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Abstract

We propose the following model of a random graph on n vertices. Let F' be a distribution in
Ri(nfl)ﬂ with a coordinate for every pair i¢j with 1 <,j < n. Then G, is the distribution
on graphs with n vertices obtained by picking a random point X from F' and defining a graph
on n vertices whose edges are pairs ij for which X;; < p. The standard Erdés-Rényi model
is the special case when F' is uniform on the 0-1 unit cube. We examine basic properties such
as the connectivity threshold for quite general distributions. We also consider cases where the
Xi; are the edge weights in some random instance of a combinatorial optimization problem. By
choosing suitable distributions, we can capture random graphs with interesting properties such
as triangle-free random graphs and weighted random graphs with bounded total weight.
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1 Introduction

Probabilistic combinatorics is today a thriving field bridging the classical area of probability with
modern developments in combinatorics. The theory of random graphs, pioneered by Erdos-Rényi
[6] has given us numerous insights, surprises and techniques and has been used to count, to establish
structural properties and to analyze algorithms.

In the standard unweighted model G, ;,, each pair of vertices ¢j of an n-vertex graph is independently
declared to be an edge with probability p. Equivalently, one picks a random number X;; for each ij
in the interval [0,1], i.e., a point in the unit cube, and defines as edges all pairs for which X;; < p.
To get a weighted graph, we avoid the thresholding step.

In this paper, we propose the following extension to the standard model. We have a distribution F’
in Rf where N = n(n —1)/2 allows us a coordinate for every pair of vertices. A random point X
from F' assigns a non-negative real number to each pair of vertices and is thus a random weighted
graph. The random graph GF, is obtained by picking a random point X according to F' and
applying a p-threshold to determine edges, i.e., the edge set Erj, = {ij : X;; < p}. It is clear that
this generalizes the standard model G, ;, which is the special case when F' is uniform over a cube.

In the special case where F'(z) = 1,cx is the indicator function for some convex subset K of Rf
we use the notation Gk, and Fg ,. Thus to obtain Gk, we let X be a random point in K. It
includes the restriction of any L, ball to the positive orthant. The case of the simplex

K:{mGRN:Ve,:L‘SZO,ZaimegL}
€

for some set of coefficients o appears quite interesting by itself and we treat it in detail in Section
4. In the weighted graph setting, it corresponds to a random graph with a bound on the total
edge weight. In general, F' could be any distribution, but we will consider a further generalization
of the cube and simplex, namely, when F has a logconcave density f. We call this a logconcave
distribution. A function f : R®™ — R, is logconcave if for any two points x,y € R" and any
A€ [0,1],

FQOz+ (1= Ay) > () f(y)

i.e., In f is concave. We discuss the motivation presently along with a precise definition.

The model appears to be considerably more general than G, ,. Nevertheless, can we recover
interesting general properties including threshold phenomena?

The average case analysis of algorithms for NP-hard problems was pioneered by Karp [12] and in
the context of graph algorithms, the theory of random graphs has played a crucial role (see [8] for
a somewhat out-dated survey). To improve on this analysis, we need tractable distributions that
provide a closer bridge between average case and worst-case. We expect the distributions described
here to be a significant platform for future research.

We end this section with a description of the model and a summary of our main results.

1.1 The model and motivation

We consider logconcave density functions f whose support lies in the positive orthant. For such
a density f, let 02(f) = Ex~y(X?2) denote the second moment along each axis e. We just use
oe when f is fixed and simply ¢ when the second moment is the same along every axis. We will
also use opin = omin(f) := minoe(f) and omax = Omax(f) := maxo.(f). We also restrict f to be
downmonotone, i.e., for any z,y € RY such that z < y coordinate-wise, we have f(z) > f(y). We



denote by F' the distribution obtained from f. Given such an F', we generate a random graph Gr,,
by picking a point X from F' and including as edges all pairs ¢j for which X;; < p.

We now give some rationale for the model. First, it is clear that we need the distribution to have
some “spread” in order to avoid focusing on essentially a single graph. Fixing only the standard
deviations along the axes allows highly restricted distributions, e.g., the line from the origin to the
vector of all 1’s. To avoid this, we require that the density is down-monotone. When f corresponds
to the uniform density over a convex body K, this means that when = € K, the box with 0 and
x at opposite corners is also in K. It also implies that f can be viewed as the restriction to the
positive orthant of a 1-unconditional distribution for which the density f(xi,...,zxN) stays fixed
when we reflect on any subset of axes, i.e., negating subset of coordinates keeps f the same. Such
distributions include, e.g., the L, ball for any p but also much less symmetric sets, e.g., the uniform
distribution over any down-monotone convex body.

To generalize further, we allow logconcave densities. Allowing arbitrary densities with down-
monotone supports would lead to the same problem as before, and we need a concavity condition
on the density. Logconcavity is particularly suitable since products and marginals of logconcave
functions remain logconcave. So, e.g., the distribution restricted to a particular pair ij is also
logconcave.

The model departs from the standard G, model by allowing for dependencies, i.e., the joint dis-
tribution for a subset of coordinates is not a product distribution and could be quite far from any
product distribution. Moreover the coordinates are neither positively correlated nor negatively cor-
related in general. Nevertheless, there is a significant literature on the geometry and concentration
of logconcave distributions and we leverage these ideas in our proofs.

We note briefly that sampling logconcave distributions efficiently requires only a function oracle,
i.e., for any point z, we can compute a function proportional to the density at x (see e.g., [16]).

Following our presentation for general monotone logconcave densities, we focus our attention on an
interesting special case: a simplex in the positive orthant with unequal edge lengths, i.e., there is a
single defining constraint of the form a- X <1, a > 0, in addition to the nonnegativity constraints.
This can be interpreted as a budget constraint for a random graph.

2 Results

2.1 Random graphs from logconcave densities.

We prove asymptotic results that require n — oco. As such we we need to deal with a sequence of
distributions F,, but for notational convenience we always refer to F'.

Our first result estimates the point at which G, is connected in general in terms of n and o, the
standard deviation in any direction. Our main result is that after fixing the second moments along
every axis, the threshold for connectivity can be narrowed down to within an O(logn) factor.

