers. More precisely, Lemma 8 (which is
proved in [2, 13]) relies on a result by Penrose (Thm 13.17 in [14]), which asserts that a.a.s. GX ,r̂
is 2-connected. Penrose’s result assumes 1 < p ≤ ∞ for technical reasons in the argument, but it
is plausible that it still holds for p = 1, in which case our results could be extended as well.

Further remarks and open problems. We finish the discussion by observing that our results
are best possible in terms of the number of permitted colors q. Indeed, for dimension d ∈ {2, 3},
if we allow only q = n colors, then a standard coupon collector argument shows that a.a.s. some
colors are still missing on GX ,r̂,q. More precisely, let

r∗ = inf {r ≥ 0 : all n colors appear on GX ,r,n} .

Then a.a.s. r∗ ∼ d
√

2 log n/(θn), and thus
r∗ ≥ (3/2 + o(1))r̂ for d ∈ {2, 3}
r∗ ∼ r̂ for d = 4

r∗ ≤ (5/8 + o(1))r̂ for d ≥ 5.

Similarly, if we consider a slight variation of the model in which the points of X are placed on the
torus Td := Rd/Zd instead of the cube [0, 1]d, then with the analogous definitions of GX ,r̂,q, r̂ and
r∗, we have that a.a.s. r̂ ∼ d

√
log n/(θn) (see Theorem 8.3 in [14]) and therefore r∗ ∼ d

√
2 · r̂. The

difference in r̂ between the two models is explained by the presence of vertices of degree less than
2 near the boundaries of [0, 1]d. In either case, it is conceivable that with exactly q = n colors, as
soon as the minimum degree is at least 2 and we see all the colors, we have a rainbow Hamilton
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cycle a.a.s. We state this as a conjecture for either the cube [0, 1]d or the torus Td models. Let
t1 ∨ t2 := max{t1, t2}.

Conjecture 3. GX ,r̂∨r∗,n has a rainbow Hamilton cycle a.a.s.

We also include a similar statement conditional on the event that GX ,r̂,n has all n colors (which is
a rare event for the cube model and d ∈ {2, 3} or for the torus model and any d ≥ 2).

Conjecture 4. Conditional upon r∗ ≤ r̂, GX ,r̂,n has a rainbow Hamilton cycle a.a.s.

While this paper only discusses rainbow Hamilton cycles, analogous questions can be asked about
rainbow perfect matchings with q = n/2 colors. Let

r̂1 = inf {r ≥ 0 : GX ,r has minimum degree at least 1} .

and (for even n)
r∗1 = inf

{
r ≥ 0 : all n/2 colors appear on GX ,r,n/2

}
.

Conjecture 5. For even n, GX ,r̂1∨r∗1 ,n/2 has a rainbow perfect matching a.a.s.

Conjecture 6. For even n and conditional upon r∗1 ≤ r̂1, GX ,r̂1,n/2 has a rainbow perfect matching
a.a.s.

2 Notation and structural properties

Throughout the paper, d ≥ 2 and an `p-norm ‖ · ‖ on Rd (1 < p ≤ ∞) are fixed. Let η > 0 be an
arbitrary constant (which we will assume to be sufficiently small to satisfy all the requirements in
the argument) and set

q = d(1 + η)ne.

Let Q = [q] denote the set of available colors. Recall that GX ,r̂,q is obtained by assigning to each
edge of GX ,r̂ a random color in Q chosen uniformly at random and independently from all other
choices.

Let ε > 0 be a constant which is assumed to be sufficiently small given our choices of η and d. We
use the standard o(), ω(), O(), Θ() and Ω() asymptotic notation as n→∞ with the following extra
considerations. We do not assume any sign on a sequence an satisfying an = o(1) or an = O(1),
but on the other hand a sequence satisfying an = Θ(1), an = Ω(1) or an = ω(1) is assumed to
be positive for all but finitely many n. Furthermore, the constants involved in the bounds of the
definitions of O(), Θ() and Ω() may depend on d as well as some other parameters, but not on η
or ε. Whenever these constants depend on our choice of ε (in addition to d or other parameters),
we use the alternative notation Oε(), Θε() and Ωε() instead.

Henceforth, let r be defined as in (1) for some arbitrary function f → −∞, f = o(log log n). (The
reason why we take f = o(log log n) is that we plan to mimic some of the definitions in [2] where
this assumption is made, but taking f = o(log n) would also work.) From (2), we have

r ≤ r̂ and r ∼ r̂ a.a.s.

Most of the (colored) edges that we will consider in our argument have length at most r, but we will
need a few longer edges of length up to r̂ to be able to close the rainbow Hamilton cycle. The main
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advantage of working with parameter r instead of r̂ is that the former is deterministic, whereas the
latter is random. Following the construction in [2], we divide [0, 1]d into a set C of N = d(εr)−1ed
d-dimensional cubic cells of side s = 1/d(εr)−1e ∼ εr. We remark that

N ∼ dθn

2d−1εd log n
.

For sake of simplicity, assume that every point in X is contained in one single cell in C (which
occurs almost surely, since cell boundaries have measure 0). The graph of cells GC is a graph with
vertex set C where two cells are adjacent in GC if their centres are at `p-distance at most r − ds.
(Here we assume that ds is much smaller than r by our choice of ε.) By the triangle inequality,
any two different points Xi, Xj ∈ X which are contained in the same cell or in two cells that are
adjacent in GC satisfy ‖Xi −Xj‖ ≤ r, and therefore XiXj must be an edge of GX ,r and a.a.s. an
edge of GX ,r̂. In other words, the vertices contained in one cell or in two adjacent cells in GC induce
a clique in GX ,r. Moreover, note that the set of cells adjacent in GC to a given cell is contained in
an `∞-ball of radius r which has volume (2r)d. Then, since each cell has volume (1 + o(1))(εr)d,
we conclude that

the graph of cells GC has maximum degree Oε(1). (3)

A cell C is dense if |C ∩ X | ≥ ε3 log n. Otherwise it is sparse. The set of dense cells is denoted by
D, and GD is the subgraph of GC induced by the dense cells. The paper [2] shows that a.a.s.

the largest component Γ0 of GD contains N − o(N) cells. (4)

As it is customary in the field, we call Γ0 the giant component of GD. (The proof in [2] is adapted
from an earlier article [13] that uses a less restrictive definition of dense cell.) The cells in Γ0 are
called good. A cell that is not good, but is adjacent (in GC) to a cell in Γ0 is called bad. The
remaining cells are called ugly. Note that bad cells are sparse by definition, but ugly cells may be
dense or sparse. The following two lemmas describe properties that occur a.a.s., and their proofs
are in [2]:

Lemma 7. A.a.s.

P1 |C ∩ X | ≤ log n for all C ∈ C (cf. Lemma 5 in [2]).

P2 There are at most n1−ε/2 bad cells (cf. Lemma 10 in [2]).

P3 There are at most nO(ε1/d) ugly cells (cf. Lemma 10 in [2]).

P4 The maximum degree in GX ,r̂ is at most O(log n) (cf. Lemma 6 in [2]).

Lemma 8 (Lemma 13 in [2]). Let XU denote the set of points in ugly cells, and let A > 0 be an
arbitrary constant. Then a.a.s. GX ,r̂ has a collection of paths P such that

Q1 P covers XU .

Q2 P covers at most two vertices inside each non-ugly cell.

Q3 Every vertex in X that is covered by P is at graph-distance at most 2(20d)d from some vertex
in XU with respect to the graph GX ,r̂.

Q4 For each path P ∈ P, there is a good cell CP such that the two endvertices of P lie in cells that
are adjacent in GC to CP ;
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Q5 Every pair of distinct paths in P are at `p-distance at least Ar from each other.

