Maker Breaker on Digraphs

Alan Frieze* and Wesley Pegden†
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh PA 15213

March 29, 2020

Abstract

We study two biased Maker-Breaker games played on the complete digraph \vec{K}_n. In the strong connectivity game, Maker wants to build a strongly connected subgraph. We determine the asymptotic optimal bias for this game viz. $\frac{n}{\log n}$. In the Hamiltonian game, Maker wants to build a Hamiltonian subgraph. We determine the asymptotic optimal bias for this game up to a constant factor.

1 Introduction

We consider some biased Maker-Breaker games played on the complete digraph \vec{K}_n on n vertices. This is in contrast to the large literature already existing on games played on the complete graph K_n. For a very nice summary of the main results in this area, we refer the reader to the monograph by Hefetz, Krivelevich, Stojaković and Szabo [4]. Our aim here is to analyse the directed versions of the connectivity game and the Hamiltonicity game. The connectivity game was solved in Chvátal and Erdős [2] and Gebauer and Szabó [3]. The Hamiltonicity game for graphs was solved by Krivelevich [5].

In the games analysed below, Maker goes first, claiming an edge of \vec{K}_n. Breaker then claims b edges and so on, with Maker and Breaker taking one and b edges respectively until there are no edges left to take. In addition, Maker and Breaker must claim disjoint sets of edges. Maker is aiming to construct a digraph with certain properties and Breaker is aiming to prevent this. The properties involved are monotone increasing and so there is a critical bias, b_0 say, such that if $b < b_0$ then Maker will win and if $b \geq b_0$ then Breaker will win. We will consider two properties here: strong connectivity and Hamiltonicity. We let D_M, D_B denote the digraphs with vertex set $[n]$ and the edges taken by Maker, Breaker respectively. Maker wins the strong connectivity game if on termination D_M is strongly connected. Maker wins the Hamiltonian game if on termination D_M is Hamiltonian.

Theorem 1. Let $\varepsilon > 0$ be arbitrarily small and $n \geq n_\varepsilon$ sufficiently large. Then Breaker wins the strong connectivity game if $b \geq \frac{(1+\varepsilon)\log n}{n}$ and Maker wins if $b \leq \frac{(1-\varepsilon)\log n}{n}$.

*Research supported in part by NSF grant DMS1661063
†Research supported in part by NSF grant DMS1363136
Theorem 2. Let $\varepsilon > 0$ be arbitrarily small and $n \geq n_\varepsilon$ sufficiently large. Then Breaker wins the Hamiltonian game if $b \geq \frac{(1+\varepsilon) \log n}{n}$ and Maker wins if $b \leq \frac{\log n}{50n}$.

It is clear from this that there is room for improvement in the Hamiltonian game and we naturally conjecture that $1/50$ can be replaced by $1 - \varepsilon$.

2 Degree bound

Notation We let $d^+_M(v), d^-_M(v)$ denote the out-degree, in-degree of vertex v in D_M for $v \in [n]$. We define d^+_B, d^-_B similarly. We let E_M, E_B denote the edges claimed by Maker and Breaker respectively, on termination.

The following Theorem is a trivial generalisation of results from Chapter 5 of Hefetz, Krivelevich, Stojaković and Szabo [4]. Let $b = \beta n \log n$ be Breaker’s bias, where $\beta < 1$ is a constant.

Theorem 3. Let $G = (V, E)$ be an n-regular graph and that $\alpha \in (\beta, 1)$ and suppose that $2/\alpha \leq K \leq \theta \log n$ where $\theta < \frac{\alpha - \beta}{\beta}$ is a constant and $\theta \beta < \alpha$. Then the following holds: Maker has a randomised strategy that with positive probability can in at most $K|V|$ rounds ensure that Maker’s graph has minimum degree K and Breaker’s graph has maximum degree at most αn. Furthermore, Maker always randomly chooses edges from a set of size at least $(1 - \alpha)n$.

The proof of this involves a minor modification of the proof in [4]. We have for completeness provided a condensed proof in an appendix. Of course, having a randomized strategy in this context, also means having a deterministic strategy.