Theorem 2.1 Let F' be distribution in the positive orthant with a down-monotone logconcave den-
sity. Then there exist absolute constants 0 < c¢1 < co such that

0 p< C10min

lim P(GF,) is connected) =
n—oo
Co0max IN N

n



F being so general makes this theorem quite difficult to prove. It requires several results that are
trivial in G, 5.

The reader will notice the disparity between the upper and lower bound.

Conjecture 2.2 ' Let F be as in Theorem 2.1. Then there exists a constant co such that if
P < CoOmin InN /1 then whp? Gryp has isolated vertices.

Having proven Theorem 2.1 it becomes easy to prove other similar results.

Theorem 2.3 Let I be as in Theorem 2.1. Then there exist absolute constants cg < c4 such that

0 p< C30min
nh_)ngo P(GFp has a perfect matching) =
n even 1 P> C40max Inn
n

Finally, for this section, we mention a result on Hamilton cycles that can be obtained quite simply
from a result of Hefetz, Krivelevich and Szabé [9].

Theorem 2.4 Let F' be as in Theorem 2.1. Then there exists an absolute constant cg such that if

Inn Inlnlnn
p Z CGUmaxi T 1 11
n  Inlnlnlnn

then Gy, is Hamiltonian whp.

2.2 Random Graphs from a Simplex

We now turn to a specific class of convex bodies K for which we can prove fairly tight results. We
consider the special case where X is chosen uniformly at random from the simplex

Ezsz,a:{XE]Rﬁ: Z aneSL}.
eckE,

Here N = (g) and F,, = ([g]) and L is a positive real number and o, > 0 for e € E,,.

We observe first that Gx,, , , p and G, .\ , p have the same distribution and so we assume, unless
otherwise stated, that L = N. The special case where o = 1 (i.e. a. =1 for e € E,;) will be easier
than the general case. We will see that in this case Gy, behaves a lot like G, .

Although it is convenient to phrase our theorems under the assumption that L = N, we will not
always assume that L = N in the main body of our proofs. It is informative to keep the L in some
places, in which case we will use the notation Y; for the simplex. In general, when discussing the
simplex case, we will use X for the simplex. On the other hand, we will if necessary subscript X by
one or more of the parameters «, L, p if we need to stress their values.

We will not be able to handle completely general . We will restrict our attention to the case where

1
MgaegM foreec E, (1)

n an early version of this paper, an abstract of which appeared in FOCS 2008, we incorrectly claimed this
conjecture as a theorem.
2A sequence of events &, is said to occur with high probability whp, if lim,, o P(€,) — 1 as n — o



where M = M(n). An « that satisfies (1) will be called M-bounded.

This may seem restrictive, but if we allow arbitrary a then by choosing £ C E,, and making
Qe, € ¢ E very small and o = 1 for e € E then Gy, will essentially be a random subgraph of
G = ([n], E), perhaps with a difficult distribution.

We first discuss the connectivity threshold: We need the following notation.

avzzavwa forve [n]7
wHAv

where, if e = {v,w} then o, = a..
Theorem 2.5

(a) Let p= "% Then if a =1,

0 Cp — —00
. . —cC
lim P(Gy) is connected) = e " ¢, —c
n—oo
1 Cp — 00

(b) Suppose that o is M-bounded and M < (Inn)'/*. Let po be the solution to

Z gv(p) =1
vE[n]

where & (p) = (1 — %)N. Then for any fized € > 0,

0 <(1-
lim P(Gsy ) is connected) = { p= (=2
n—oo

1 p>(l+epo
Our proof of part (a) of the above theorem relies on the following:

Lemma 2.6 If a =1 and m is the number of edges in Gy, then

(a) Conditional on m, Gy, is distributed as Gpm, i.e. it is a random graph on vertex set [n| with
m edges.

(b) Whp m satisfies
E(m)+ VE(m)w <m < E(m) + vE(m)w

for any w = w(n) which tends to infinity with n.

So to prove part Theorem 2.5(a) all we have to verify is that E(m) ~ in(lnn + ¢,) and apply
known results about the connectivity threshold for random graphs, see for example Bollobds [3] or
Janson, Luczak and Ruciniski [10]. (We do this explicitly in Section 4.2). Of course, this implies
much more about Gy, when o = 1. It turns out to be Gy, ,,, in disguise, where m = m(p).

Our next theorem concerns the existence of a giant component i.e. one of size linear in n. It is
somewhat weak.

Theorem 2.7 Let € > 0 be a small positive constant and o be M -bounded.
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(a) If p < % then whp the mazimum component size in Gy, is O(Inn).

(b) If p > % then whp there is a unique giant component in Gy, of size > rkn where

k= k(e, M).
Next, we turn our attention to the diameter of Gy .

Theorem 2.8 Let k > 2 be a fized integer. Suppose that o is M-bounded and assume that M =

n°W . Suppose that 0 is fized and satisfies % <0< ﬁ Suppose that p = ——. Then whp

nl=
diam(Gy ) = k.

2.3 Randomly weighted graphs

We will also consider the use of X as weights for an optimisation problem. In particular, we will
consider the Minimum Spanning Tree (MST) and the Asymmetric Traveling Salesman Problem
(ATSP) in which the weights X : [n]2 — Ry are randomly chosen from a simplex.

Our next theorem concerns spanning trees. We say that « is decomposable if there exist d,,, v € [n]
such that ay,, = d,d,. In which case we define

ds =Y dy for SCV and D = dy.
veES

Let Ax be weight of the minimum weight spanning tree of the complete graph K,, when the edge
weights are given by a random point X from ¥, .

Theorem 2.9 If a is decomposable and d, € [w™",w], w = (Inn)/10 for v € V and X is chosen
uniformly at random from ¥, o then

- (k_l)' HU Sd’U
a3 oDy s
k=1 SCV S

|S|=k

(The notation a, ~ b, means that lim, . (a,/b,) = 1, assuming that b, > 0 for all n.)

Note that if d, = 1 for all v € [n] then the expression in the theorem yields E[Ax]| ~ ((3).

