Occupancy problems and random algebras

Michael H. Albert and Alan M. Frieze

Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Received 22 April 1988
Revised 26 January 1989

Abstract

For k randomly chosen subsets of $[n] = \{1, 2, \ldots, n\}$ we consider the probability that the Boolean algebra, distributive lattice, and meet semilattice which they generate are respectively free, or all of $2^{[n]}$. In each case we describe a threshold function for the occurrence of these events. The threshold functions for freeness are close to their theoretical maximum values.

1. Introduction

In this paper we consider various algebras generated by k randomly chosen subsets of $[n] = \{1, 2, \ldots, n\}$. As in the study of random graphs (Erdős and Rényi [2], Bollobás [1]) we focus on the threshold for the occurrence of various events.

To be specific consider $\mathcal{P}_n = 2^{[n]}$ to be a probability space in which each subset of $[n]$ has the same probability 2^{-n}. Now select A_1, A_2, \ldots, A_k independently and randomly from \mathcal{P}_n (with replacement). Let $\mathcal{A}^{(k)}$ denote A_1, A_2, \ldots, A_k.

We consider
(i) $\mathcal{B}(\mathcal{A}^{(k)})$ = the Boolean subalgebra of \mathcal{P}_n generated by $\mathcal{A}^{(k)}$,
(ii) $\mathcal{D}(\mathcal{A}^{(k)})$ = the distributive sublattice of \mathcal{P}_n generated by $\mathcal{A}^{(k)}$,
(iii) $\mu(\mathcal{A}^{(k)})$ = the meet sub-semi-lattice of \mathcal{P}_n generated by $\mathcal{A}^{(k)}$.

In each case we determine the asymptotic probability that the algebras generated are (a) freely generated by $\mathcal{A}^{(k)}$, or, (b) the whole of \mathcal{P}_n.

For example, to say that $\mathcal{A}^{(k)}$ freely generates $\mathcal{B}(\mathcal{A}^{(k)})$ means that for any two Boolean polynomials p and q in variables x_1, x_2, \ldots, x_k if

$$p(A_1, A_2, \ldots, A_k) = q(A_1, A_2, \ldots, A_k)$$

0012-365X/91/03.50 © 1991 — Elsevier Science Publishers B.V. (North-Holland)
then \(p(x_1, x_2, \ldots, x_k) = q(x_1, x_2, \ldots, x_k) \) is an identity true in all Boolean algebras. Since there is in fact a normal form for Boolean polynomials it is equivalent to demand that polynomials in \(k \) variables with distinct normal forms evaluate at \(A_1, A_2, \ldots, A_k \) to distinct subsets of \([n]\). Similar criteria apply to \(\mathcal{D}(A^{(k)}) \) and \(\mu(A^{(k)}) \).

We prove the following.

Theorem. (a) Let \(\varepsilon > 0 \) be fixed and let \(\kappa = \log_2 n - \log_2 \log_2 n + \log_2 \log_2 2 \). Then

\[
\lim_{n \to \infty} P(\mathcal{B}(A^{(k)}) \text{ is freely generated by } A^{(k)}) = 1 \quad \text{for } k \leq \kappa - \varepsilon,
\]

\[
\lim_{n \to \infty} P(\mathcal{B}(A^{(k)}) \text{ is freely generated by } A^{(k)}) = 0 \quad \text{for } k \geq \kappa + \varepsilon.
\]

(b) Let \(k = 2 \log_2 n + a_n \). Then

\[
\lim_{n \to \infty} P(\mathcal{B}(A^{(k)}) \text{ is all of } \mathcal{P}_n) = \begin{cases} 0 & a_n \to -\infty \\ e^{-2(a_n+1)} & a_n \to a, \\ 1 & a_n \to +\infty. \end{cases}
\]

(c) \[
\lim_{n \to \infty} P(\mathcal{B}(A^{(k)}) \text{ is freely generated by } A^{(k)}) = \lim_{n \to \infty} P(\mathcal{B}(A^{(k)}) \text{ is freely generated by } A^{(k)})
\]

(d) Under the assumptions on \(k, a_n \) of part (b),

\[
\lim_{n \to \infty} P(\mathcal{B}(A^{(k)}) = \mathcal{P}_n) = \lim_{n \to \infty} P(\mathcal{B}(A^{(k)}) = \mathcal{P}_n).
\]