For a region S ⊆ [0, 1]d, we let V (S) = S ∩ X and E(S) =
(
V (S)

2

)
∩ E(GX ,r̂), i.e. V (S) and E(S)

are the set of vertices and edges of GX ,r̂ that are contained inside of the region S. (Note that this
definition will be slightly modified later in (8), where a few vertices and edges belonging to some
special paths will be removed.) We will typically use the notation V (S) and E(S) when S is a cell
or a union of cells. Recall that any two points in a cell C are at `p-distance much smaller than r or
r̂, and thus V (C) induces a clique in GX ,r̂. A color repetition in S is a pair of edges in E(S) that
receive the same color in GX ,r̂,q. A cell C is rainbow if E(C) is rainbow: that is, C has no color
repetitions.

We now prove some lemmas related to the colorings of cells. Hereafter, the `p-distance between
two cells or between a cell and the boundary of [0, 1]d is measured from the center of the cell(s).

Lemma 9. For any constant A > 0, the following hold a.a.s.

(a) There are at most log4 n non-rainbow cells.

(b) No d-dimensional cube of side at most Ar obtained as a union of cells in C contains 2 color
repetitions.

(c) There are no two non-rainbow cells within `p-distance Ar of each other.

(d) There are no non-rainbow cells within `p-distance Ar of the boundary of [0, 1]d.

(e) There are no non-rainbow cells within `p-distance Ar of any cell that is not good.

Remark. In particular (with A > 1), a.a.s. every non-rainbow cell is good and is only adjacent
in GC to good rainbow cells. Moreover, a.a.s. every cell contains at most one color repetition.

Proof. All the statements in the lemma follow from simple first moment arguments. We will also
make repeated use of the following simple fact, which follows immediately from Markov’s inequality.
Given a random variable Y with Bin(m, t) distribution and any integer 0 ≤ k ≤ m,

P(Y ≥ k) = P
((

Y

k

)
≥ 1

)
≤ E

(
Y

k

)
=

(
m

k

)
tk ≤ (mt)k. (5)

(In other words, the probability of having at least k successful trials is at most the expected number
of sets of k successful trials.)

(a) For a fixed cell C,

P(C is not rainbow | P1) ≤ d(1 + η)neP
(

Bin

(
blog2 nc, 1

d(1 + η)ne

)
≥ 2

)
= O

(
log4 n

n

)
. (6)

Explanation: we choose a color c. Then the number of edges of color c in cell C is dominated by
the stated binomial. We also use (5) with k = 2.

We then have, by the Markov inequality that

P(¬ (a) | P1) ≤ E(number of non-rainbow cells | P1)

log4 n
= O

(
N log4 n

n log4 n

)
= Oε

(
1

log n

)
.
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(b)–(c) Let Q be the set of regions Q ⊆ [0, 1]d such that Q is a d-dimensional cube of side at most
(A + 1)r obtained as a union of cells in C. Note that |Q| = Oε(N) = Oε(n/ log n). Moreover,
assuming P1, |V (Q)| = Oε(log n) and thus |E(Q)| = Oε(log2 n) for each Q ∈ Q. Therefore, we
have that

P(some Q ∈ Q has 2 color repetitions | P1) ≤ |Q|d(1 + η)neP
(

Bin

(
Oε(log2 n),

1

d(1 + η)ne

)
≥ 3

)
+

+ |Q|d(1 + η)ne2P
(

Bin

(
Oε(log2 n),

1

d(1 + η)ne

)
≥ 2

)2

= Oε

(
log7 n

n

)
. (7)

Explanation: The first term is an upper bound on the expected number of triples of edges of the
same color and the second term accounts for double pairs of edges with the same color. We also
use (5) for each term with k = 3 and k = 2, respectively.

Clearly, (7) implies (b). It also implies (c) since any two cells within `p-distance Ar must be
contained in one Q ∈ Q (assuming ε < 1/2).

(d)–(e) Assuming P2 and P3, there are at most 2n1−ε/2 cells that are not good. Also, by a trivial
volume argument similar to the one leading to (3), there are Oε(1) cells within `p-distance Ar of
any given cell. Hence, there are at most Oε(n

1−ε/2) cells within `p-distance Ar of some cell that
is not good. Moreover, there are Oε(1/r

d−1) cells within `p-distance Ar of the boundary of [0, 1]d.
Arguing as in (a), we have that

P(¬ (d) or ¬(e) | P1,P2,P3) = Oε

(
n1−ε/2 + 1/rd−1

)
(1 + η)nP

(
Bin

(
log2 n,

1

(1 + η)n

)
≥ 2

)
= Oε

(
log4 n

nε/2
+

log4 n

nrd−1

)
= o(1).

We remove all the non-rainbow cells (which must be good a.a.s. by Lemma 9(e)) from the giant
component Γ0 of good cells, and obtain Γ1. We argue next that a.a.s. Γ1 remains connected. In
view of that, we will still refer to Γ1 as the giant component.

Lemma 10. The graph of rainbow good cells Γ1 is a.a.s. connected.

Proof. Let C,C ′ be any two cells in Γ1 (i.e. rainbow and good). Since Γ0 is connected, there must
be a C,C ′-path P = (C = C1, C2, . . . , Cm = C ′) of good cells. We want to show that, after deleting
all the non-rainbow good cells, there is still a C,C ′-path in Γ1. Suppose that an interior cell Ci of
path P (i.e. 1 < i < m) is non-rainbow. Let S be the union of all cells different from Ci that are
within `p-distance 2r of Ci. Assuming that the a.a.s. statements in Lemma 9 hold, S is away from
the boundary of [0, 1]d and all the cells contained in S (including Ci−1 and Ci+1) are rainbow and
good. Clearly, S is topologically connected and hence the cells in S induce a connected subgraph
of Γ1. By construction, Ci−1, Ci+1 ⊆ S, and hence we can find a Ci−1, Ci+1-path Q that uses only
cells in S and thus cells that are rainbow and good. Hence, replacing the subpath Ci−1, Ci, Ci+1 in
P by Q, we obtain a C,C ′-walk that avoids Ci. This walk can be easily turned into a C,C ′-path, by
deleting some cells if needed. Note that by construction the new path avoids Ci, and moreover the
only new cells that were added are good and rainbow. Iterating this argument for all non-rainbow
cells in P , we obtain a C,C ′-path in Γ1.
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We now choose a collection of paths P in GX ,r̂ satisfying Q1–Q5, which must exist a.a.s. in view
of Lemma 8. (If there are multiple choices for P, pick one arbitrarily.) We call paths in P ugly.
Let V (P) be the set of points in X covered by ugly paths, and let E′(P) be the set of edges of GX ,r̂
that are incident with some vertex in V (P).

Lemma 11. A.a.s. E′(P) has nO(ε1/d) edges, and it is rainbow colored in GX ,r̂,q.

Proof. Properties P1, P3, P4 and Q3 immediately imply that |E′(P)| = nO(ε1/d). Conditional

upon this, the probability that E′(P) has a color repetition can be bounded by
(
nO(ε1/d)

2

)
× n−1 =

o(1).