Now we consider the Asymmetric Traveling Salesman Problem. We will need to make an extra
assumption about the simplex. We assume that

Oy = Qg for all vy, v, w.

Under this assumption, the distribution of the weights of edges leaving a vertex v is independent
of the particular vertex v. We call this row symmetry. We show that a simple patching algorithm
based on that in [13] works whp.

Theorem 2.10 Suppose that the cost matrix X of an instance of the ATSP is drawn from a row
symmetric M-bounded simplex where M < n®, for sufficiently small 5. Then there is an O(n?3)
algorithm that whp finds a tour that is asymptotically optimal, i.e., whp the ratio of cost of the
tour found to the optimal tour cost tends to one.



3 Proofs: logconcave densities

We consider logconcave distributions restricted to the positive orthant. We also assume they
are down-monotone, i.e., if x > y then the density function f satisfies f(y) > f(x). We begin by
collecting some well-known facts about logconcave densities and proving some additional properties.
These properties will be the main tools for our subsequent analysis and allow us to deal with the
non-independence of edges. In particular, they will allow us to estimate the probability that certain
sets of edges are included or excluded from Gr,. We specifically assume the following about F":

Assumption A: F': Ri\_f — Ry is a distribution with a down-monotone logconcave density function
f with support in the positive orthant.

The two main lemmas of this section are

Lemma 3.1 Let F' satisfy Assumption A. Let G = (V,E) be a random graph from Gg, and
S CV xV with |S| =s. Then

e~ 1PS/Tmin < P(SNE =)< e~ 02P5/Tmax

where a1, as are some absolute constants and the lower bound requires p < omin/4.

Lemma 3.2 Let F' satisfy Assumption A. Let G = (V,E) be a random graph from Gp, and
S CV xV with |S| = s. There exist constants by < by such that

<b1p> gP(SgE)g(b2p> .
Omax Omin

The lower bound requires p < omin/4.

Note how these lemmas approximate what happens in G, ;, and note the absence of an inequality
for P(SNE =0,T C E) where SNT = (). The lower bounds are not used in this paper, but we
hope to be able to use them in any subsequent paper.

3.1 Properties

The following classical theorem summarizing basic properties of logconcave functions was proved
by Dinghas [4], Leindler [14] and Prékopa [18, 19].

Theorem 3.3 All marginals as well as the distribution function of a logconcave function are log-
concave. The convolution of two logconcave functions is logconcave.

We will use several results from [15]. In order to state them we need some additional notation. A
logconcave function f : R™ — R is isotropic if (i) it has mean 0 and (ii) its co-variance matrix is
the identity. It is a density if [ f(z)dz = 1. If f is a density then so is fi(z) = A" f(Az). Also
oe(fr) = oe(f)/A for all e. These identities are useful for translating results on the isotropic case
to a more general case. For a function f we denote its maximum value by M.

Lemma 3.4



(a) Let f:R — R4 be a logconcave density function with mean piy. Then

1 1
— < < M, < —.
507 S flup) < My < o

(For a one dimensional function f, it is appropriate to use oy = o(f)).
(b) Let X be a random variable with a logconcave density function f: R — R,.

(i) For every ¢ > 0,

(i)
P(X > E(X)) >

Q| =

(c) Let X be a random point drawn from a logconcave distribution in R™. Then

E(|X]")V* < 2kE(|X]).

(d) If f : R® — Ry is an isotropic logconcave density function then

My > (dem) /2,

Proof The above lemma is from [15]. Part (a) of this lemma is from Lemma 5.5. Part (bi) is
Lemma 5.6(a) and Part (bii) is Lemma 5.4. Part (c) is Lemma 5.22. Part (d) is Lemma 5.14(c). O

We prove the next two lemmas with our theorems in mind.

Lemma 3.5 Let X be a random wvariable with a non-increasing logconcave density function f :

R+ —>R+.
(a) For anyp >0,
P(X <p)<pM;< L.
af
(b) For any 0 <p < oy,
P(X <p)>-L.
20¢

Proof For part (a) use P(z < p) = [P_ f(z)dz < pMy and then apply Lemma 3.4(a).

For part (b), we check the value of f(p). If f(p) > My /2, then the claim follows from monotonicity.
If not, by Lemma 3.4(bi),

My 1
P X< -2 )<=
and so M )
f p
< > > — > ->—
Px <) 2P ($0) 2 ) 2 5>
as required. I



Lemma 3.6 Let v = (vy,...,vs) where

v; :/ x;f(x)dx
RY

be the centroid of F. Then v; > 0;/4 for alli < s and f(v) > e~ 1% /oy, where oy = [[;_; 0; and

A1 > 0 is some absolute constant.

Proof Applying Lemma 3.4(c) with k = 2 gives

Uizjl(/Rs x?f(x)dx) 2%.

+

D=

We next prove that
f(v) 2 27274(0). (2)

Let H C R® be a hyperplane through v that is tangent to the set {x : f(z) > f(v)}. Let a be the
unit normal to H. The down-monotonicity of f implies that a is non-negative. Let H(t) denote
the hyperplane parallel to H at distance ¢ from the origin. Let

h(t) = /H(t) f(y)dy

be the marginal of f along a. The function h is also a logconcave density and observe that u, = a-v.

Let = be a point on H = H(a - v). Since H is a tangent plane f(z) < f(v). Using logconcavity,

f@/2)? > f(0)f (x)

OIS IO
1/2) 2\ [ @) 2[5

and so

Therefore

- 1 & 1 f) 1
ha-v/2) _/H(a_vmf(y) dy = 5 f(v)h(“h) = 5o f(v) 8a(h)

where we have used Lemma 3.4(a) for the last inequality.

On the other hand, using Lemma 3.4(a) we have h(a-v/2) < My, < ﬁh) and (2) follows.

Applying Lemma 3.4(d) to the isotropic logconcave function

~

F vz, - ys) =2 %onf(|lowl, lozyel, - - - losys|)

we see that f(0) which is the maximum of f is at least (2me)~*/o7. The lemma follows from (2).
U



— B(x)

9B(x)

Figure 1: Proof of Lemma 3.1: the ratio of the measure of 0B(x) N K to the measure of B(z) N K
is a nonincreasing function of each coordinate z..