(e) Let \(k = \log_2 n - \log_2(\log_2 n + b_n) \). Then

\[
\lim_{n \to \infty} P(\mu(A^{(k)}) \text{ is freely generated by } A^{(k)}) = \begin{cases} 0 & b_n \to -\infty \\ e^{-c-b} & b_n \to b, \\ 1 & b_n \to +\infty. \end{cases}
\]

(f) We deviate from our probabilistic model by assuming the \(k \) sets are chosen without replacement. Let now \(k = 2^n(1 - c_n/n) \) where \(c_n \geq 0 \). Then

\[
\lim_{n \to \infty} P(\mu(A^{(k)}) = \mathcal{P}_n) = \begin{cases} 0 & c_n \to \infty, \\ e^{-c} & c_n \to c, \\ 1 & c_n \to 0. \end{cases}
\]

2. Preliminaries

For \(S \subseteq [k] \) we define

\[
A_S = \bigcap_{i \in S} A_i \cap \bigcap_{i \notin S} \tilde{A}_i, \quad \text{where } \tilde{A}_i = [n] \setminus A_i
\]
and note that the sets $A_S, S \subseteq [k]$ partition $[n]$. Thus, in particular:

$$A_S = \bigcap_{i \in [k]} \overline{A}_i \quad \text{and} \quad A_{[k]} = \bigcap_{i \in [k]} A_i.$$

It is useful to consider the $k \times n$ 0–1 matrix $X = \|x_{ij}\|$ where $x_{ij} = 1$ (0) whenever $j \in A_i \ (j \notin A_i)$. Our probability assumption is equivalent to

$$x_{1j}, x_{12}, \ldots, x_{kn} \text{ form a sequence of independent Bernoulli random variables where for all } i, j \ P(x_{ij} = 0) = P(x_{ij} = 1) = \frac{1}{2}. \tag{2.1}$$

Now let $S_j = \{i \in [k]: j \in A_i\}$. It follows from (2.1) that:

$$P(S_j = S) = 2^{-k} \quad \text{for all } S \subseteq [k]. \tag{2.2}$$

The random variables S_1, S_2, \ldots, S_n are independent. \tag{2.3}

Now we can view the construction of A_1, A_2, \ldots, A_k as the construction of S_1, S_2, \ldots, S_n. Then, since $j \in A_S$, we have the following situation.

We have $m = 2^k$ boxes each labelled by a distinct subset of $[k]$. We have distinct balls labelled $1, 2, \ldots, n$ which are independently placed randomly into boxes. (We keep $m = 2^k$ throughout the paper.)

Placing j into box S is to be interpreted as putting $S_j = S$.

We refer to this as the Balls-in-Boxes construction and use P_{BB} to refer to probabilities defined on this space.

It follows from (2.2) and (2.3) that in this space we determine a matrix X with the same distribution as in (2.1).

3. Boolean algebras

Let us now consider $B(A^{(k)})$. We have the following simple result.

Proposition 3.1. $B(A^{(k)})$ is freely generated by $A^{(k)}$ if and only if $A_S \neq \emptyset$ for all $S \subseteq [k].$

Proof. If $A_S = \emptyset$ for some $S \subseteq [k]$ then clearly $B(A^{(k)})$ is not free. Conversely, suppose $B(A^{(k)})$ is not free. Then there exist $S, T \subseteq [k], \ S \cap T = \emptyset$ such that $\emptyset = \bigcap_{i \in S} A_i \cap \bigcap_{i \in T} \overline{A}_i \supseteq A_S. \quad \square$

It follows from Section 2 and Proposition 3.1 that

$$P(B(A^{(k)}) \text{ is freely generated by } A^{(k)}) = P_{\text{BB}}(\text{each box is non-empty}).$$

Now the latter probability has been studied under the guise of the Coupon Collector Problem (Feller [3]).

