Probabilistic Analysis of a Parallel
Algorithm for Finding the
Lexicographically First Depth First
Search Tree in a Dense Random Graph

Martin Dyer*
School of Computer Studies, University of Leeds, Leeds, United Kingdom

Alan Friezet
Department of Mathematics, Carnegie-Mellon University, Pittsburgh, PA 15213

ABSTRACT

We describe an O((log n)?) time parallel algorithm, using n processors, for finding the
lexicographically first depth first search tree in the random graph G, ,, with p fixed. The
problem itself is complete for P, and so is unlikely to be efficiently parallelizable always.

1. INTRODUCTION

In this paper we consider the problem of finding the Lexicographically First
Depth First Search Tree (LFDFST) in a random graph. The LFDFST of a
connected graph is the tree obtained by depth first search starting at some fixed
vertex and using the given ordering of the adjacency lists to decide the next vertex
to be visited. This tree is clearly computable in polynomial time (actually linear)
and so there is the question of whether there exists an NC-algorithm, i.e., a
parallel algorithm which uses O(n°) processors and runs in O((log n)®) time for
constants a, b > 0. This is currently considered to be unlikely since it is known to
be complete for P under NC-reductions (Reif [9]), and so if this problem is in NC

* Supported by NATO Grant RG0088/89.
+ Supported by NSF Grant CCR-8900112 and NATO Grant RG0088/89.

Random Structures and Algorithms, Vol. 2, No. 2 (1991)
© 1991 John Wiley & Sons, Inc. CCC 1042-9832/91/020233-07$04.00

233

234 DYER AND FRIEZE

then NC =P, which is not generally thought to be case. In the case of finding
some depth first search tree, not ncessarily the lexicographically first tree, the
picture is a bit brighter. (A spanning tree T of a graph is a depth first search tree
if there is a choice of root r and ordering of the adjacency lists such that depth
first search started at r produces T. This definition holds for the dlrected and
undirected cases.) Aggarwal and Anderson [2] constructed an O 9((log n)*) time
randomized algorithm for the undirected case and Aggarwal, Anderson, and Kao
[3] constructed an O((log n)’) time randomized algorithm for the directed case.
Using results of Goldberg, Plotkin, and Vaidya [7] they also construct an
O((log n)''vn) time deterministic algorithm for the directed case. In view of the
result of Reif, it makes sense to study parallel algorithms for the LFDFST
problem which are fast on average. We describe in this paper a parallel algorithm
which uses O(n) processors and which computes the LFDFST of a dense random
graph in O((In n)“) expected time. The results we obtain are therefore analogous
to those of Coppersmith, Raghavan, and Tompa [5] and Calkin and Frieze [4] for
the problem of finding a lexicographically first maximal independent set in a
random graph.

More prec1sely let G=G, , denote the random graph with vertex set [n] =
{1,2,...,n}, in which each "of the (%) possible edges is selected 1ndependently
with probablhty p=1-¢q. We assume throughout this paper that p is a fixed
constant. (This is what is meant by the random graph being dense.) The hidden
constant in the running time depends significantly on p and at this time, extending
our results to the case where p = p(n)— 0 as n— « is left as an interesting open
problem. We also assume that the adjacency lists of each vertex are sorted in
ascending order and that the tree is rooted at vertex 1. Another interesting
problem is to extend the method here to the case where the adjacency lists are in,
say, random order.

Now the LFDFST of a dense random graph is usually very far from being
“bushy.” In fact we can expect it to consist of a left-most path of length n — O(1)
plus O(1) vertices “patched on” at the very bottom. So the main problem is to
compute this path—the Lexicographically First Maximal Path (LFMP). Once this
has been done, it is usually easy to finish off the LFDFST. However, this problem
is also complete for P (Anderson and Mayr [1]). Thus the real focus of the paper
is on how to compute the LFMP.