3.1.1 Proofs of the Main lemmas

Proof of Lemma 3.1 We consider the projection of F' to the subspace spanned by S. Let fg
be the resulting density function. It is logconcave by Theorem 3.3. For a point x € R?, let B(z)
be the positive orthant at z, i.e.,

B(z)={yeR} : y >z}

Let g(x) be the integral of fg over B(z). Then by Theorem 3.3, ¢ is also logconcave. The function
h(z) =Ing(zx) is concave and so for e € S,

oh(x) %

ame B g(I)

is nonincreasing, see Figure 1. Therefore, it achieves its maximum at xz. = 0, i.e.,

ohz) _ 0g(0)
Or. ~— Oze

since g(0) = 1. The derivative of g at z. = 0 is simply the probability mass at z. = 0, i.e.,

990) _ fs(z)dw < — !

axe Te=0 ~  80max

where the inequality is from Lemma 3.4(a). Thus, by concavity,

1

80 max

h(z) < h(0) —

Te
eeS



and so
g(z) <e” D e—1 Te/B0max
Setting xz. = p for all e € S, we get the first inequality of the lemma.

For the lower bound, first assume that omax = omin = 0. Let fg be the marginal of f in Ri and
let v = (v1,...,vs) be the centroid of Fys. Consider the box induced by the origin and v. From
Lemma 3.6, with s = |5,

g(o/4,0/4,...,0/4) > fs(v)(o/4)® > e~ (Ar+2)s,
For p < 0/4, by the logconcavity of g along the line from 0 to (0/4,...,0/4),
9, --->p) = g(0) " g(a/4,. ..o /)7 = g(o/4,... /47 > emApsle.
We now remove the assumption oy, = omin using scaling. Define

g(ylvyZa “e. 7ys) - UHf(Ulyla o2y2, ... 7asys)'

g is the density of the vector Y defined by Y, = X./o, for all e € S. Thus E(Y2) =1 for alle € S
and
P(X.>p, ecS)=P(Y.>p/oe,e€S)>P(Ye>p/omin, € € S) > e A2P5/Tmin_
]

Proof of Lemma 3.2 We prove the lemma in the case where oy = 0max = 0. The general
case follows by scaling as at the end of the proof of Lemma 3.1. Consider the projection to the
span of S and the induced density fs. From Lemma 3.6, we see that for p < o /4, for any point =
with 0 <z, < pforall e € S, fs(x) > (4e10)~°. The lower bound follows.

For the upper bound, assume oy, = omax = o and project to S as before. Then consider the origin
symmetric function g obtained by reflecting f on each axis and scaling to keep it a density, i.e.,

9@,y xn) =27 f (e, nl).

This function is 1-unconditional (i.e., reflection-invariant for the axis planes) and its covariance
matrix is 021. By a theorem of Bobkov and Nazarov [2], its maximum, g(0) < ¢* for an absolute
constant c. The bound follows. O

3.2 Proof of Theorem 2.1

For a set S, |S| = k, the probability that it forms a component of G, is by Lemma 3.1, at most
e~ @2Pk(n=k)/omax  Therefore,

Ln/2]
P(G is not connected) < Z <Z> o—a2Pk(n—k)/omax
k=1
It follows that for p > 3omax Inn/(agn), the random graph is connected whp.
We show next that if p < omin/(2eban) then whp |Ep,| < n/2 and so G, cannot be connected.

Indeed, if p < opin/(2eban) where by is as in Lemma 3.2 and N = (g),

N bp \? 1
P(|E >n/2) < < .
(Bl =02 < (1),) (22) < 5

10



3.3 Proof of Theorem 2.3

The proof of Theorem 2.1 shows that if p < ¢10omin/n then there are isolated vertices and so we can
take c3 = ¢;. We have no hope of getting the constants a, as right here for all F' and so we will
be content with finding a perfect matching between Vi = [n/2] and V5 = [n] \ V1. Applying Hall’s

Theorem we see that
n/4
§ : (n/2> < n/2 >6a2k(n/2k+1)p/0max

0 / n2627a2np/40'max k
4k2
k=1

= o(1)

provided p > 9o max Inn/(agn). O

P(GFp has no p.m.)

IN

IN

3.4 Proof of Theorem 2.4

1/3,

We use the following result from [9]: Let G = (V, E) have n vertices and let 12 < d = d(n) < e

be a parameter such that with ng = %:

P1 For every S C V, if |[S| < ng/d then |[N(S)| > d|S|.
(N(S) denotes the set of vertices not in S that have at least one neighbor in 5).

P2 There is an edge in G between any two disjoint subsets A, B C V such that |A|, |B| > ny/4130.

If G satisfies P1, P2 then G is Hamiltonian.

So let p = w where lower bounds on v = 7(n) will be exposed below. We will use d =
dnlnlnn_ pipgt of all, if v > 2d/ag, then

Inlnlnlnn
. n n —agvys(n—s)Inn/n
PPy fails) < (s) (ds)e 2ys(n—s)Inn/

no/d d d s
<"€ e .n—azu—o(l))w)
s d%s

IN

Then, if v > 3%‘;?;3", we have

P(Pz fails) —a27v(no/4130)2Inn/n

IN

for some B1,By >0

(i)
(o

2ng
Bln —'yBgno /n
no

= o(1).

The theorem follows.

11



4 Proofs: Simplex

The case of the uniform distribution over a simplex is much easier to analyse, taking into account
its precise structure. Here, to some extent, probabilities can be estimated very precisely.

The following lemma represents a sharpening of Lemmas 3.1 and 3.2 for the simplex case. For

S CE, let
~Yo.
eeS

Lemma 4.1

(a) If S C E, and E, = E(Gx, p) and o(S)p < L then,

P(SNE, =0) = (1— O‘(*Lg)p>N.

(b) IfS, T C E,, and SNT =0 and |T| = o(n) and o(S)|T|p,a(T)Np, MNp = o(L) and a(S)p < L

then P(SNE,=0,T CE,) = (1+0(1)) (H a@) <J\£p>|T| (1 _ oz(LS)p>N.

ecT

(If a(S)p > L then the above probabilities are all zero).