Assuming $k = k(n)$ let $d(n) = (n - m \log m)/m$. (Recall $m = 2^k$.) It is well
known that
\[
\lim_{n \to \infty} P_{BB}(\text{each box is non-empty}) = \begin{cases}
0 & d(n) \to -\infty, \\
e^{-e^{-d}} & d(n) \to d, \\
1 & d(n) \to +\infty.
\end{cases}
\]

Thus if \(z \) satisfies \(n = 2^z \log_2 2 \) and \(\varepsilon > 0 \) is fixed then
\[
k < z - \varepsilon \Rightarrow P(\mathcal{B}(A^{(k)}) \text{ is freely generated by } A^{(k)}) \to 1,
k > z + \varepsilon \Rightarrow P(\mathcal{B}(A^{(k)}) \text{ is freely generated by } A^{(k)}) \to 0.
\]

Since \(z = (\log_2 n - \log_2 \log_2 n + \log_2 \log_2 2)/\log_2 2 + o(1) \) we have part (a) of the Theorem.

Another simple remark.

Proposition 3.2. \(\mathcal{B}(A^{(k)}) \) is all of \(\mathcal{P}_n \) if and only if \(|A_S| \leq 1 \) for all \(S \subseteq [k] \).

Proof. \(\mathcal{B}(A^{(k)}) \) is all of \(\mathcal{P}_n \) if and only if there exist \(S_j, T_j, j = 1, 2, \ldots, n \) such that \(\{j\} = \bigcap_{i \in S} A_i \cap \bigcap_{i \in T} \bar{A}_i \). This implies the proposition. \(\square \)

Thus
\[
P(\mathcal{B}(A^{(k)}) \text{ is all of } \mathcal{P}_n) = P_{BB}(\text{each box contains at most one ball}).
\]

We now prove part (b) of the Theorem.

Let \(z_t \) be the number of boxes containing exactly \(t \) balls. Let \(k = 2 \log_2 n + a_n \) so that \(m = 2^a n^2 \).

Case 1: \(a_n \to \infty \).

\[
E_{BB}\left(\sum_{t=2}^{n} z_t\right) \leq m\left(\frac{n}{2}\frac{1}{m}\right)^2 \leq 2^{-(a_n+1)} \to 0.
\]

Case 2: \(a_n \to a \).

Observe first that
\[
E_{BB}\left(\sum_{t=3}^{n} z_t\right) \leq m\left(\frac{n}{3}\frac{1}{m}\right)^3 = O(n^{-1})
\]

and so \(P_{BB}(\sum_{t=3}^{n} z_t > 0) = o(1) \). Thus we only have to show that
\[
\lim_{n \to \infty} P_{BB}(z_2 = 0) = e^{-\lambda} \text{ where } \lambda = 2^{-(a+1)}.
\]

Let \(r \geq 0 \) be a fixed integer. We show
\[
\lim_{n \to \infty} E_{BB}((z_2)_r) = \lambda^r.
\]

It follows (see e.g. Bollobás [1, Theorem I.20]) that \(z_2 \) is asymptotically Poisson with mean \(\lambda \). This will complete this case.
Now
\[E_{BB}((z_2)_r) = (m)_r \left(\frac{2r}{2r} \right) \frac{(2r)!}{2r} \left(\frac{1}{m} \right)^{2r} \left(1 - \frac{r}{m} \right)^{n-2r} = \lambda^r \]
and we are done.

*Case 3: \(a_n \rightarrow -\infty.\)

This follows from Case 2 by a simple monotonicity argument. (Ultimately we are throwing \(n \) balls into more boxes than the case of any fixed \(a \).)

4. Distributive lattices

Let us now consider \(\mathcal{D}(A^{(k)}) \). We have the following:

Proposition 4.1. \(\mathcal{D}(A^{(k)}) \) is freely generated by \(A^{(k)} \) if and only if \(A_S \neq \emptyset \) for \(\emptyset \neq S \subseteq [k] \).

Proof. Assume \(\mathcal{D}(A^{(k)}) \) is freely generated by \(A^{(k)} \) and \(\emptyset \neq S \subseteq [n] \). Now the two sets
\[C = \bigcap_{i \in S} A_i, \quad D = \bigcap_{i \in S} A_j \]
must be distinct. That is, there exists an element belonging to \(\bigcap_{i \in S} A_i \) but not to any \(A_j \), for \(j \notin S \). Put another way, \(A_S \neq \emptyset \).