2. COMPUTING THE LFMP

From now on we assume that the LFMP is the path v, =1, u,,...,u,. Let
u,(1<t<m) be a splitter for the LFMP if

{uy,...,u_}=[t—1] and u,=t.

Thus if u, is a splitter, then {u,, u,,,, ..., u,)} is the LFMP of the subgraph G, of
G induced by (£, n]={¢t,t+1,..., n}. The edge sets of G, G, will be denoted by
E(G), E(G,), respectively.

Our idea is simply to construct the subpath P, of the LFMP of G, from ¢ to the
first splitter of the LFMP for each of the graphs G,, t=1,2, ..., n. We then use
these paths to construct the LFMP. We search for the first splitters in a sequential
manner relying on the density of the graph to show that it is unlikely that we will

PARALLEL ALGORITHM IN A RANDOM GRAPH 235

need to search very far. (A fast parallel algorithm for finding the first splitter in an
arbitrary graph leads easily to a fast parallel algorithm for finding the LFMP, and
so is unlikely to exist.) We use the following greedy algorithm to search
sequentially for the first splitters: we assume that, prior to the start of
GREEDY(?), Processor ¢ finds o, = min{u > ¢: {t, u} € E(G,)}. This can be found
in O(In n) time by binary search.

Algorithm GREEDY(¢)

{The algorithm halts on output of u,, the first splitter of G, (or n + 1 if there isn’t
one), and the corresponding path P, (given as a list of vertices).};

begin
if{tz,t + 1} € E(G,) then output ¢t +1 and ¢, ¢ + 1 else
u:=t, A:={t}; B:=[t+1,n]; P:=1¢;
repeat
L:={beB:{u,b} € E(G,)};
if L =9 then output n+1 and P,n + 1 else
begin
u:=minL; A:= AU {u}; B:=B—{u}; P:=P, u;
if A ={t, u] then output u and P

end
until output
end
Given 0,, 0,, . . . , 0,_, it requires O(u, — t) time to find min L at any stage, and

we can easily test for A =[t, u] by keeping track of min A and max A and
checking for |A| = max A — min A + 1. Thus GREEDY(¢) can be implemented to
run in O((u, — t)°) time.

Let b>0, B =[bInn], and consider the event

E={At€[n-B):u,>t+B}.

The subsequent analysis will show that, given any a >0, there exists a b = b(a, p)
such that when n is sufficiently large,

Pr(&)<n"". (1

Therefore, by (1), the run time of GREEDY(¢) is O((In n)*)) with probability
tending to 1 as n— . Our procedue for constructing the LFMP of G is thus:

Algorithm MAKELFMP

begin
for t =1 to n pardo GREEDY()
Let T be the digraph with vertex set [n + 1] and arcs (¢, u,), t € [n];
Construct the (unique) path v,,v,,...,v, from1ton+1inT;
output LFMP=P, ,P,,..., P, |
end

236 DYER AND FRIEZE

Note that I is a trec rooted at # + 1, so the path from 1 to n + 1 can be found in
O(In n) time using parallel tree contraction (Miller and Reif [8]).

Suppose that we now take a =2 in the definition of €. Assume that € does not
occur and let S be the set of vertices not on the LFMP at termination of
MAKELFMP. Note that SC[n—-B8+1, n] We now use any one of the pro-
cessors to finish off the depth first search in a sequential manner. This processor
can spend O((In n)?) time examining all the edges between vertices of S, and so
the only issue is how far down the LFMP the search has to backtrack. If every
vertex in [n— B +1, n] is adjacent in G to at least one vertex in [n —28 +1,
n — 8], then the sequential depth first search will not have to backtrack for more
than 2[3 vertices. The probability that event does not occur is at most 8q* which is
o(n"?) for b> —3/In q. The definition of & allows us to inflate the size of b and
so we will assume that it exceeds thls lower bound. To summarize, conditional on
an event of probability 1— O(n”?) our algorithm computes the LFDFST in
O((In n)*) steps. The remaining bad cases can be dealt with in O(n?) time by
sequentlal depth first search and so our algorithm has expected time complexity of
O((In n)*) as claimed. It only remains to prove (1).