Proof
(a) With voly denoting N-dimensional volume, we have
Ln
X)) = ———
voly (Xr) NLop, o
and so
voly(Xp N{X. >p: e€ S})
P E, = =
(S : P (D) VOIN(EL)
_ ( )Y /(N ]eep, o)
Ln/(N! HeeEn )

(v
)P

_ (1 a(S ) (3)

(b) Assume first that S = (. For 7" C T and e ¢ T" we have

b«

L — ZfET/ Oéfo
ae(N —|T'))p a.Np 2a(T"p
< < 1+ :
L_ZfET/ Oéfo L

P(T C E,) (ga> <>| lexp{wlmg}. (4)

12

No|T'|
P(eEEp|Xf,f€T’):1—<1— el )

Hence



Similarly,

ae(N —|T"))p ae(N —|T"))p
Plec E, | X, feT)>—= 1—
P L= per oy Xy 2L =Y e oy Xy)
aeNp ( |7"] aeNp)

L N L

>

It follows that

P(I'C E,) = <H ae) <]\£p> I exp {o (’CJF\;Z n a(TL)NP> } _ (5)

eeT

Now

P(SNE,=0|X.,ecT)=(1- (S)p T
P 676 - L—ZeeTan .

So, if ' C E, then

P(SNE,=0|X., ecT)> (1 - O‘(S)p>N (1 - 2O‘(S)O‘(T)Np2> .

L L(L = o(T)p)
and N
P(SﬂEpsze,eeT)g(1—0‘(5)1’) <1+20‘(5L)|T’p)
Part (b) follows by combining the above two inequalities with (5). 0

4.1 Coupling Gy, and G, ,, when a = 1: Proof of Lemma 2.6.

The distribution Gy, conditioned on any fixed number of edges m is uniform over graphs with
m edges i.e. is distributed as G, ,,. This is because ¥ is azis-symmetric i.e. it is invariant under
permutation of coordinates.

Let e;; be the indicator random variable for the event that ij is an edge of Gx , and let m = Zz ; €ij-
Let ¢ = E(e;;) so that E(m) = ¢/N. We bound the variance of m.

E(m®) —E(m)* = > E(e};) — E(eis)* + Y (Elesjens) — E(eij)E(en))
ij ij£kl
<gN + Z P(Xij <pand Xy <p) - P(Xi; <p)P(Xp < p). (6)
ij £kl

It follows from Lemma 4.1 that,

Furthermore, if p < L/2 then

P(Xim <pand X;; <p)=1-P(X;; >p) — P(Xp >p) +P(Xs; > pand Xy >p) =
1—2(1—3)N+ A
L L )

13



Using these identities, we see that if p < L/2 then
E(m?) — E(m)? < N + Y =1 1—2(1—3>N+ AN 1—(1—3)N ;
- 2 L L L
—gN+———((1-2) —(1-2
Nt << L) ( L)
< gN. (7)

If p> L/2 then P(Xjy <pand X;; <p)=1-2(1— %)N and so (7) is still true.
Using Chebyshev’s inequality,

P(gN + v/¢Nw <m < gN + y/¢Nw) =1 —o(1). (8)
This completes the proof of Lemma 2.6. ([l

4.2 Connectivity for Gy, when a = 1: Proof of Theorem 2.5 (a)

Suppose first that ¢, — ¢. Let now L = N and let p = 1“”% and let m = |E,|. Then ¢ in Section

4.1 satisfies )
_ P
2

p <qg<p. 9)

Let mo = Np — n?/3 and m; = Np + n?/3. Now (8) implies that whp, mo < m < m;. But then

—C

o(1)+e ¢ =o0(1) + P(Gnm, is connected) < P(Sp 1 is connected)

< 0(1) 4 P(Gym, is connected) = o(1) +e¢ .

Taking limits gives the result for ¢, — ¢ and the result for ¢,, — 400 follows by monotonicity.

4.3 Connectivity for Gy ,: Proof of Theorem 2.5 (b)

Applying Lemma 4.1(a) with L = N we see that for v,w € [n],

P(v is isolated) = &,(p), (10)
where &, = &(p) = (1 - %2)",
P(v,w are isolated) = <1 _ lawt a“])\[_ avw)p>N (11)
Let p = (1 — ¢)po. We observe first that
1 Inn < aypo < 2M?Inn for all v € [n]. (12)

2M?

If the upper bound breaks for some v € V, then we have a,pg > 2Inn and &,(po) < n~2 for all
w € [n] and this contradicts the definition of py. On the other hand, if the lower bound breaks

14



for some v € V then a,py < 2lnn and &u(po) > (1 — o(1))n=/2 for all w € [n] and this also
contradicts the definition of pg. It follows that &,(pg) = n~% where

< ay, < 3M? for v € [n]. (13)

3M?

Consider the function

dlx) =y n

vE[n]

We know that ¢(1) = 1 and ¢/(1) = —Ilnn > ay,n™® < —Inn/3M?2. It follows that ¢(1 —¢) =
Q((Inn)'/2) for small ¢ and this implies that if Zj is the expected number of isolated vertices in
Gy, then E(Zp) = Q((Inn)'/?).

Since M = o(Inn), (10) and (11) imply that
P(v,w are isolated) ~ P(v is isolated)P(w is isolated)
and then Chebyshev’s inequality implies that Zy # 0 whp and hence whp S, ;, o is not connected.

Suppose now that p = (14 ¢)pg. It follows from (12) that the expected number of isolated vertices
Ay in Gy satisfies

A= Z &ulp) < Z <1 - gﬁép)va(po) < poe/2M? Z £(po) = n—e/2M?
vE[n

] vefn] veln]

Thus whp Gy, has no isolated vertices. Let Ay denote the expected number of components of size
1 <k<n/2in Gxp. Let m = P(Ag # 0) and ko = n/M%(Inn)?. Then for 2 < k < ko,

> ves w¢ s YvwpP o
T <Y (1- o (14)
|S|=k
N N
< Z 1— ZveS Qyp 1— ZU,MGS QywpP
- S N N
B eszMpAlf
- k!
) <€2kM(1+s)(2M3 In n/n)n—a/2M26> k
- k

elto(l),,—e/2M? k
= k

after using pg < 2M?3Inn/n from (12). Thus Z]ZOZI Ay = o(1) and so whp there are no components
of size 1 <k < kg in Gy .

