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We discuss the relationship between Gilmore-Lawler lower bounds with decomposition for the
quadratic assignment problem and a lagrangean relaxation of a particular integer programming
formulation

1. Introduction

Let m be a positive integer and M ={l,...,m}. The Quadratic Assignment
Problem (QAP) can be formulated as

minimise Z E E X Aipig XipXig it E E bipxipa (1 -I)
ieM peM jeM qeM ieEM peM

subject to Y. x;, =1, peM, (1.2a)
ieM
Y x,=1, ieM, (1.2b)
peM
Xp=0orl, LpeM. (1.2¢)

It is known to be NP-hard and indeed even moderately sized problems with say
m =30 cannot yet be solved in a routine manner.

Surveys of applications and approaches to this problem can be found in Gilmore
[10]; Lawler [14]; Nugent, Vollmann and Ruml [16]; Bazaraa and Elshafei [1];
Bazaraa and Sherali [3]; Los [15]; and Burkard and Stratmann [5].

As X, Xjp = X Xig =0 for i # jand p# g in a solution to (1.2) and a term a;,,, X;, X;, =

QjpipXjp can be added to the linear term one can assume that

ipip
i =0 fori=jorp=gq. (1.3)

We will be considering transforming the g, to @,,, and some comments will be
made on the desirability of ensuring that the &, satisfy (1.3).

A particular special case of this problem is the Koopmans-Beckmann QAP [13]
where we have

ﬂ,‘qu = Czj d:m,l for i; 28 jy qe M: (l 4)

*This author’s work was supported by the University of London Scholarship Fund.

0166-218X/83/0000-0000/$03.00 © 1983 North-Holland



90 A.M. Frieze, J. Yadegar

and corresponding to (1.3) we can assume
ci=d,,=0 foripeM. (1.5)

Several authors have proposed branch and bound algorithms for solving this
problem. One of the earlier approaches was described independently by Gilmore
[10] and Lawler [14]. Recently several researchers including Burkard and Stratmann
[5]1, Edwards [6] and Roucairol [17] have proposed combining a decomposition of
the coefficients ¢;;, d,, into &; +A;+4;, d,, + v, + 0, in an attempt to reduce the
quadratic coefficients to C‘,-J;EI’,,(, and to then apply the Gilmore-Lawler method
[10, 14].

The above authors propose different methods for choosing the 4, g, v, ¢ none of
which are provably the best in the sense of giving the best possible lower bound.

The main purpose of this paper is to link this method to a lagrangean relaxation
approach (see for example, Fisher [7] or Geoffrion [8]) which has the possibility of
computing a stronger lower bound.

In the next section we discuss the Gilmore-Lawler bound with decomposition and
in the final section we describe some integer programming formulations of the QAP
together with a particular lagrangean relaxation.

2. Gilmore—Lawler bounds with decomposition

Let «, fi, y, & be real vectors of dimension m3. Let

Aipjq = Aipjq — Upjg _ﬁ.'_‘,"q — Yipg — 5;‘”‘ fori, p,q, jeM. (2.1)
Substituting (2.1) into (1.1) transforms the objective function of the QAP into
E E E E, ﬁiquxipqu it E E Eif}xf]) (22)

ieM peM jeM geM ieM peM
where

5{0 = br'p +* E aqip =t E ﬁjl:f) i }: Pipq T E 61})_;’ .
qeM JeEM qeM JjeM
We have used the fact that (1.2) implies

E E E Effsipjxip)‘}qzz E (

ij’)j Xjp ©tc.
ieM peM jeM geh ieM peM M

JE

Next for i, pe M let

Jp=minimum Y ¥ 2, 2.3)
JjeEM geM
subject to ), z;, =1, geM, (2.4a)
JeM
Yogp =1, ©ijeM, (2.4b)
qeM
Zj;=0or1, LgeM, (2.4c)
Zp=1 (2.4d)
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It is clear that for all i, pe M

f}px,-f, = ( Z EI a,!,j(;xjf;)X;p,

JeEM qeN

if (1.2) holds and so the expression (2.2) is bounded below by
GLB(&, ﬁs }’s J) = minimum E E (]l.p + 51‘])))‘_.‘.{): (2'5)

ieM peM

subject to (1.2).