3. PROOF OF (1)

We will assume in the following analysis that ¢t =1 and that the vertices of G are
all the positive natural numbers. We will show that there exists A = A(p) and, for
all >0, a ¢ = c(b, p) which grows unboundedly with b such that

Pr(u,>B=[blnn])< An"° (2)

This is sufficient to prove (1). The only doubt arises from the fact that we have
disallowed the possibility that GREEDY(¢) does not find a splitter, especially for
large ¢. But, so long as t<n—2B, we only have to add at most 8g”® to the
right-hand side of (2) to account for the possibility that the end vertex of P is not
adjacent to any of the vertices not in P. [We also need a surreptitious doubling of
b to make it fit together with (1).]

Let k now refer to the number of completed iterations of the repeat . . . until
loop of GREEDY(¢). Let A, refer to the value of A, m, = max A, and v, denote
the end vertex of the path P after the kth iteration.

Let Z,=m,—k—1 and r=min{k>1:Z, =0}. We show that there exist
C>0 and 0< e <1 such that

Pr(r =s) =< Ce¢* s=1,2,... 3)

Note that (3) is equivalent to the assertion that the moment generating function
M_(A) is finite for some A > 0. For, if (3) holds, a simple calculation shows that
M_(A) is finite for A < —In e. Conversely, if M_(A) is finite for some A >0, the
Markov inequality gives Pr(r =s)=e “M_(A), so (3) holds with e =¢™* C=
M_(A).

Inequality (2) follows easily from (3). Suppose Z,,=0. We check whether
{vi,» my, + 1} € E(G). This will be the first time we have checked for this edge

“~ -

PARALLEL ALGORITHM IN A RANDOM GRAPH 237

and so it exists with probability p independently of the algorithm’s previous
history. If the edge is present, the algorithm will halt. However, if it is not, the
algorithm will never look again at edges incident with vertices in A, . It will select
some other edge incident with v, , if there is one, and proceed essentially as
though A, was vertex 1 and there was no edge {1,2}. (Vertex m, +1 acts as
vertex 2 here) Thus the duration of GREEDY(¢?) is stochastically dominated by
the sum o of a number of independent random variables with the distribution of
7, where the number in the sum has a geometric distribution with parameter p.
But this implies that M_(A)= M_(A)p/(1 — gM,(A)), which is finite for small
enough A >0. Hence an inequality like (3) holds for o, and so (2) follows.

We continue with the proof of (3). We observe that the process Z, (k=
1,2,...) is a Markov chain on the non-negative integers with transition prob-
ablhtles given by

Pr(Z,,,=r-1Z,=r)=1-¢g
forr,s=0 4
Pr(Z,,,=r+slZ,=r=pq""’

This is because the edges joining the end vertex of the current portion of the
LFMP to vertices not so far in the LFMP have not yet been examined. Thus one
can easily check that, once Z, gets large, the expected increase in Z, will be
negative. The idea of the proof is therefore first to show that Z, must be “small”
for “many” k, and then to show that this means that (3) must hold. So let

ry= nogl/q(Z/P)]
and theu let
p={l=k:Z,zr}| and o ={{Isk:Z,=r,-1}].

Let 9,={3k:p,=u and o, =< ju—1} for u=1,2,.... Our aim now is to
prove

Lemma 1.
Pr(2,) <e '™ foru=1,2,..

Proof. Suppose p, = u and let k, <k, <---<k, be the first u values of ¢ for
which Z, = r,. Let

8,.=Z,“,,,—Z,(,, fori=1,2,...,u
Observe that
A, =8 +8+ - +8,<-ul3>0,>lu—-1.
This follows from the fact that if

I={t=k,:Z,=r, and Z, ,=r,—1}, I=max [,

238 DYER AND FRIEZE

cancellations in the sum lead to the identity

> &=-I.

kysl

We also have

26i=zku+l_r02—1' '
k>t
Thus to prove the lemma we need only show M

Pr(A, = —u/3)seP'%.