Now a digraph D on vertex set $[n]$ can be associated with a bipartite graph G on vertex set $A \cup B$ where $A = \{a_1, \ldots, a_n\}, B = \{b_1, \ldots, b_n\}$ and where oriented edge (i, j) is replaced by the edge $\{a_i, b_j\}$. In this way the out-degree of k in D is the degree of a_k in G and the in-degree of k is the degree of b_k in G. It follows from Theorem 3 that Maker can ensure that Maker’s graph has minimum in- and out-degree at least K after at most $2Kn$ rounds. And that Breaker’s graph has maximum in- and out-degree at most αn.

3 Strong Connectivity

3.1 Breaker win

We now consider the game to be played on the complete bipartite graph $K_{n,n}$ where the bipartition is $A \cup B$ with $|A| = |B| = n$. Breaker’s aim is to claim all the edges incident with some vertex $a \in A$. This is essentially the box game of Chvátal and Erdős [2]. We let $box_A = \{\{i, b\} : b \in B\}$ for $i \in A$. Breaker claims b elements from the boxes and Maker claims one whole box in each turn. The claimed upper bound follows from Theorem 2.1 of [2].

Note that this also verifies the Breaker win in Theorem 2.
3.2 Maker win

Because Maker chooses neighbors randomly, small sets must have edges entering and leaving.

Lemma 4. Suppose that $K > 1/\alpha$. Then, w.h.p., $S \subseteq [n]$, $|S| \leq (1 - \alpha)^2 n$ implies that
\[
\{(i, j) \in E_M : i \in S, j \notin S\} \neq \emptyset \quad \text{and} \quad \{(i, j) \in E_M : i \notin S, j \in S\} \neq \emptyset.
\]

Proof. The probability that there exists a set violating the condition in the lemma is at most
\[
2^{(1 - \alpha)^2 n} \left(\frac{n}{s}\right)^K \left(\frac{s}{(1 - \alpha)n}\right)^K \leq 2 \sum_{s=K}^{(1 - \alpha)^2 n} \left(\frac{n}{s}\right)^K \left(\frac{s}{(1 - \alpha)n}\right)^K = o(1).
\]

Assume now that $\beta = 1 - \varepsilon$ is a close to one and that $\beta = (1 + \alpha)/2$. Now consider the DAG with one vertex for each strong component of D_M in which there is an edge (A, B) if there is an edge in D_M directed from A to B. We observe that w.h.p. each source and sink in D_M must be associated with a subset of $[n]$ of size at least $(1 - \alpha)^2 n$. This follows directly from Lemma 4. A smaller sink would have an edge oriented from it to another strong component, contradiction.

It follows that w.h.p. after $2Kn$ rounds, Maker can make D_M strongly connected in a further $(1 - \alpha)^{-4}$ rounds by adding an edge from each sink to each source. There will be by construction $\Omega(n^2)$ choices of edge available for each such pair and Breaker can only claim $o(n)$ edges in this number of rounds.

4 Hamiltonicity

We show that w.h.p. the digraph constructed by Maker is Hamiltonian. For each $v \in [n]$ there are sets $IN(v), OUT(v)$ of size K, where each of the $2nK$-sets have been chosen uniformly from sets $A(v), B(v)$ of size $(1 - \alpha)n$. The sets $A(v), B(v), v \in [n]$ are chosen adversarially.

Our analysis uses the following values for parameters:

\[
\alpha = 0.20, \quad \beta = 0.02, \quad \delta = 1/2 - \alpha, \quad \theta = 4 \quad \text{and} \quad K = \theta \log n,
\]

where

\[
P\left(Bin\left(\frac{(1.01)n\log n}{\delta - \alpha}, \frac{1}{(1 - \alpha)n}\right) \geq K\right) = o(n^{-1}). \tag{1}
\]

Using the bound, $P(Bin(n, p) \geq k) \leq \left(\frac{n}{k}\right)^k \leq \left(\frac{np}{\theta}\right)^k$, we see that (1) is implied by

\[
\theta \left(\log \left(\frac{(1.01)e}{(\delta - \alpha)(1 - \alpha)}\right) - \log \theta\right) < -1,
\]

which can be verified numerically. Note that we require $2\theta \beta \leq \alpha$ so that $2K\beta n/\log n \leq \alpha n$ in order not to violate Maker’s choices. We also need $\theta < \frac{\alpha - \beta}{\beta}$, which is required by Theorem \ref{thm:sensitivity}.