In the sequel, we remove all vertices in V (P) from the cells, without changing the original cell
classification into good, bad and ugly. (The argument will first attempt to build a rainbow cycle H
through X \ V (P) and then insert the paths in P into H.) After this operation, Q1 and Q2 imply
that ugly cells will no longer contain any points from X (since they were all on ugly paths and
got removed), while each good cell will contain at least ε3 log n− 2 points from X (since at most 2
points were removed). Note that a.a.s. non-rainbow cells are not affected by this operation, since
they do not contain points in V (P) by Lemma 9(e) (with A > 2(20d)d) and Q3. For convenience,
for each cell C, we redefine V (C) and E(C) to denote the sets of vertices and edges of GX ,r̂−V (P)
contained in C. That is,

V (C) = C ∩ X \ V (P) and E(C) =

(
V (C)

2

)
. (8)

Moreover, let E′(C) be the set of all edges of GX ,r̂ − V (P) incident with some point in V (C).
Finally, we consider the set E′ of all edges of GX ,r̂ that are incident with points in V (P) or with
points in cells that are not good or not rainbow. That is,

E′ = E′(P) ∪
⋃

C/∈V (Γ1)

E′(C). (9)

During the construction of the rainbow Hamilton cycle in Section 3, special care will be required
to avoid repeating colors that already appear in E′. The following result will help us achieve that.

Lemma 12. Let k0 = d20/εe. A.a.s. |E′| ≤ n1−ε/3, and moreover, for every bad or non-rainbow
cell C, fewer than k0 + 2 edges in E′(C) are assigned a color in GX ,r̂,q that is repeated on another
edge in E′.

In fact, we prove something slightly stronger by allowing C to range over all cells, not necessarily
bad or non-rainbow. The reason for stating the lemma only for bad or non-rainbow cells is that
when we use it in Section 3 we will only expose the colors of edges in E′ and assume that the second
a.a.s. conclusion of the lemma holds as stated just for these cells.

Proof. Properties P1–P4 and the a.a.s. claims in Lemma 9(a) and Lemma 11 imply that (eventu-
ally, for large n)

|E′| ≤ nO(ε1/d) +O(log6 n) +O(n1−ε/2 log2 n) ≤ n1−ε/3.

Also, for every cell C, |E′(C)| = O(log2 n). Conditional on all the above properties, the probability
that there is a cell C with k0 edges in E′(C) whose colors in GX ,r̂,q are also used on E′ \E′(C) can
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be bounded by

N

(
O(log2 n)

k0

)(
n1−ε/3

(1 + η)n

)k0
≤ n1+o(1)−k0ε/10 = o(1).

As a result, a.a.s. every cell C has fewer than k0 edges in E′(C) with colors repeated on E′ \E′(C).
To finish the proof, we observe that, in view of Lemma 9(b) (with say A = 1), a.a.s. for every cell
C the set of edges E′(C) contains at most one pair of edges with repeated colors.

Let Gm,p denote the Erdős-Rényi-Gilbert binomial random graph on m vertices where each pair
of vertices is joined by an edge with probability p ∈ [0, 1]. (Here p is unrelated to the parameter
associated to the `p-norm ‖ · ‖ in the definition of the random geometric graph GX ,r̂.) We now
prove a lemma concerning the existence of Hamilton cycles and spanning collections of paths in
Gm,p.

Lemma 13. Let p = p(m) ∈ [0, 1] with p = Ω(1) as m→∞. Then,

(a) P(Gm,p is not Hamiltonian) ≤ e−mp/5 for m sufficiently large.

(b) Let ψ(G) denote the minimum number of vertex disjoint paths that cover the vertices of G.
Then, for fixed k ≥ 1 and sufficiently large m,

P(ψ(Gm,p) > k) ≤ e−kmp/6.

Proof. (The asymptotic notation in this proof is with respect to m → ∞, and we tacitly assume
that m is sufficiently large for every inequality to be true.)

(a) We consider the standard coupling Gm,p ⊇ G1 ∪ G2, where G1, G2 are independent copies of
Gm,p/2. Given a graph G and S ⊆ V (G), let NG(S) denote the disjoint neighborhood of S, i.e. the
set of vertices that are not in S but are adjacent to some vertex in S. Let A1 be the event that,
for every S ⊆ V (G1) with 1 ≤ |S| ≤ m/6, |NG1(S)| > 2|S|. By bounding the expected number of
sets S that violate this condition, we get that

P(¬A1) ≤
bm/6c∑
s=1

(
m

s

)(
m

2s

)
(1− p/2)s(m−3s) ≤

bm/6c∑
s=1

(
me

s
· m

2e2

4s2
· e−mp/4

)s
≤ 1

3
e−mp/5.

Let A2 be the event that G1 is connected. By bounding the expected number of components of
order at most m/2, we show that

P(¬A2) ≤
bm/2c∑
s=1

(
m

s

)
(1− p/2)s(m−s) ≤

bm/2c∑
s=1

(me
s
· e−mp/4

)s
≤ 1

3
e−mp/5.

Now let A3 be the event that G2 has at least µ :=
⌈(
m
2

)
p/2−m7/4

⌉
= (1 + o(1))m2p/4 edges. By

Chernoff’s bound (see e.g. Corollary 21.7 in [9]), P(¬A3) = e−Ω(m3/2).

We will apply Pósa’s rotation-extension argument (see Pósa [15] and also Section 6.2 in [9] for more
details). Following the notation in [9], events A1 and A2 imply that, if G1 is not Hamiltonian, then
there exists a set END ⊆ V (G1) and for each x ∈ END a set ENDx with |END|, |ENDx| ≥ m/6
with the following property. The addition of any edge {x, y} with x ∈ END and y ∈ ENDx (which
we call a booster edge) to G1 results in either increasing the length of the longest path or closing
a Hamilton cycle. Hence, there must be at least

(dm/6e
2

)
such boosters. Moreover, since A1, A2
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are increasing properties with respect to the addition of edges, every non-Hamiltonian supergraph
G′1 ⊇ G1 on vertex set V (G1) must satisfy the same property. Let us condition on events A1, A2

and A3, and consider an enumeration e1, e2, . . . , eµ, . . . of the edges of G2. Suppose that, for some
0 ≤ k ≤ µ− 1, the supergraph G1 + {e1, e2, . . . , ek} of G1 is not Hamiltonian. Then the probability
that ek+1 is a booster is at least

(dm/6e
2

)
/
(
m
2

)
≥ 1/37. (This is because we know that none of

e1, e2, . . . , ek are boosters of G1 + {e1, e2, . . . , ek}.) Thus the probability that we fail to produce
a Hamilton cycle after adding edges e1, . . . , eµ to G1 is at most P(Bin(µ, 1/37) ≤ m) ≤ e−Ω(m2)

(again by Chernoff’s bound). Hence, we conclude that

P(Gm,p is not Hamiltonian) ≤ P(¬A1) + P(¬A2) + P(¬A3) + e−Ω(m2) ≤ e−mp/5.

(b) Let V` be the set of vertices of degree at most ` in G1. Then for `, r = O(1),

P(|V`| ≥ r) ≤
(
m

r

)
P(Bin(m− r, p/2) ≤ `)r ≤ mr

(∑̀
i=0

(
m− r
i

)
(p/2)i(1− p/2)m−r−i

)r
≤ mr+`re−r(m−r−`)p/2 ≤ 1

2
e−rmp/3.

Suppose now that we arbitrarily add edges incident to the vertices of degree at most 3k in G1 so
that the new graph H has minimum degree 3k. (We can follow any fixed deterministic rule to do
that, so H is a well-defined function of G1.) Let A′1 be the event that, for every S ⊆ V (H) with
1 ≤ |S| ≤ m/6, |NH(S)| > 2|S|, and let A′2 be the event that H is connected. Then, arguing as
in (a),

P(¬A′1) ≤
bm/6c∑
s=k

(
m

s

)(
m

2s

)
(1− p/2)s(m−3s) ≤

bm/6c∑
s=k

(
me

s
· m

2e2

4s2
· e−mp/4

)s
≤ 1

2
e−kmp/5.

P(¬A′2) ≤
bm/2c∑
s=3k

(
m

s

)
(1− p/2)s(m−s) ≤

bm/2c∑
s=3k

(me
s
· e−mp/4

)s
≤ e−3kmp/5.