15



For k > kg we use

n/2 n/2 knp N
Ymo< 3% (1 gy)
k=ko k=ko |S|=k

n/2
Z <n> o~k Inn/(4M?)
k=kq k
n/2 ne J4M3 k

ne  _1/am

k=ko
n/2
Z (MG(ln n)Qn—1/4M3)k;
k=ko

= o(l).

Thus whp there are no components of size 1 <k <n/2 in Gy, ;. This completes the proof of part
(b) of Theorem 2.5. O

IN

IA

IN

4.4 Giant Component in Gy ,: Proof of Theorem 2.7

We use a simple coupling argument. For a vector p € ]Rf we define G p to be the random graph
where X is chosen uniformly from ¥, and an edge e is taken iff X, < p.. Suppose first that A > 0
for all e € E,,. Define o by o, = aeAe and define p’ by p, = pe/Ae. We claim that G, p = G pr
in distribution. Indeed, for a fixed graph G = (V, E) we have

P(Ga,p = G) =
1
VOI(E)A<$P<P9 voly_ g xf>ps, fEE, Zafxf SN*ZaefCe) HdCUe
N\&~N R f¢E eck el
N—|E|
(H ae> —\E\)‘LN %<xe<pe (max {0 N — Zaexe — Z%Zk}) H dz,
eck ) eel e¢E zek
N N-|E|
(H o} > —\E\)‘LN %@ < <max{0 N — Zaeye Z%Pg}) H dye
eel ecE ecl e¢FE eelr
=P(Gy p =G)

So for (a) we start with p = pl and take A = 1/ae to get Gy, = G1p in distribution. Note
that p/, < (1 —¢)/n and so we can couple so that Gy pr € G 1-¢,. Part (a) follows from (8) as in

Section 4.1. Part (b) is similar.

4.5 Diameter of Gy ,: Proof of Theorem 2.9

Recall that p = nl%g where % <0< ﬁ We show first that whp the diameter exceeds k& — 1.
Let Z; denote the number of paths of length ¢t < k — 1 from vertex 1 to vertex 2. We consider the

16



existence of t edges making up a path. Applying Lemma 4.1(b): S =0 and |T| = k&,
E[Z] < (1+o0(1))n" ! (Mp)*

M t
t—1
2n <n1_9>

2Mtn0t—l
o(1).

IN

Case 1: k£ > 3.
We must now show that the diameter is at most k. The following lemma provides some structure:

Lemma 4.2 The following hold whp:
(a) The mazimum degree A < Ag = 10Mn?.
(b) Suppose that S C V with |S| < n'=%=¢ for some fired . Then |N(S)| > n?|S|/(10M Inn).

Proof (a) We consider the existence of t = 10Mn? edges incident with a fixed vertex. Applying
Lemma 4.1(b): S =0 and |T| = Ag. (k > 3 is needed here to ensure that «(T)p = o(1)).

PIA > Ap] < (1+ 0(1))n<§0> (Mp)2 < 2n (%)AO = o(1).

(b) Using Lemma 4.1(a) we see that the probability that this fails to hold can be bounded by

nl=0—c nfs/(10M Inn)

[SI(n — 15| = TP\ "™
> <1— Yo )s

|5|=1 IT|=0

nl—0—c nfs/(10M Inn)
Z Z nS'HeXp{—s(n— s—t)ne_l/M} <
s=1 t=0
nl=0—¢ n%s/(10M Inn)
Z Z ns+t€—sn9/2M _ 0(1)
s=1 t=0
0
For a vertex v let N,.(v) be the set of vertices at distance r from v. Let ro = L%J and r = LgJ
It follows from Lemma 4.2 that whp we have

(n?/(10M Inn))" < |N,(v)| < (10Mnf)" for 1 <r<mr.

Furthermore, we have rg +r; < k — 1. So suppose that v,w € V and N, (v) N Ny, (w) = 0.
(If the intersection is non-empty then their distance is already < k). Now condition on the sets
T,S of edges and non-edges exposed in the construction of N,,(v), Ny, (w). Then whp we have
|S| = O(n(MAY)™) and |T| = O((MAy)™).

Let v, = | Ny, (0)], vy = | Npy (w)|. Given S, T let R = {xy : © € Ny, (v),y € Ny, (w)}. Using Lemma
4.1(b), the conditional probability that there is no edge between N,,(v) and N,, (w) is bounded as
follows: |R| + |S| = O(n"+1*°()) and |T| = O(n"10+oM),

P(RUS)NE,=0,TCE,) a(R)p\ N
P(SNE,=0,T C ) _(Ho(l))(l_ N>

< 267uvuwp/M = exp {_Q(n(ro+r1+1)97170(1))} ) (15)
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Now (rg +r1 +1)8 —1 = Q(1) and this completes the proof for the case k > 3.

Case 2: k= 2.
This is much simpler. We show that if p = n~° where 8 = 1/2 — ¢ then diam(Gyx ;) = 2 whp.
Here ¢ is an arbitrarily small positive constant.

We first argue that the minimum degree in Gy, is at least A; = n'/2+¢/(10M Inn). Indeed, if
denotes minimum degree then from Lemma 4.1(a),

P[0 < A < n(n —nA1> (1 - W’)N = o(1).

Then by conditioning on N (v), we argue as in (15) that whp every pair of distinct vertices v, w
have a common neighbour. More precisely,

P(N(v) N N(w) =0,N(v) = X) Ap\Y .
PIVG) = ) = o) (1-gt) <o

4.6 Minimum Spanning Tree: Proof of Theorem 2.8

Suppose that T is our minimum length spanning tree. Then we can write its length ¢(7") as

(r)y = > X

ecT

N
D IR
p=0

ecT

N
— [ Yl Xezp)idp

=0 e
N
— [ ()~ ap
p=0
where x denotes the number of components. The final equation is the only place where we need to
assume that 7" is a minimum length spanning tree.
So,
N
Ax= [ (E(Gsp)] - D)dp (16)
p=0
The general strategy from now on is to show that the integral in (16) is dominated by small values
of p and the expectation E[x(Gx ,)] is dominated by the expected number of small components.