We will follow an approach similar to that of Angluin and Valiant \cite{AngluinValiant}. We choose an arbitrary vertex x to start and at any point during the execution of the algorithm we have (i) a path P from its start s_P to its
finish f_P, (ii) a cycle disjoint from P and (iii) a set $U = [n] \setminus (V(P) \cup V(C))$. We let $P[a,b]$ denote the sub-path of P that goes from a to b. At certain points P,C may be empty and we denote this by Λ. We will assume that $IN(v), OUT(v)$ are ordered randomly and that there are pointers $in(v), out(v)$ to vertices in the lists. These are updated to the next vertex, after a selection is made. Initially, $in(v), out(v)$ point to the first vertex in each list. The choices of vertices are only exposed as necessary. This is usually referred to as deferred decisions. Let

$$P^* = \{v \in P : \exists w \in U \text{ s.t. } v \in IN(w)\} \quad \text{and} \quad C^* = \{v \in C : \exists w \in U \text{ s.t. } v \in IN(w)\}.$$

A general step of the process proceeds as follows: we begin with $P = (x), C = \Lambda$ and $U = [n] \setminus \{x\}$.

Step 1 If $P = \Lambda$ then remove a random edge e from C. Then $P \leftarrow C - e, C \leftarrow \Lambda$.

Step 2 If $P \neq \Lambda$ let $y = out(f_P)$.

Case (a) (i) If $y \in U$ then $P \leftarrow P + (f_P, y)$.

(ii) If $y \notin U$, but $f_P \in P^*$ then $P \leftarrow P + (f_P, y)$ where $y \in U$ and $f_P = in(y)$.

Case (b) If $y \in C$ then $P \leftarrow P + C - e$ where $e = (z, y) \in C$. Also $C \leftarrow \Lambda$. Note that $f_P = z$ now.

Case (c) If $C = \Lambda$ and $y \in P$ and y is distance at least δn from f_P along P, then $P \leftarrow P[s_P, z]$ where $(z, y) \in P$ and $C \leftarrow P[y, f_P] + (f_P, y)$.

If $z \in P^*$ then $P \leftarrow P + (z, u)$ where $u \in U$ and $z = in(u)$.

Case (d) If $C = \Lambda$ and $y = s_P$ then $C \leftarrow P + (y, s_P)$ and $P \leftarrow \Lambda$. Go to Step 1.

Case (e) If none of (a) – (e) are applicable, move $out(f_P)$ to the next vertex on its list.

It follows that $|C| = 0$ or $|C| \geq \delta n$ throughout. The pointers in, out are updated if necessary to the next vertex on the list, if they are used in a step. Also, the above procedure fails if it reaches the end of a vertex list before creating a Hamilton cycle.

Next let X_i be the number of edges examined in order to increase $|P| + |C|$ from i to $i + 1$. Note that all random choices can be ascribed to a choice of either $out(f_P)$ or of $in(u), u \in U$. These choices can be thought of as being independent, assuming only that Maker makes her choices with replacement. In effect, this involves the rare possibility of her skipping a move.

(a) If $|U| \geq 2\alpha n$ then X_i is dominated by the geometric random variable $Geo(p_1)$ where $p_1 = \frac{|U| - \alpha n}{n} \geq \alpha$.

This is because f_P has at least $|U| - \alpha n$ choices available to it in U for the next choice of vertex in $OUT(f_P)$.

(b) If $|U| < 2\alpha n$ then $|C^*| + |P^*| \geq (1 - 3\alpha)n$. It follows that X_i is dominated by the geometric random variable $Geo(p_2)$ where $p_2 = \min \left\{ \frac{1 - 3\alpha - \delta}{n}, \frac{\delta - \alpha}{n} \right\}$.