Since the §; are independent this is not difficult. A straightforward calculation
shows that if r=r, and 0 <A <p, then

AS; - r 1-e™*
Ee*|Z, =r)=e"(1+¢q

et-q
-A pPA)
<e <l+—2(p—)\)

_PA__
- —,\
< e e? PV,

Thus

-Hz—“_L
My()=e 7Y,

Hence, using independence, the Markov inequality gives
Pra, = —u/3) =™ [M, (1)
i=1

- e(-?ﬁ(-,‘,’f—n)"

< e—-pu/84

for p/8<A<p/T.

a
Suppose now that 7=s and 9D,,,,, does not occur. It follows that either
s—p,=[s/4] —1 or o, = [5/4] — 1. In either case Z, <r, for at least [s/4] —1
values of KE[s]. Let us now consider the chain W,,W,,... with states

{0,1,...,r,—1} and transition probabilities as in (4), except that
Pr(W,,, =r,—1|W,=r)=q"" forr=0,1,...,r,—1.
Observe that, in the chain Z,, states {0,1,..., r, — 1} can only be reached from

higher-numbered states via the transition r, to (r, — 1). Thus W, has precisely the
realizations that one obtains from realizations of Z, by deleting all occurrences of

PARALLEL ALGORITHM IN A RANDOM GRAPH 239

states r = r,. Therefore the problem now is to show that, for some K >0 and
o0<y<i,

Pr(W,#0,i=1,2,...,[s/4] -1)=Ky* (5)

Now (5) simply amounts to an assertion about the recurrence time of state 0 in
W,. Since the chain W, is clearly finite, aperiodic, and irreducible, this follows
directly from elementary Markov chain theory (see, for example, Ref. 6, p. 426,
Example 19). Since the number of states and the transition probabilities of W,
depend only on p, we have K = K(p), b = y(p). So finally,

Pr(7 = 5) SPr(Ds,,q) + Pr(W,#0,i=1,2,.. ., [s/4] = 1)

Se-pslllz_l_ K’)’s,

and (3) follows.

ACKNOWLEDGMENT

We are grateful to Gary Miller for his expert advice.

REFERENCES

[1] R. J. Anderson and E. Mayr, Parallelism and the maximal path problem, Inf. Process.
Let., 24, 121-126 (1987).

(2] R. J. Anderson and A. Aggarwal, A random NC algorithm for depth first search,
Combinatorica, 8, 1-12 (1988).

(3] R. J. Anderson, A. Aggarwal, and R. J. Kao, A parallel algorithm for depth first
search in directed graphs, SIAM J. Comput., 19, 397-409 (1990).

[4] N. Calkin and A. M. Frieze, Probabilistic analysis of a paraliel algorithm for finding
maximal independent sets, Random Struct. Alg., 1, 39-50 (1990).

[5] D. Coppersmith, P. Raghavan, and M. Tompa, Parallel algorithms that are efficient on
average, Inf. Computat., 81, 318-333 (1989).

[6] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I (3rd ed.),
Wiley, New York, 1968.

[7] A. Goldberg, S. Plotkin, and P. Vaidya, Sublinear time parallel algorithms for
matching and related problems, Proceedings of the 29th IEEE Symposium on Founda-
tions of Computing, 1988.

(8] G. L. Miller and J. H. Reif, Parallel tree contraction Part 1: Fundamentals, in
Randomness and Computation, S. Micali (Ed.), JAI Press, Greenwich, CT, 1989, pp.
47-72.

[9] J. H. Reif, Depth-first search is inherently sequential, Inf. Process. Lett., 229-234
(1985).

Received February 23, 1990