Repeating the same Pósa rotation-extension argument from part (a), it then follows that

P(H ∪G2 is not Hamiltonian) ≤ P(¬A′1) + P(¬A′2) + P(¬A3) + e−Ω(m2) ≤ e−kmp/5.

Now suppose that k ≥ 2. If |V3k| ≤ bk/2c and H ∪G2 is Hamiltonian, then we have ψ(Gm,p) ≤ k,
since deleting all the edges in E(H) \ E(G1) from a Hamilton cycle of H ∪ G2 creates at most
2bk/2c paths. Hence,

P(ψ(Gm,p) > k) ≤ e−kmp/5 + P(|V3k| ≥ bk/2c+ 1) ≤ e−kmp/5 +
1

2
e−kmp/6 ≤ e−kmp/6.

The case k = 1 follows immediately from part (a). This finishes the proof of the lemma.

3 Rainbow Hamilton cycle construction

We now describe how we select our rainbow Hamilton cycle. Firstly, for each point Xi ∈ X , we
expose the cell containing Xi (which determines which cells are good, bad and ugly), and suppose
that properties P1–P3 in Lemma 7 hold. (Note that we do not reveal the exact location of each

10



point Xi in [0, 1]d to avoid conditioning on events of measure 0.) Next, we expose the incidence
structure of graph GX ,r̂, and suppose P4 in Lemma 7 also holds. Moreover, assume there is a
collection of ugly paths P that satisfies Q1–Q5 in Lemma 8. In the case there is more than one
choice for P, pick one arbitrarily. Recall V (P) is the set of points in X covered by paths in P. For
the next part of the argument we will remove all points in V (P) from the cells, and treat them
separately (see (8) and the discussion above it, in Section 2). In view of this, for any good cell
C, |V (C)| ≥ ε3 log n − 2, while for every ugly cell D, |V (D)| = 0. Now we reveal the number
of color repetitions in each cell (which determines which ones are rainbow) without exposing the
actual colors of the edges yet. Assume that all the a.a.s. statements in Lemmas 9 and 10 hold.
In particular, every non-rainbow cell must be good, and the graph of rainbow good cells Γ1 is
connected. Moreover, points in non-rainbow cells are not adjacent in GX ,r̂ to points on ugly paths.
Further, we expose the colors of all the edges in E′ (defined in (9)). Recall that these are the
edges of GX ,r̂ that are incident with points covered by P or with points contained in cells that
are not in Γ1. Recall the definitions of E′(P) and E′(C) in Section 2, as well. We condition on
E′(P) being rainbow (which is a.a.s. true by Lemma 11), and suppose that the a.a.s. conclusions in
Lemma 12 hold. In particular |E′| ≤ n1−ε/3. We conclude this discussion with a crucial observation.
Conditional on all the information about GX ,r̂,q exposed so far, the colors on the edges XiXj with
both endpoints in cells of Γ1 remain uniformly random with the only restriction that, for every cell
C in Γ1, the colors on the edges in E(C) must be all different.

In the remainder of this section, we will a.a.s. build a rainbow cycle H that visits all the vertices
inside rainbow good cells and avoids colors assigned to edges in E′. Next, we will deterministically
extend H to include all the vertices inside bad or non-rainbow cells. Finally, we will insert the ugly
paths into H to create a rainbow Hamilton cycle.

3.1 Rainbow good cells

Our first goal is to build a rainbow cycle that covers all the vertices inside rainbow good cells
and avoids all the colors used on E′. (Recall |E′| ≤ n1−ε/3.) Pick a spanning tree T of the giant
component Γ1 consisting of all the rainbow good cells, and root it at one of its cells C1. Note that
T has maximum degree ∆(T ) = Oε(1) (by (3) and since T is a subgraph of GC), and it contains
N1 cells with N1 ∼ N = Oε(n/ log n), in view of all our earlier a.a.s. assumptions. Suppose that
C1, C2, . . . , CN1 is an enumeration of the cells in Γ1 that follows from a depth-first search of T
from the root cell C1. For each 1 < i ≤ N1, let π(i) denote the index of the parent Cπ(i) of Ci
in this search. For convenience, we write Vi = V (Ci) and Ei = E(Ci). Let mi = |Vi|, and recall
ε3 log n − 2 ≤ mi ≤ log n from our previous a.a.s. assumptions. Also, for i, j = 1, . . . , N1 (i 6= j),
let Ei,j denote the set of edges in GX ,r̂ with one endpoint in Vi and one in Vj .

Below we describe procedure Build, in which we examine the rainbow good cells C1, . . . , CN1 in
this order and, at each step i = 1, . . . , N1, attempt to construct a rainbow cycle Hi ⊆ GX ,r̂,q
through V1 ∪ · · · ∪ Vi that avoids colors on E′. Roughly speaking, at each step i, we find either a
rainbow cycle or a rainbow collection of paths with vertex set Vi and which does not repeat any
colors used on E′ or Hi−1. Then, we patch this cycle or each of these paths into Hi−1 at the
parent cell Cπ(i) by using two edges in Ei,π(i). This creates the new cycle Hi, which is typically
rainbow. Occasionally, though, this patching operation cannot be done without repeating some
colors already used on Hi−1. In that case, our algorithm attempts to fix these errors by making a
small number of additional modifications to Hi, recursively. In the description of procedure Build,
it is often convenient to regard GX ,r̂ as an oriented graph by initially assigning to each edge {x, y}
an arbitrary orientation, xy or yx, which may change over the course of the algorithm. A path or
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a cycle is called directed (with respect to an orientation) if all its vertices have in- and out-degree
at most one. We do not assume paths or cycles to be directed unless explicitly stated.

As we run this procedure we will expose some additional information of GX ,r̂,q, and assume in our
description that certain properties hold (see Assumptions 1–6 below). If any of these assumptions
ceases to be true at any given time, then Build fails and immediately stops. (We will later show
that a.a.s. this does not occur.) Moreover, we claim that some additional properties are satisfied
(see Claims 1–5 below) at the end of each step i = 1, . . . , N1 provided that procedure Build has
been successful so far. These claims are deterministic consequences of all of our assumptions, and
will be proven inductively along with the description of the procedure.

Fix 1 ≤ i ≤ N1, and suppose we have just completed i steps of the algorithm.

Claim 1. Hi ⊆ GX ,r̂,q is a rainbow directed cycle on vertex set V1 ∪ · · · ∪ Vi, and it does not use
any colors assigned to E′.

Claim 2. For every j > i, the procedure has not yet exposed the colors on any edges in Ej∪Ej,π(j).
(In particular, these colors remain uniformly distributed conditional upon Ej being rainbow.)

For convenience, we identify the cycle Hi with its edge set E(Hi), so in particular |Hi| denotes the
number of (oriented, colored) edges in Hi. We will tacitly follow a similar abuse of notation for
other subgraphs of GX ,r̂ (and also for their corresponding edge-colored versions, given GX ,r̂,q).

Claim 3. For every 1 < j ≤ i, |Hi∩Ej,π(j)| = Oε(1). Moreover, for every 1 ≤ j′ < j with j′ 6= π(j),
|Hi ∩ Ej,j′ | = 0.

Each of the cells C1, . . . , Ci is labelled as safe or unsafe (with cell C1 always declared unsafe). Safe
cells will be used to fix errors due to color repetitions. Note that some cells may change their status
from safe to unsafe during the procedure, but never the other way around.

Claim 4. The number of unsafe cells is at most o(N1).

For technical reasons, for each 1 ≤ j ≤ i we select a ‘reasonably large’ matching Mj in Hi ∩ Ej ,
and partition it into two disjoint matchings M ′j and M ′′j of roughly equal size. We say that an edge
e is incident with a set of edges A in a graph if e shares an endpoint with some edge in A.