We then try and carefully estimate the expected number of small components when p is small. So,
a lot of the proof involves showing that certain quantities can be ignored.

Going back to (14) (with M = w?) we see that
n knp N ne  _ 2\ k
< P < (25 —mp/2w
= <k> (1 2w2N> = ( kC ) (17)

implies Pr[Gsy, is not connected] = o(N~2). Therefore,

for 1 <k <n/2.
SO;FZPO:

5w2lnn
n

Ay = / pOO(E[H(GE,p)] _1))dp + o(N). (18)
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Next let k) denote the number of components with k& vertices. k1, is the number of isolated

vertices and N
dy(D — dy)p
WMZZG‘(pJ))‘

veV
It follows that

Po dy(D — dy)p N 1 1 1 1
> E - — + o(N > A= — E —_— > —. 1

Using Lemma 4.1(b) to tighten (17), we see that for k < n'/? and p < po,

_ knp N 1 _ 2\ k
k=2 2 \k—1 2, —np/2w
Elkk,p) < Sg_kk (w*p) <1 - 2w2N> < = (ne - w?pe P/ > . (20)

Explanation: Choose a set S of k vertices and then a tree H on these vertices in k=2 ways.

w2p)k—1 (1 — tn N bounds the probability that H exists and there are no edges from S to V'\ S.
2w N

So if p1 = 2210w hen for k < n'/2,

po 1 [ np _ 2\ k
— < 4 np/2w
/p (Elkgp] —Ddp < —; ) (2ew®) / (2w2e ) dp

=p1 w=p p=p1

2 o0

= = (26w4)k/ (ze™®)Fdx
npi z=10Inw
2 o0

< — (26w4)k/ e~ 2kt /3 gy
npi z=10Inw
2 nk

< — (2ew —_—

-~ oy ( ) k 6k

< 1

= k2

Now for any k there are fewer than n/k components of size > k. So,

Po
E / (Elkgp] — Ddp < n'/?py.
p

E>nl/2 v P=P1

It follows from (18) and (19) that

A - /p1 (E[k(Gxp)] — 1])dp+ O (Z ﬁ + n1/2p0) +o(N7Y) (21)
p=0 k=1
P1
N / E[+(Gx.,»)]dp
p=0
= > [ el + Ot )
k=17P=0
k=1"P=0
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Now let 7y, denote the number of components of Gy, that are isolated trees with k vertices. For
X CV welet A, = {a €1,k Z§:1 a; =2k — 2}. Then, where ¢ = e~ 7P,

k d“ﬂ g

Elrgp) ~ (k —2)lpF~! Z Z H for k <P (23)

a€hy  fikl—V  j=1
f an injection
Explanation: We choose a degree sequence aj, j = 1,2,...,k for our tree. Then we choose f to

assign vertices to the degrees. The number of trees with this degree sequence is % Let
vE v :

H be such a tree. Going back to Lemma 4.1(b) with 7' = E(H) and |S| = k(n — k) + (S) —k+1

we see that the probability H is an isolated tree component is ~ p#~! II ddv ( d’}? L )

veX v
k—1 d
P pex 47 a™-

We will show that the expression (23) can be written

n

i)~ (-2 Y IS iy (24)

a€Ay i=1v= 1

Observe that the sum 3 on the RHS of (24) can be expressed

where

= Z Z¢(aaf)

a€Ay fE]:j

A% gt @
and F; is the set of functions from [k] — V with a range of size j and ¢(a, f) = Hf 1 Lt

(a;i—1)! ~
Thus the sum on the RHS of (23) is equal to X;. We show next that

Z.
29t 5 pl-o) 1<i<k. (25)

Zj_

Observe first that
2k okwDpl <(a, f) < W,
Our bounds w!® < Inn, k < w®,p < p; imply that ¢ (a, f) = n°Y for all a, f. So, Y= |.7:j|n0(1) =
nIT°(). This confirms (25), which implies that ¥ ~ ¥ and confirms (24).
We re-write (24) as

nox© qdudr k
Elriy) ~ (k—2)pF a7 (ZZ(T_{’);“TT)

v=1r=1
n k
_ (k) 2) k— 1 k 2 (qu”d edvx>
v=1
= (k—2)! ’“qus 7 (26)
SCV veES



where dg =} g d,.
So,

wd

k=1

(27) to (28): dgDp; > 20kInw and = > 20k Inw implies that 2#~1 < ¢*/2. Hence

k 2
k=1 D SCV dg
|S]=k
oo
PRty gRTL
Dk 2
k=1 SCV S
|S]=k

o0 (o)
/ 2 le % dy < / e /24y = 2,10k,
x=dsDp1 =20k Inw

(29) to (30):

jg: - 1 3 IIUES

k=w5 SCV
|S|=k

which must be compared with (19).

2

> k—1)lw?
<y ! S > [ dv s > =5 =0 ™)

k=w5 SCV vesS k=w5

S]=k

It only remains to show that if oy, ), = ki — 7% p then

w? P1 9
Z/ Elokpldp = o(w™ 7).
k=1"pP=0

But, arguing as in (20) we see that for £k <n/2,

knp \ /202 \ K
Elokp] < Zk‘kwp < 2w2]])\f> S(nek-wzpe p/2 2) )

|S|=k
Hence
w"? 1 w?
/ Elokpld Z Qekw
k=17P=0 k=1

and (31) follows.
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5 TSP algorithm: Proof of Theorem 2.10

A digraph is a set of edges (i,7) and these can equally well be viewed as the set of edges of a
bipartite graph. So we consider there to be a digraph view and a bipartite view. The algorithm
consists of the following;:

Step 1 Solve the assignment problem with cost matrix X i.e. find a minimum cost perfect matching
in the bipartite view. The edges (7, a(7)) of the optimal assignment form a set of vertex disjoint
cycles Cq,Co, ..., C in the digraph view.