Conversely, given any two distributive lattice polynomials in \(k \) variables which have different disjunctive normal forms, then their symmetric difference (as a Boolean polynomial) contains a term with at least one positive instance of a variable. Thus if \(A_S \neq \emptyset \) for \(S \neq \emptyset \), the sets obtained by evaluating these polynomials are distinct and hence \(\mathcal{D}(A^{(k)}) \) is freely generated by \(A^{(k)} \). \(\square \)

It follows from Section 2 and Proposition 4.1 that
\[P(\mathcal{D}(A^{(k)}) \text{ is freely generated by } A^{(k)}) = P_{BB}(\text{box } S \text{ is non-empty, } \forall S \neq \emptyset) \]
\[= P_{BB}(\text{box } S \text{ is non-empty, } \forall S) + P_{BB}(\text{box } \emptyset \text{ is the only empty box}). \]

Thus, by Proposition 3.1, in order to prove (c) we need only show that
\[\lim_{n \rightarrow \infty} P_{BB}(\text{box } \emptyset \text{ is the only empty box}) = 0 \quad \text{for all } k \geq 0. \]

But
\[P_{BB}(\text{box } \emptyset \text{ is the only empty box}) = \left(1 - \frac{1}{m} \right)^n P_{BB}(\text{box } S \text{ is non-empty } \forall S \neq \emptyset) \]
\[\leq \frac{1}{m} \quad \text{box } \emptyset \text{ is empty}. \tag{4.1} \]

Moreover, since there are \(m \) boxes, by symmetry we obtain:
\[P_{BB}(\text{box } \emptyset \text{ is the only empty box}) \leq \frac{1}{m}. \]

Therefore
\[P_{BB}(\text{box } \emptyset \text{ is the only empty box}) \leq \max \left(\left(1 - \frac{1}{m} \right)^n, \frac{1}{m} \right). \]
Fix \(\varepsilon > 0 \), if \(n > 1/\varepsilon^2 \) then either

\[
\frac{n}{m} > \frac{1}{\varepsilon}, \quad \text{or} \quad m > \frac{1}{\varepsilon}.
\]

In the first case \(1/m > 1/en \) and hence

\[
\left(1 - \frac{1}{m}\right)^n < \left(1 - \frac{1}{en}\right)^n < e^{-1/e} < \varepsilon
\]

while in the second case \(1/m < \varepsilon \). Hence, regardless of the values of \(k \),

\[
\lim_{n \to \infty} P_{BB}(\text{box } \emptyset \text{ is the only empty box}) = 0.
\]

This completes the proof of (c). Now to part (d) of the theorem.

Proposition 4.2. \(\mathcal{D}(A^{(k)}) = \mathcal{P}_n \) if and only if \(A_\emptyset = \emptyset \) and \(|A_S| \leq 1 \) for all \(S \neq \emptyset \).

Proof. Clearly \(\mathcal{D}(A^{(k)}) = \mathcal{P}_n \) if and only if

\[
\{j\} = \bigcap_{i \in A_i} A_i \quad \text{for all } j \in [n],
\]

or equivalently

\[
\forall j \in [n] \quad \{j\} = A_{(i: j \in A_i)} \quad \text{and} \quad \{i: j \in A_i\} \neq \emptyset.
\]

As the sets \(A_S \) partition \([n] \) this condition is realised if and only if

\[
A_\emptyset = \emptyset \quad \text{and} \quad |A_S| \leq 1 \quad \text{for } S \neq \emptyset. \quad \square
\]

Hence

\[
P(\mathcal{D}(A^{(k)}) = \mathcal{P}_n) = P_{BB}(A_\emptyset = \emptyset \text{ and } |A_S| \leq 1 \text{ for } S \neq \emptyset)
\]

\[
= P_{BB}(|A_S| \leq 1, \forall S) - P_{BB}(|A_S| \leq 1, \text{ for } S \neq \emptyset | |A_\emptyset| = 1)P(|A_\emptyset| = 1).
\]

(4.2)

Now \(P(|A_\emptyset| = 1) = (n/m)(1 - 1/m)^{n-1} \) and this tends to zero if \(n/m \to 0 \) or \(\infty \). But if \(n/m \to c > 0 \) then the conditional probability in (4.2) goes to zero in view of (b). This completes the proof of (d).