Claim 5. For every 1 ≤ j ≤ i, the following holds. Mj ,M
′
j ,M

′′
j ⊆ Hi ∩ Ej are matchings with

Mj = M ′j ∪M ′′j and M ′j ∩M ′′j = ∅. These matchings satisfy |M ′j |, |M ′′j | ≥ (ε3/4 + o(1)) log n and

thus |Mj | ≥ (ε3/2 + o(1)) log n. Moreover, if cell Cj is safe, then the procedure has not yet exposed
the colors on any edges in Ej,π(j) that are incident with M ′′π(j).

Procedure Build: We initially assign an arbitrary orientation to every edge in GX ,r̂. First
consider cell C1. We examine the edges in E1 one by one, reveal their color in GX ,r̂,q, and delete
those edges whose color has already been used on E′. (Recall that the colors on E1 are uniformly
distributed conditional upon E1 being rainbow.) Let G1 denote the graph with vertex set V1 and
the edges that remain. Each edge is deleted with probability at most |E′|/

(
|Q| −

(
m1

2

))
= o(1),

and thus (ignoring the orientations of the edges) G1 contains a copy of Gm1,p1 with p1 = 1− o(1).

Assumption 1. G1 is Hamiltonian.
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This holds a.a.s. by Lemma 13(a). (Recall that if any of our Assumption 1–6 fails, then Build

stops and fails.) Then, pick a Hamilton cycle H1 of G1, which must be rainbow by construction,
and modify the orientations of the edges of H1 (if needed) to ensure it is a directed cycle. Next,
select an arbitrary matching M1 of size at least (ε3/2+o(1)) log n contained in the cycle H1 (e.g. by
taking alternating edges in H1), and partition M1 into two disjoint matchings M ′1 and M ′′1 of size
at least (ε3/4 + o(1)) log n each. We label cell C1 as unsafe since we will require all safe cells to
have a parent in T . This finalizes the first step of the procedure. Note that Claims 1–5 are trivially
satisfied with i = 1.

Let 1 < i ≤ N1, and suppose we have successfully run the first i− 1 steps of Build. In particular,
we inductively assume that Claims 1–5 were valid at the end of step i − 1. We now proceed to
describe step i. As in the first step, we reveal the colors of the edges in Ei one by one, and delete
those edges whose color has already been used on E′ or Hi−1. (As before, recall that the colors
on Ei are uniformly distributed conditional upon Ei being rainbow.) Let Gi denote the resulting
graph on vertex set Vi. Each edge is deleted with probability at most

|E′|+ |Hi−1|
|Q| −

(
mi
2

) ≤ n1−ε/3 + n

(1 + η)n− log2 n
=

1 + o(1)

1 + η
≤ 1− η/2 + o(1),

for η < 1. Hence, Gi contains a copy of Gmi,pi with pi = η/2 + o(1). (Here we are again ignoring
the current orientations of the edges.) We say that step i is a Hamiltonian step if Gi contains a
Hamilton cycle (i.e. a cycle through Vi, not necessarily directed). By Lemma 13(a), step i fails
to be Hamiltonian with probability at most e−mipi/5 ≤ n−ε

3η/10+o(1). (This bound is also valid if
i = 1, although a stronger bound was used in the first step of the algorithm.)

Assumption 2. The number of non-Hamiltonian steps up to step i is at most n1−ε3η/11.

Note that the expected number of non-Hamiltonian steps at the end of the procedure is at most
N1n

−ε3η/10+o(1) = o(n1−ε3η/11), so Assumption 2 is a.a.s. valid by the Markov inequality.

If step i is Hamiltonian, we will perform a Cycle-patch step (below).

Assumption 3. If step i is not Hamiltonian then Gi contains a collection of at most ψ0 = d 13
ε3η
e

vertex-disjoint paths that cover Vi.

Note that, by Lemma 13(b), the probability that Assumption 3 fails at step i is at most e−ψ0mipi/6 ≤
n−ψ0ε3η/12+o(1) = o(1/N1). Taking a union bound over all N1 steps in the algorithm, we conclude
that a.a.s. Assumption 3 is always valid. In this case we will perform a Forest-patch step (below).

Swaps and cycle rotations: For the description of the Cycle-patch and Forest-patch steps
below, it is convenient to introduce the following operations in the context of a directed graph where
loops are allowed. Given two non-incident directed edges xy and uv (possibly x = y or u = v), an
xy, uv-swap is the operation that deletes xy and uv and replaces them by xv and uy. Note that the
orientation of the edges xy and uv determines the way in which their endpoints get recombined into
new edges by the xy, uv-swap. We can use swaps to merge or modify directed cycles. For instance,
given two vertex-disjoint directed cycles O1, O2 with xy ∈ O1 and uv ∈ O2, the application of an
xy, uv-swap to O1 ∪ O2 yields one single directed cycle on the same vertex set. (Note that O1 or
O2 could be directed cycles of length 1, i.e. loops, or of length 2, i.e. pairs of anti-parallel edges.)
Moreover, given a directed cycle O of length at least 4 and two non-consecutive edges xy, uv in
O, we can reverse the orientations of all edges along the directed path from y to v in O (so that
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in particular uv becomes vu), then apply an xy, vu-swap, and finally reverse the orientation of vy
to yv. We call this operation an xy, uv-rotation of the directed cycle O. The resulting graph is a
different directed cycle with the same vertex set as O.

Cycle-patch step: If Gi is Hamiltonian, then label cell Ci as safe and pick a Hamilton cycle Di

of Gi. We can assume that Di is a directed cycle, by appropriately modifying the orientations of
the edges if necessary. Note that Hi−1 ∪Di is rainbow by construction and does not use any colors
from edges in E′. Since Di is a cycle with mi ≥ (ε3 + o(1)) log n edges, we can choose a matching
Mi of size at least (ε3/2 + o(1)) log n contained in Di. Moreover, recall that M ′π(i) ⊆ Eπ(i) ∩Hi−1 is

a matching of size at least (ε3/4 + o(1)) log n, by Claim 5 applied to step i− 1. Now let us reveal
the colors on all the edges in Ei,π(i) that are incident with both Mi and M ′π(i). These colors had
not been exposed yet in view of Claim 2 at step i− 1. Our goal is to merge Hi−1 and Di together
into one single larger directed cycle, which we will call Hi. To do that, we will pick appropriate
edges xy ∈ Mi and uv ∈ M ′π(i), and perform an xy, uv-swap to Hi−1 ∪Di. That is, edges xy and

uv are replaced by xu and yv, by appropriately updating edge orientations in GX ,r̂ if needed. (We
could also merge Hi−1 and Di in a different way if we first reversed the orientation of the edges
in Di and then applied an xy, vu-swap instead, but our argument will ignore this alternative.) An
xy,uv-swap is valid if the two added edges, xu and yv, receive different colors in GX ,r̂,q and these
colors have not already been used on E′∪Hi−1∪Ei. Note that, in that case, the cycle Hi resulting
from the swap satisfies the properties in Claim 1.

Assumption 4. There are indeed edges xy ∈ Mi and uv ∈ M ′π(i) such that the xy,uv-swap is
valid.

The probability that a given xy,uv-swap is valid is at least(
1− |E

′|+ |Hi−1|+ |Ei|+ 1

|Q|

)2

≥
(

1− 1 + o(1)

1 + η

)2

≥ η2/2,

for η <
√

2− 1 and large enough n. Since Mi and M ′π(i) are disjoint matchings, the pairs of edges
added in different swaps are disjoint, and thus the events concerning the validity of different swaps
are independent. Hence, the probability that Assumption 4 fails at step i is at most

(1− η2/2)
|Mi||M ′π(i)| ≤ (1− η2/2)(ε6/8+o(1)) log2 n = o(1/N1).