(The minimands in the definition of p_2 are equal from the definition of δ.)

Here we are bounding the probability of finding $f_P \in P^* \cup C^*$. The first term in p_2 corresponds to the case $C = \Lambda$ and $1 - 3\alpha - \delta$ lower bounds the probability of choosing a vertex in $P^* \cup C^*$ and we subtract δ to account for y in Step 2(c) being close to s_P. The second term corresponds to the case $C \neq \Lambda$ and of choosing $z \in C^*$ in Case (b).
If we ignore the problem of the size of the sets $|N(v), OUT(v), v \in [n]$ then we can see from the Chebyshev inequality that w.h.p. we obtain $V \cup C = [n]$ in less than $(1.01)n \log n$ trials. Here a trial means exposure of $out(v)$ or $in(u)$. This follows from the fact that $\mathbb{E}(Geo(p)) = \frac{1}{p}$ and $\text{Var}(Geo(p)) = \frac{1-p}{p^2}$. So, if T is the time to reach this stage then

$$\mathbb{E}(T) \leq n \log \frac{n}{\delta - \alpha} \text{ and } \text{Var}(T) \leq \frac{\pi^2 n^2}{6(\delta - \alpha)} = o(\mathbb{E}(T)^2).$$

Now a given vertex v has probability at most $q = \frac{1}{1-(1-\alpha)n}$ of being selected as the next y and this implies that the probability K items on its list are examined is at most $\mathbb{P}(\text{Bin}(\frac{(1.01)n \log n}{\delta - \alpha}, q) \geq K) = o(n^{-1})$ by construction.

Once $V \cup C = [n]$, it takes $O(n)$ expected time to create a Hamilton cycle. Let us go through the possibilities.

(i) If $C = \Lambda$ and $s_P \in B(f_P)$ or $f_P \in A(s_P)$ then the process finishes in one more step with probability at least $1/n$.

(ii) If $C = \Lambda$ and (i) does not hold, then we update $out(f_P)$ and we are in (i).

(iii) If $C \neq \Lambda$ then there is a probability of at least $\delta - \alpha$ that $out(f_P) \in C$ and we are in (i).

5 Conclusion

We solved the strong connectivity game, but there is a big gap between the upper and lower bounds for Hamiltonicity. Closing this gap is an interesting open problem.

References

A Proof of Theorem 3

We let G_M, G_B denote the subgraphs of G with the edges taken by Maker, Breaker respectively. We let $d_M(v)$ denote the degree of vertex v in G_M for $v \in V$. We define d_B similarly. Let $\text{dang}(v) = d_B(v) - 2bd_M(v)$ be the danger of vertex v at any time.
Maker’s Strategy: In round i, choose a vertex v_i of maximum danger and choose a random edge incident with v_i, not already taken. This is called *easing* v_i.

Let M_i, B_i denote Maker and Breaker’s ith moves. Suppose that Breaker wins in round $g - 1$, so that after B_{g-1} there is a vertex v_g such that $d_B(v_g) > \alpha n$. Let $J_i = \{v_{i+1}, \ldots, v_g\}$. Next define

$$
\overline{\text{dang}}(M_i) = \frac{\sum_{v \in J_i} \text{dang}(v)}{|J_i - 1|} \quad \text{and} \quad \overline{\text{dang}}(B_i) = \frac{\sum_{v \in J_i} \text{dang}(v)}{|J_i|},
$$

computed before the ith moves of Maker, Breaker respectively.