5. Semi-lattices

A semi-lattice is simply a set together with a single idempotent, associative, and commutative operation. In \(\mathcal{P}_n \) we take this operation to be intersection, hence \(\mu(A^{(k)}) \) is simply the smallest subset of \(\mathcal{P}_n \) containing \(A^{(k)} \) and closed under intersection.
We now consider $\mu(\mathcal{A}^{(k)})$. We have the following:

Proposition 5.1. $\mu(\mathcal{A}^{(k)})$ is freely generated by $\mathcal{A}^{(k)}$ if and only if $A_{[n]-(j)} \neq \emptyset$ for all $j \in [n]$.

Proof. The covering pairs in a free semilattice generated by x_1, x_2, \ldots, x_k are exactly those pairs
\[
\bigwedge_{i \in I} x_i \geq \left(\bigwedge_{i \in I} x_i \right) \wedge x_j \quad \emptyset \neq I \subseteq [k], \; j \notin I.
\]
So the semilattice $\mu(\mathcal{A}^{(k)})$ is freely generated by $\mathcal{A}^{(k)}$ if and only if for $\emptyset \neq I \subseteq [k], \; j \notin I$
\[
\bigcap_{i \in I} A_i \notin A_j.
\]
For this to be true, it is necessary and sufficient that
\[
\bigcap_{i \in [k]-(j)} A_i \notin A_j \quad \text{for } j \in [k]
\]
which is equivalent to the statement in the proposition. \(\square\)

Thus
\[
P(\mu(\mathcal{A}^{(k)}) \text{ is freely generated by } \mathcal{A}^{(k)}) = P_{bb}(A_{[k]-(j)} \neq \emptyset \text{ for } j \in [k]).
\] (5.1)

Now for $T \subseteq [k], \; |T| = t$ we have
\[
P(A_{[k]-(j)} = \emptyset \text{ for } j \in T) = \left(1 - \frac{t}{m}\right)^n. \quad (5.2)
\]

Recall that $k = \log_2 n - \log_2 (\log_2 n + b_n)$.

Case 1: $b_n \rightarrow +\infty$.

(5.1) and (5.2) imply
\[
P(\mu(\mathcal{A}^{(k)}) \text{ is not free}) \leq k \left(1 - \frac{1}{m}\right)^n \leq k e^{-n/m}
\]
\[
\leq k e^{-b_n/\log_2 n} = o(1).
\]

Case 2: $b_n \rightarrow b$.

Let Z be the number of boxes $[k]-(j)$ which are empty, and let $	au = e^{-b}$ and let $r \geq 1$ be a fixed integer. Proceeding as in Case 2 of (b) we prove
\[
\lim_{n \rightarrow \infty} E_{BB}((Z)_{r}) = \tau^r
\]
and we are done. Now
\[
E_{BB}((Z)_{r}) = (k) r \left(1 - \frac{r}{m}\right)^n \approx k^r e^{-rn/m} = k^r (\log_2 n)^{-r} e^{-rb}
\]
completing the proof of this case.
Case 3: \(b_n \to -\infty \).
Use a monotonicity argument as in Case 3 of (b).

An element \(x \) of a semilattice \((S, \wedge)\) is called *meet-irreducible* if \(x = y \wedge z \) implies \(x = y \) or \(x = z \).

Proposition 5.2. \(\mu(A^{(k)}) = \mathcal{P}_n \) if and only if
\[
\{ [n] \} \cup \{ [n] \setminus \{ j \} : j \in [n] \} \subseteq \{ A_i : i \in [k] \}.
\]

Proof. The sets \([n]\) and \([n] \setminus \{ j \}, j \in [k]\), are the meet-irreducibles of \(\mathcal{P}_n \), which must be contained in any set which generates \(\mathcal{P}_n \) as a meet-semilattice. \(\square \)

Suppose now that we choose \(k = 2^n(1 - c_n/n) \) sets without replacement. Let \(N = 2^n \). It follows from Proposition 5.2 that
\[
P(\mu(A^{(k)}) = \mathcal{P}_n) = \binom{N - n - 1}{k - n - 1} / \binom{N}{k} \approx \left(\frac{k}{N} \right)^{n+1} \text{ if } c_n = o(n)
\]
and the results follows. \(\square \) (Theorem)

References