We show later that computing bounds when (1.4) holds by decomposing the ¢;;,
d,, is a particular case of the above.

We show first however that y and § are redundant in (2.5).

Let ¢ : M — M be the permutation corresponding to the optimal solution to (2.5),
i.e. x(i, (i) =1 (for notional clarity we temporarily abandon subscripting and use a
more functional notation) in the optimum solution to (2.5). Similarly define
w(i, p, J) for i, p, je M by z (J, w(i, p, j)) =1 in the optimum solution to (2.3).
Thus

GLB(a, B, 7, 0) = .)_;r (JG (D) + b0, 0(i)))
=1 ( L al, (), Js w o), ) + bG, w(i)))-

ieM jeM

In the above expression the contribution from p is

jg{ (;_ZM Y@, (i), w(i, o), /) +”§” v, (i), q)) (2.6)
:h;! 0=0
and the contribution from 4§ is
,e):(; (_,-EEM o, 9(i), J) +,-Z:‘w ot (i), j)) =0 2.7)

Note that (2.6) and (2.7) are identities independent of ¢ and . Thus the value of
GLB does not depend on y, 4.

If one wishes to impose (1.3) on &, (as one might to save a little storage) one can
amend (2.1) to

a_‘;qu. =Aipjqg — aqu —ﬁ,;,‘(; if f?ej and pP#4q,
=0 otherwise,
and only consider ¢, f#, that satisfy
Cpjp = ﬁiiq =0 forip, j,geM.
We clearly have (1.3) satisfied and further

CitaXipXjp = @iig + Oppa + Big) %%, for i, p, jigeM (2.8)
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for x satisfying (1.2). Equation (2.8) can be substituted into (1.1) and we can
proceed as before.

Now let us consider the Koopmans-Beckmann QAP. Let A, &, v, 2€ R™ and let
Ci=cj—Ai—pjand dpy =dpy — v, — 9q for i, p, j,ge M. It is then straightforward to
see that

Cij @pq = Cyj Gpq + Cpjq + Bijq *+ Vipg + Oipj 2.9)
where

Qpjg = Mjdpq, (2.10a)

Bijg = €ij@q — H;Qq» (2.10b)

Yipg = Aidpq —Ai@g—AiVp, (2.10¢)

Oipj = VpCij = Hj Vp- (2.104d)

Thus we substitute (2.9) into (1.1) and (1.3) will still be satisfied. Note that 1 and v
only contribute to the redundant (as far as GLB is concerned) y and 4. Thus A and v
are redundant in this decomposition.

We next check that GLB is identical to the Gilmore~Lawler bound applied to &, d
in this case.

Thus consider for some i, p

Jp=minimum Y ¥ &;d,z,, (2.11)
JjeEM geM

subject to (2.4).

The assignment problem in (2.11) can be restated as how should we order the
vector dpy, dyy, --+5 Ao S A1), +-+» Appmy 5O that &y dppyy + -+« + &y dypm) is minimized
subject to [{]=p (from z;, =1).

This can of course be solved by sorting the ¢;, j#i into ascending order and the
dpq, 9#p into descending order and then forming an inner product.

Edwards [6] makes some modifications to the basic idea but these can be handled
by a suitable definition of a, 8, , 4.

In particular imposing &; =d,, = 0 regardless of 4, 4, v, g is achieved by replacing
(2.10) by having

Opjg =H;dpg if p#q,
=0 if p=¢q
etc. Then (2.8) holds with ay,,, @, replaced by ¢;;d,g, ¢;dp,-
3. An integer programming formulation

In the following integer program y,,, is implicitly XipXjq:
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IP1 minimise Z Z E E al,')jq.yfp_,'r,r + E z wal,m (31)
ieM peM jeM geM eM peM
subject to ), x,=1, peM, (3.2a)
ieM
Y, &=, ieM, (3.2b)
peM
E )pr_,l(;_ SR pa jaqEMr (32C)
E Yipjq =Xig»  hi,geM, (3.2d)
): Vi =Xips b D,gEM, (3.2¢)
E .yipjr,v =X,".,, is b, jEMa (32f)
geM
Yipip = Xip» i, peM, (3.2g)
xp=0orl, i, peM, (3.2h)
1 zyiquaoa i, p, J, qgeM. (321)