Summing over all N1 potential steps, we conclude that a.a.s. Assumption 4 holds throughout the
procedure. In view of that, we pick a valid xy, uv-swap arbitrarily, apply it to cycles Hi−1 and
Di, and call Hi the resulting cycle. After the swap, we update the matchings as follows. We
delete edge uv from M ′π(i) and also from Mπ(i). Moreover, we delete xy from Mi, and partition the

resulting matching Mi into two disjoint matchings M ′i and M ′′i of size at least (ε3/4 + o(1)) log n
each. This finalizes step i. We now verify that Claims 1–5 remain valid at the end of this step. By
construction, Hi satisfies all the properties in Claim 1. Claim 2 is also true since we did not expose
the colors on any edge incident with any vertex in Vj for j > i. Moreover, since the only edges in
Hi \Hi−1 with endpoints in different cells are xu and yv, then

|Hi ∩ Ej,j′ | =


|Hi−1 ∩ Ej,j′ | for 1 ≤ j′ < j ≤ i− 1

2 for j = i and j′ = π(i)

0 for j = i and j′ 6= π(i),
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which implies that Claim 3 remains valid. Claim 4 still holds since we did not label any new
cell unsafe. Matchings Mi,M

′
i ,M

′′
i introduced at this step satisfy the properties in Claim 5 by

construction. Note that we did not expose the colors of any edges in Ei,π(i) incident with M ′′π(i).

Matchings Mj ,M
′
j ,M

′′
j with j < i satisfied Claim 5 at the previous step, but we must take into

account that the sizes of matchings Mπ(i),M
′
π(i) were decreased by one. However, each matching can

only be affected at most ∆(T ) = Oε(1) times througout the procedure as a result of a Cycle-patch

step, so Claim 5 holds.

Forest-patch step: Otherwise, suppose Gi is not Hamiltonian. In that case, we label cell Ci as
unsafe. A linear forest is a graph whose connected components are paths. By Assumption 3, we can
pick a spanning linear forest Li of Gi with at most ψ0 components. Note that Hi−1 ∪Li is rainbow
by construction and does not use any of the colors used on E′. Since Li consists of at most ψ0 paths
with a total of at least mi − ψ0 ≥ (ε3 + o(1)) log n edges, we can choose a matching Mi of size at
least (ε3/2 + o(1)) log n contained in Li, and then partition Mi into two disjoint matchings M ′i ,M

′′
i

of size at least (ε3/4 + o(1)) log n in any arbitrary way. Moreover, recall that M ′′π(i) ⊆ Eπ(i) ∩Hi−1

is a matching of size at least (ε3/4 + o(1)) log n, by Claim 5 applied to step i− 1.

Our goal is to patch each of the path components of Li into Hi−1. For each path component P of
Li, we reveal the colors on all the edges in Ei,π(i) that are incident with both an endpoint of P and
some edge in M ′′π(i). These colors had not been exposed yet in view of Claim 2 at step i− 1. Then,

we apply a Path-patch sub-step (below) to this path P . If successful, this sub-step extends cycle
Hi−1 to a larger rainbow cycle that contains P and does not use any colors previously used on E′.
For convenience, we still call this new cycle Hi−1, but will rename it to Hi at the end of the step
when all the paths of Li have been inserted.

Path-patch sub-step: Let u, v be the endpoints of path P in cell Ci (possibly u = v). We can
assume that path P is directed, say from v to u, by appropriately modifying the orientation of
the edges if necessary. Our goal is to patch P into Hi−1. To do that, we will pick an appropriate
edge xy ∈ M ′′π(i), delete xy from Hi−1, and add edges xv, uy to join directed paths Hi−1 − xy and

P . (As usual, we update the orientations in GX ,r̂ of the two added edges xv, uy, if needed.) By
analogy with the Cycle-patch step, we can regard this operation as performing an xy, uv-swap to
Hi−1 ∪ (P + uv), where P + uv denotes the directed cycle obtained by adding edge uv to path P .
(If u = v, then P + uv is simply a loop uu; if P consists of one single edge vu, then we simply
regard P + uv as a pair of anti-parallel edges.) Note that the way P is inserted into Hi−1 depends
on the orientation given to P . (For simplicity, our procedure only considers one of the two possible
ways of doing that.)

Given an edge xy ∈ M ′′π(i), let c1 and c2 denote the colors assigned in GX ,r̂,q to the edges that

would be added at the end of an xy, uv-swap (i.e. xv and uy). If color ck is repeated on an edge
ek ∈ Hi−1 for some k ∈ {1, 2}, then we say that the xy, uv-swap causes a problem at edge ek or
simply that ek is a problem edge (relative to that particular swap and Hi−1). Note that each color
ck appears on at most one edge of Hi−1 (since Hi−1 is rainbow), and therefore an xy, uv-swap
causes at most two problems. We say that the xy, uv-swap is ideal if colors c1 and c2 are different
from each other and do not appear on any edges in E′ ∪ Hi−1 ∪ Ei. (In particular, ideal swaps
create no problem edges.) On the other hand, the xy, uv-swap is acceptable if it is not ideal but the
following conditions hold: 1) colors c1 and c2 are different; 2) c1 and c2 do not appear on any edge
in E′∪Ei; 3) each ck is used at most once on Hi−1 (note that this condition is redundant since Hi−1
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is rainbow, but it will be useful later on when we consider acceptable swaps in a slightly different
context that allows a few color repetitions); 4) if color ck is used on some edge ek ∈ Hi−1 for some
k ∈ {1, 2} (i.e. ek is a problem edge), then ek ∈ Ejk for some safe cell Cjk ; and 5) if both colors
c1, c2 are respectively used on edges e1, e2 ∈ Hi−1, then the safe cells Cj1 and Cj2 containing these
edges (as defined in condition 4)) must be different. Later on, we will consider acceptable swaps in
a context where Hi−1 may already contain some additional edges labelled as problems, which are
located at different safe cells. In view of that, it is convenient to reword condition 5) as follows: a
problem edge created by the xy, uv-swap cannot be contained in the same cell as another problem
edge (relative to that swap or already present in Hi−1). Finally, the xy, uv-swap is forbidden if it
is neither ideal nor acceptable.

Assumption 5. Not all the xy, uv-swaps for xy ∈ M ′′π(i) are forbidden. (Hence there is at least

one swap that is ideal or acceptable.)

We defer the proof that Assumption 5 is valid a.a.s., until later.

First suppose that there exists an edge xy ∈ M ′′π(i) such that the xy, uv-swap is ideal. Pick one

such edge xy arbitrarily, and apply the xy, uv-swap to Hi−1 ∪ (P + uv). This inserts P into Hi−1.
The resulting cycle, which we still call Hi−1, is directed and rainbow by construction and does not
contain any colors used on E′. After performing the swap, edge xy is removed from matching M ′′π(i)

and thus from Mπ(i). Otherwise, if there is no ideal swap available, pick an arbitrary xy ∈ M ′′π(i)

such that the xy, uv-swap is acceptable (there must be at least one by Assumption 5). By definition,
for at least one k ∈ {1, 2} (and maybe for both), color ck already appears on one edge ek ∈ Hi−1

which is labelled as a problem edge. We then apply the xy, uv-swap to Hi−1 ∪ (P + uv), and
remove edge xy from the matchings M ′′π(i) and Mπ(i). In this case, the new cycle obtained after the

swap, which we still denote by Hi−1, is directed and contains no colors used on E′, but it is not
rainbow since it has one or two color repetitions, one per problem edge. We now attempt to make
Hi−1 rainbow by taking a Problem-fix sub-step (below) for each problem edge ek. This procedure
recursively applies cycle rotations to Hi−1, each one of which removes one problem edge but may
in turn create at most two new problem edges.