Then $\overline{\text{dang}}(M_1) = 0$ and $\overline{\text{dang}}(M_g) = \text{dang}(v_g) = (\alpha - o(1))n$. Let $a(i)$ be the number of edges contained in J_i that are claimed by Breaker in his first i moves. We have

Lemma 5.

$$\overline{\text{dang}}(M_i) \geq \overline{\text{dang}}(B_i). \quad (2)$$

$$\overline{\text{dang}}(M_i) \geq \overline{\text{dang}}(B_i) + \frac{2b}{|J_i|}, \text{ if } J_i = J_{i-1}. \quad (3)$$

$$\overline{\text{dang}}(B_i) \geq \overline{\text{dang}}(M_{i+1}) - \frac{2b}{|J_i|} \quad (4)$$

$$\overline{\text{dang}}(B_i) \geq \overline{\text{dang}}(M_{i+1}) - \frac{b + a(i) - a(i - 1)}{|J_i|} - 1. \quad (5)$$

Proof. Equation (2) follows from the fact that a move by Maker does not increase danger. Equation (3) follows from the fact that if $v_i \in J_{i-1}$ then its danger, which is a maximum, drops by $2b$. Equation (4) follows from the fact that Breaker takes at most b edges inside J_i. For equation (5), let e_{double} be the number of edges that Breaker adds to J_i in round B_i. Then

$$\overline{\text{dang}}(B_i) \geq \overline{\text{dang}}(M_{i+1}) - \frac{b + e_{\text{double}}}{|J_i|}$$

and

$$a(i) - e_{\text{double}} \geq a(i - 1) - |J_i|.$$

\[\Box \]

It follows that

$$\overline{\text{dang}}(M_i) \geq \overline{\text{dang}}(M_{i+1}) \text{ if } J_i = J_{i-1}. \quad (6)$$

$$\overline{\text{dang}}(M_i) \geq \overline{\text{dang}}(M_{i+1}) - \min \left\{ \frac{2b}{|J_i|}, \frac{b + a(i) - a(i - 1)}{|J_i|} - 1 \right\}. \quad (7)$$

Next let $1 \leq i_1 \leq \cdots \leq i_r \leq g - 1$ be the indices where $J_i \neq J_{i-1}$. Then we have $|J_{i_r}| = |J_{g-1}| = 1$ and $|J_{i-1}| = |J_0| = r + 1$. Let $k = \frac{n}{\log n}$ and assume first that $r \geq k$ and then use the first minimand in (7) for
\[i_1, \ldots, i_{r-k} \text{ and the second minimand otherwise.} \]

\[0 = \overline{\text{dang}}(M_1) \geq \overline{\text{dang}}(M_g) - \frac{b + a(i_r) - a(i_r - 1)}{|J_r|} - \ldots - \frac{b + a(i_{r-k+1}) - a(i_{r-k-1} + 1)}{|J_{r-k+1}|} - k - \frac{2b}{|J_{r-k}|} - \ldots - \frac{2b}{|J_1|} \tag{8} \]

\[\geq \overline{\text{dang}}(M_g) - \frac{b}{1} - \ldots - \frac{b}{k} - \frac{a(i_r)}{1} - k - \frac{2b}{k + 1} - \ldots - \frac{2b}{r} \tag{9} \]

\[\geq \alpha n - K b - b(1 + \log k) - k - 2b(\log n - \log k). \]

To go from (8) to (9) we use \(a(i_{r-j}) - 1 \geq a(i_{r-j-1}), j > 0 \) which follows from \(J_{i_r-j-1} = J_{i_r-j} - 1 \) and then the coefficient of \(a(i_{r-j-1}) \) is at least \(\frac{1}{j+1} - \frac{1}{j+2} \geq 0 \). Also, \(a(i_r) = 0 \) because \(J_{i_r} = J_{g-1} = \{v_g\} \).

It follows that

\[b \geq \frac{\alpha n - k}{K + 1 + \log n + \log \log n + o(1)} = \frac{(\alpha - 1/\log n)n}{(1 + \theta + o(1)) \log n}, \]

contradicting our upper bound, \(\theta < \frac{\alpha - \beta}{\beta} \).

If \(r < k \) then we replace (9) by

\[0 = \overline{\text{dang}}(M_1) \geq \overline{\text{dang}}(M_g) - \frac{b}{1} - \ldots - \frac{b}{k} - \frac{a(i_r)}{1} - k \geq \alpha n - K b - b(1 + \log k) - k \]

and obtain the same contradiction.