We next prove the equivalence of IP1 and QAP.
It is convenient for later reference to prove the equivalence of QAP and

IP2 minimise (3.1),
subject to (3.2a), (3.2b), (3.2g), (3.2h), (3.2i),
& E Yipjg=MXjq, S GEM, (3.3a)
je_uq;” Yipig = MXyp,  , pEM. (3.3b)

Given an x satisfying (1.2) by taking y,;, =x;,Xj, it is straightforward to show that
(x, ¥) is a feasible solution to IP2 and further that the objective values are the same.

Conversely let x, y be a feasible solution to IP2. We will have shown equivalence
if we can show that y,,;, = x;,x;, is satisfied.

(i) Xp=0 = Ypip=0 from (3.3b),
(ii) Xig=0 = ¥y =0 from (3.3a).

Let ¢ be the permutation of M such that x;,; =1 for ie M. We need only show
that yff."n‘(i)jlﬂ(j) =1 for i, jEM.
Now by (1) above Lpem Yinia = Yiotirja for i, j, ge M and so by (3.3a) with g=o())
we have
,z,:” Yipwyjoy=m for jeM.
1€ Vi

The result now follows from (3.2i).

The equivalence of IP1 and QAP is now easy. If x is a solution to (1.2), then
putting y;,;, = X;, Xj, gives a feasible solution to IP1. Conversely if (x, ) is a feasible
solution to IP1 it is clearly a feasible solution to IP2 and hence we have y,,;, =x;,x;,.
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(Note that we have not used (3.2g) which is redundant as y,;, =x,-f,=x,-p. It is
however needed for the Langrangean relaxation described below. It does of course
remove the variables y,,;, from the problem. We can also remove y,;;, for i+ and
Yipiq fOr p#q as these are automatically zero - see also (3.7).)

Now consider a lagrangean relaxation of IP1 with multipliers a,;, for constraints
(3.2c) and multipliers §;, for constraints (3.2d).

The lagrangean function L(a, f) is thus defined by L(a, §) =

minimum z/:w ,,;M ,;fx, q;M ipja Vivia +‘E):M ,,;M bipxip, (3.4)

subject to (3.2a), (3.2b), (3.2¢), (3.2f), (3.2g), (3.2h), (3.2i) (3.5)
where

pjq = Aipjq — Opjg = Bijq» LpJj,geM,

bp=bp+ L ip+ X Biips iipeM.
qeM jeM

We wish to show that L(a, f)=GLB(a, 8) of (2.5). Note that we have already
demonstrated that GLB is a function of a, § only. This is straightforward.

Thus suppose x* solves (2.5). If x5 =0 let y3;, =0. If xj; =1 let y;;, be the value
of z;, in the solution to (2.3) with this particular , p and so

Jio =jeEM quM Bipjq Yipiq-
This (x* y*) satisfies (3.5) and the value of (3.4) will be that of (2.5) and so
L(a, B)=<GLB(a, B). Conversely if (£, ) solves (3.4), then

j§4 q;M Bipjq Jipia = Jip%ip
and so L(e, f)=GLB(a, §).

It follows then that lower bounds obtained by decomposition in conjunction with
the Gilmore-Lawler method can be no larger than L* = max, 3 L(e, #) which from
Geoffrion (8] is equal to the minimum objective value in the linear relaxation of
IP1, i.e. when (3.2g) is replaced by x;, 0.

4. Computational considerations

Computing L* by solving the linear relaxation of IP1 by the simplex algorithm
does not look very promising as we have 4m?3 + 2m equality constraints to deal with.

A natural approach is to use the sub-gradient algorithm - see Fisher [7] - to try
and find a near optimal set of multipliers a* f*. This however requires O(m?3)
storage space for the multipliers and requires the solution of m2?+1 assignment
problems at each step.

If we have a general (non Koopmans-Beckmann) problem, then since this
requires O(m*) storage for the coefficients the storage problem for the multipliers is
marginal.