Assumption 6. Problem-fix successfully terminates after at most ξ = d17/(η2ε3)e recursive
iterations.

We defer the proof that Assumption 6 is valid a.a.s., until later. Note that in view of this as-
sumption, Hi−1 never contains more than ξ problem edges, since each problem edge triggers an
iteration of Problem-fix. We will show that, after all the recursive iterations of Problem-fix in
the Path-patch sub-step successfully terminate, the resulting cycle Hi−1 is directed and rainbow,
includes path P and does not share any colors with E′. This ends the Path-patch sub-step. If P
was the last path of Li to be inserted, then rename Hi−1 to Hi.

Problem-fix sub-step: Recall that Hi−1 is a directed cycle, but not rainbow. However, all its
color repetitions are due to the presence of problem edges. Also recall that Hi−1 may contain up to
ξ problem edges in view of Assumption 6. Moreover, since problem edges originate from acceptable
swaps, they must all lie in different and safe cells by construction.

Suppose that we are trying to fix a problem edge uv ∈ Hi−1 ∩Ej for some j ≤ i− 1. In particular,
the cell Cj containing that edge must be safe, and thus by Claim 5 the colors on the edges that are
incident with uv and M ′′π(j) have not yet been exposed. Our plan is to perform an xy, uv-rotation
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of Hi−1 for some suitable xy ∈ M ′′π(j). (Note that uv and xy are not incident, since they are

contained in different cells.) This operation amounts to reversing the orientation of some edges
(including uv to vu) and applying an xy, vu-swap. For simplicity, we will only discuss the choice
of the xy, vu-swap for xy ∈M ′′π(j), and assume that the edge orientations are adjusted as required

by the xy, uv-rotation, so the resulting cycle (which we still call Hi−1) is directed.

We essentially follow the same strategy as in the Path-patch sub-step. We reiterate Assumption 5
here, and suppose that not all the xy, vu-swaps are forbidden. (Otherwise, Build fails.) Then,
we first attempt to perform an ideal xy, vu-swap for some xy ∈ M ′′π(j), if possible, and otherwise
use an acceptable one. In the former case, the corresponding xy, uv-rotation successfully removes
the problem edge uv from Hi−1 while not creating any new problems. In the latter case, we also
get rid of uv, but add one or two new problem edges (and thus color repetitions) to Hi−1. At the
end of either case, we further delete edge xy from the matchings M ′′π(j),Mπ(j), and remove edge uv

from any of the matchings Mj ,M
′
j ,M

′′
j that may contain it (possibly none of them). Finally, we

update the status of cell Cj from safe to unsafe to guarantee that it will never host other problem
edges at any other step of the algorithm. If the resulting directed cycle Hi−1 has no problem edges
left, then we successfully terminate Problem-fix. Otherwise, we recursively apply Problem-fix to
one of the remaining problem edges. With Assumption 6 in mind, we only allow up to ξ recursive
iterations arising from one Path-patch sub-step. Otherwise, Build fails.

This ends the description of the Forest-patch step (and all its corresponding sub-steps), which is
taken at step i if Gi is not Hamiltonian. We proceed to verify that at the end of that step Claims 1–
5 remain valid. Claim 1 holds by construction, inductively assuming that it was true at step i− 1.
Indeed, after inserting all paths from Li into Hi−1 and recursively fixing all the problem edges, Hi

is a directed rainbow cycle spanning V1∪· · ·∪Vi and avoiding all colors that appear on E′. Claim 2
also remains valid since only colors on edges in Ei∪

⋃
1<j≤iEj,π(j) were exposed at step i. To verify

Claim 3, note that |Hi ∩ Ej,j′ | = |Hi−1 ∩ Ej,j′ | for each 1 ≤ j′ < j ≤ i − 1, unless j′ = π(j) and a
problem edge was created in Cj during step i, in which case |Hi ∩ Ej,π(j)| = |Hi−1 ∩ Ej,π(j)| + 2.
Moreover, |Hi ∩Ei,π(i)| ≤ 2ψ0 and |Hi ∩Ei,j | = 0 for j 6= π(i). Hence, Claim 3 follows by induction
and from the fact that a cell can host at most one problem edge during the whole procedure. Now
recall that C1 is always unsafe and that a cell Cj (1 < j ≤ i) is unsafe at the end of step i only in the

following two situations: a) step j was not Hamiltonian (there are at most n1−ε3η/11 such steps, by
Assumption 2); or b) step j was Hamiltonian (and thus Cj was initially declared safe), but then Cj
became unsafe due to a problem edge arising from a later non-Hamiltonian step (there are at most
n1−ε3η/11 non-Hamiltonian steps, by Assumption 2, and each triggers at most ξ problem edges,
by Assumption 6). Hence, there are at most 1 + n1−ε3η/11 + ξn1−ε3η/11 = o(N1) unsafe cells, and
Claim 4 holds. Next we verify Claim 5 at the end of step i, inductively assuming that it was true
at the previous step. Note that matchings Mi,M

′
i ,M

′′
i created in the Forest-patch step satisfy

all the requirements by construction (recall that Ci is declared unsafe, so the last condition in the
claim is trivially true). We need to check that Mj ,M

′
j ,M

′′
j (for 1 ≤ j ≤ i − 1) still meet all the

conditions at the end of step i. During that step, the sizes of matchings Mπ(i) and M ′′π(i) decreased
by at most ψ0 due to the insertion of the paths of Li into Hi−1, but this can happen at most
∆(T ) = Oε(1) times throughout the entire procedure. Moreover, for each cell Cj (1 < j ≤ i − 1)
containing a problem edge at step i, we decreased the sizes of Mj ,M

′
j ,M

′′
j by at most one (but this

can happen only once in the procedure), and likewise the sizes of Mπ(j),M
′′
π(j) were decreased by one

(but this can happen at most ∆(T ) = Oε(1) times). We excluded j = 1 above since C1 is unsafe,
and thus never contains problem edges. Hence, by induction, |M ′j |, |M ′′j | ≥ (ε3/4 + o(1)) log n and

|Mj | ≥ (ε3/2 + o(1)) log n for all 1 ≤ j ≤ i. Finally, all the cells Cj (1 < j ≤ i − 1) for which we
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exposed the colors on the edges in Ej,π(j) incident with M ′′π(j) at step i were relabelled unsafe, and
therefore the last condition in Claim 5 remains valid.

We have shown that Claims 1–5 hold throughout the N1 steps of procedure Build as long as it does
not fail: that is, under Assumptions 1–6. In particular, at the end of the N1-th step, by Claim 1,
we obtain a rainbow cycle HN1 spanning all the vertices in rainbow good cells and avoiding all
the colors used on E′. It only remains to show that Assumptions 5 and 6 hold a.a.s. through all
the steps (since Assumptions 1–4 have already been verified) in order to conclude that procedure
Build succeeds a.a.s. To do so, we will bound the probability that a given swap in a Path-patch

or a Problem-fix sub-step is forbidden and the probability it is not ideal.

Let 1 < i ≤ N1, and suppose that step i is non-Hamiltonian (i.e. the procedure performs a
Forest-patch step). Let u, v ∈ Vj be the endpoints of the problem edge to be fixed in a
Problem-fix sub-step within that step with j ≤ i− 1 or the endpoints of the path to be patched
in a Path-patch sub-step with j = i. Given xy ∈ M ′′π(j), the xy, uv-swap is forbidden if, for some

k ∈ {1, 2}, color ck is equal to c3−k or one of the repeated colors on Hi−1 (there are at most ξ of
those, by Assumption 6, since each color repetition is due to a problem edge) or if ck appears on
any of the following edges: 1) edges in E′ ∪ Ei (where |E′ ∪ Ei| ≤ n1−ε/3 +

(
logn

2

)
, by an earlier

bound on |E′| and P1), 2) edges in Hi−1 contained in unsafe cells (there are o(N1 log n) of those
edges, by Claim 4 and the fact that each unsafe cell contains at most log n edges of Hi−1 — by P1
and since Hi−1 is a cycle), 3) edges in Hi−1 with endpoints in different cells (there are Oε(N1) of
those, by Claim 3) or 4) edges in Hi−1 and inside a safe cell containing another problem edge (there
are at most ξ log n of these, by Assumption 6, P1 and the fact that Hi−1 is a cycle). Hence, the
probability that a given xy, uv-swap is forbidden is at most

2

(
1 + ξ + |E′|+

(
logn

2

)
+ o(N1 log n) +Oε(N1) +Oε(log n)

|Q|

)
= o(1).

Since M ′′π(j) is a matching, events concerning different swaps are independent, and thus the proba-
bility that all the swaps are forbidden is

(o(1))
|M ′′

π(j)
| ≤ (o(1))(ε3/4+o(1)) logn = n−ω(1) = o(1/N1),

by Claim 5. Therefore, summing this bound over all N1 potential steps times the at most (1 + ξ)
possible Path-patch or Problem-fix sub-steps within each step, the probability that Assumption 5
fails at some point in the algorithm is o(1). On the other hand, given xy ∈ M ′′π(j), recall that the
xy, uv-swap is ideal if colors c1 and c2 are different from each other and do not appear on any edges
in E′ ∪Hi−1 ∪ Ei. Hence, the probability that a given xy, uv-swap is not ideal is at most

1−

(
1−

1 + |E′|+ n+
(
mi
2

)
|Q|

)2

= 1−
(
η + o(1)

1 + η

)2

≤ 1− η2/2

(for 0 < η <
√

2 − 1 and large enough n). Thus, the probability that we are forced to pick an
acceptable swap at a given Path-patch or Problem-fix sub-step is at most

(1− η2/2)
|M ′′

π(j)
| ≤ (1− η2/2)(ε3/4+o(1)) logn ≤ n−η2ε3/8+o(1),

again by Claim 5. Note that each acceptable swap introduces one or two new problem edges, which
in turn require recursive iterations of Problem-fix. Then, the probability that from one single
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Forest-patch step we create ξ problems (which requires picking at least dξ/2e acceptable swaps)
is at most

O(n−ξη
2ε3/16+o(1)) = o(1/N1),

where we use the fact that ξη2ε3/16 > 1. So we expect o(1) violations of Assumption 6 in the N1

steps of the algorithm, and thus Assumption 6 holds a.a.s. by Markov inequality. This completes
the analysis of Build, and shows that a.a.s. we obtain a rainbow directed cycle H = HN1 through
all the vertices inside rainbow good cells that avoids all the colors used on E′.

3.2 Bad or non-rainbow cells

Suppose that all the earlier a.a.s. statements in the paper hold (see the discussion at the beginning
of Section 3) and also that procedure Build succeeds at building the rainbow directed cycle H.
(Here we assume that the edges of GX ,r̂ are oriented as in Section 3.1.) Recall that H does not use
any colors on E′, which is the set of edges of GX ,r̂ that are incident with a point in a cell that is
not good or not rainbow or are incident with a point in an ugly path. We will extend H by adding
the points in cells that are either non-rainbow (and thus good by Lemma 9(e)) or bad, one cell at
a time. We will do that deterministically, given all our a.a.s. assumptions.

Let C be a cell that is bad or non-rainbow. By the definition of bad cell and by Lemma 9(e), C must
be adjacent in the graph of cells GC to some rainbow good cell Ci (for some 1 ≤ i ≤ N1). In view of
Claim 5, at the end of procedure Build, H ∩ Ei contains a matching Mi of size |Mi| = Ωε(log n).
An edge in E′(C) (i.e. incident with some point in V (C)) is labelled dangerous if its color in GX ,r̂,q
is repeated on some other edge in E′. By Lemma 12 there can be at most k0 +1 = Oε(1) dangerous
edges in E′(C). Suppose first that V (C) contains more than 2k0 + 5 points. Since V (C) induces a
clique in GX ,r̂, we can find k0 +2 edge-disjoint spanning cycles of that clique (for instance, consider
the well-known Walecki construction described in [1]). At least one of these cycles does not contain
any dangerous edges. Pick one and call it HC . We can assume that HC is a directed cycle by
adjusting the orientations of its edges as needed. Now pick an edge uv ∈ HC and an edge xy ∈Mi

with the property that xy is not incident with any dangerous edge in E(C ′). (We have at least
|Mi| − k0 − 1 = Ωε(log n) choices for xy, since a dangerous edge in E(C ′) is incident with at most
one edge in Mi.) Then, by applying an xy, uv-swap to HC ∪H, we merge HC and H into one larger
rainbow directed cycle that we still call H. After the swap, delete xy from Mi. Otherwise, if V (C)
contains t ≤ 2k0 +5 points v1, . . . , vt, then pick t different edges x1y1, . . . , xtyt in Mi such that each
xjyj is not incident with any dangerous edge in E′(C). As before, we have plenty of freedom to
do this, since we can choose from a pool of at least |Mi| − k0 − 1 = Ωε(log n) edges. Then, each
vertex vj (1 ≤ j ≤ t) is inserted into H by replacing xjyj by the directed path xjvjyj , ajusting edge
orientations if needed. The resulting cycle, which we still denote by H, is directed and rainbow by
construction and includes all the points in V (C). After doing that, we delete edges x1y1, . . . , xtyt
from the matching Mi.

We repeat the same operation for every bad or non-rainbow cell C, one cell at a time, until H covers
all vertices of X that are not in ugly paths. Note that, since the graph of cells has maximum degree
∆(GC) = Oε(1) (from (3)), for each good rainbow cell Ci (1 ≤ i ≤ N1), the corresponding matching
Mi may loose at most (2k0 + 5)∆(GC) = Oε(1) edges in total, so we still have |Mi| = Ωε(log n)
throughout this procedure, as required. Moreover, the edges that were used to extend H must have
all different colors and do not repeat colors from edges incident with ugly paths, thanks to the fact
that we did not choose any dangerous edges. Therefore, we eventually obtain a rainbow directed
cycle H that covers all vertices in X \ V (P) and avoids all colors on E′(P).
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3.3 Ugly paths

It only remains to patch the ugly paths into H. Let P be the collection of ugly paths as in Lemma
8. For each path P ∈ P, let u and v be the endpoints of P , and assume that P is directed from
v to u by adjusting the orientations of its edges appropriately if necessary. Let CP be a good
cell as in Q4, which must be also rainbow by Lemma 9(e) and Q3. So, using the notation from
Section 3.1, CP = Ci for some 1 ≤ i ≤ N1. Pick any edge xy from the matching Mi. (There are
|Mi| = Ωε(log n) choices.) Note that both x and y are adjacent with u and v in GX ,r̂ by our choice
of CP . By applying an xy, uv-swap to H ∪ (P +uv), we insert P into H. The resulting cycle, which
we still call H, is directed and rainbow, since the set of edges E′(P) incident with ugly paths is
rainbow by Lemma 11 and H does not use any colors appearing on E′(P). We can repeat this
operation for each P ∈ P, noting that each rainbow good cell Ci will be used to patch at most one
ugly path in view of Q5. Hence, we eventually obtain a rainbow (directed) Hamilton cycle H of
GX ,r̂,q. This completes the proof of Theorem 2.
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