Step 2 Assume that |C]| > |Ca| > -+ > |Cyl.
For i = k down to 2: C; «— C1 @ C;. (Patch C; into C1).

Here C; @ C; is obtained by removing an edge (a,b) from C; and an edge (¢, d) from C; and
adding edges (a,d), (c,b) to make one cycle. These two edges are chosen to minimise the cost
Xad + Xeb-

Each patch reduces the number of cycles by one and so the procedure ends with a tour.

Analysis:

(a) The row symmetry assumption implies that the matching found in Step 1 is uniformly random
and so in the digraph view it has O(Inn) cycles whp. We prove this as follows: For any two
permutations w1, Ty we have

P(a(X) =m) = P(a(mmy, ' X) = m) = P(a(X) = m2).
It follows that whp |C}| = Q(n/Inn).

(b) We next put a high probability bound on the length of the longest edge in the solution to Step
1. There are several steps:

(1) We let w = KM (Inn)? for some large constant K and argue that whp every vertex in
Gs.py, P1 = w/n, has in-degree and out-degree at least wo = Llnn where L = K/2,
To verify the degree bounds, fix a vertex v and partition [n] \ {v} into sets Vi,..., V],
of size ~ n/wy. Using Lemma 4.1(a) we see that

P(3i: dp (v,V;) =0) < o1/ (Mwo) _ p—L

where dp(v, V;) is the number of Gy, neighbors of v in V;.

Thus with probability at least 1 — n~L, v has one out-neighbor in each part of the
partition. This gives an out-degree of at least LInn as required. In-degree is treated
similarly. If L > 2 then the failure probability is sufficient to give the result for all v.

(2) We use Lemma 4.1(b) and a simple first moment argument to argue that if in the bipartite
view we have two sets S, T contained in different sides of the partition and |S| < n?/3
and |T| < L|S|Inn/4 then whp the induced bipartite sub-graph on S U T contains at
most L|S|Inn/2 edges of length < p;. Indeed, if B is the event that there are S, T with
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more edges, then
n2/3 Lslnn/4

P(B) < (1—1—0(1)); ; <Z> G) <leitn/2> (W>lenn/2

2/3

5 nz(ney‘ den O\ Lelnn/4 KM?e(Inn)?s Lslnn/2
n ne A ey s
—\s Lslnn 2n

n2/3

— Wy <ne (M“L?’ei”(lnn)%)““”/‘*)s
— S n

= o(1).

IN

(3) Now suppose that the optimum solution to Step 1 contains an edge (x,y) of length greater
than 2Mn~1/2. We grow alternating paths from z, y in a breadth first manner using edges
of length < py. Using (b1) and (b2) we see that the levels grow at a rate > L1Inn/5 until
they are of size at least n%/5 say. This will happen regardless of the matching a produced
by Step 1. Indeed, let Sy = {z} and in general, let S;+1 = a=}(N,(S;)\SoU- - -US;. N,(S)
denotes the neighbors in G, of a set S contained in one side of the partition. It follows
from (b1) and (b2) that |S;1| > L|S;|Inn/5, as long as |S;| < n*3. So whp there exists
io such that |S;)| > n®/°. Similarly, if Ty = {y} and Tj4; = a(Ny(T;)) \ To U --- U T}
then whp there exists jo such that |Tj,| > n3/°.

We can then use Lemma 4.1(a) to argue that whp there is an edge of length at most
Mn~1/2 joining the final two levels S, T". Indeed

2
P(3|S|,|T| > n®/® : there is no S, T edge of length < Mn/?) < (n?/f’) e o(1).

Then exchanging along the alternating path adds edges of total cost at most Mn~—1/2 +
o(piIlnn) <2M n~1/2 and removes an edge of length strictly greater than this, a contra-
diction.

(b) It follows from the above that we can whp ”ignore” the edges of length > py = M n~Y% in our
construction in Step 1. Let the edges of length < py be denoted E7 and the edges of length
in the range [p2,2p2] be denoted E,. We observe next that whp |Eq| < 10M 27/4 . Indeed,
applying (4) we see that if t = 10M?n"/* then

N\, . [ M\ 2M312 Ne M? M3t |\’
Pz < () () oo e = (57 oe g ) =o)

Let us now condition on the exact lengths of the edges in ;. The distribution of remaining
edges can now whp be written as X, = py + Y, where Y’ is chosen uniformly from a simplex
Y in at least N’ > N — 10M2n7/* dimensions and with RHS L' > N — 10M3n"/4 — Nps.

(1) We can now argue very simply: Choose for each 2 < i < k an edge (a;,b;) of cycle C;.
(If |C;] = 1 then a; = b;). Then divide C into k paths P, ..., Py of length ~ |Cy|/k.

Arguing as in (al) we can show that whp

each a; has at least ng = n%*/(2(Inn)®) E; U Ey out-neighbors Q; in P;. (32)
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Indeed, fix i and divide P; into |P;|/(2n'/*1nn) > n3/*/(2(Inn)3) disjoint pieces, each
of size > 2n'/*Inn. The (conditional) probability that there is no (E; U Ep)-edge from
a; to any one of these pieces is at most e 2" = n=2. This follows by applying Lemma
4.1(a) to X',

Thus (32) holds whp. Now further condition on the lengths of the Fs-edges from the
a; to C'1. The lengths of the unconditioned edges are now determined by the uniform
selection from a simplex ¥” with ~ N coordinates and RHS ~ N. Let R; be the
in-neighbors of the @; on Cy. Applying Lemma 4.1(a) once more, we see that

P(3i: there is no R; : b; edge) < (Inn)e "0P2/M — o(1).

(2) Insummary, whp the cost of the patching is O(pz Inn) = o(1/M). Finally, the cost of the
minimum tour is 2(1/M) whp. We can for example show that if we only consider edges
of length at most €/(Mn) for small constant ¢ then whp at least half of the vertices
have out-degree zero. Lemma 4.1(a) shows that the expected number of isolated vertices
is 2(n). We can then use the Chebyshev inequality to argue that there 2(n) isolated
vertices whp.

6 Discussion

Our work raises several open questions.

0. Connectivity Threshold. Is Inn/n the threshold for connectivity? E.g. prove Conjecture
2.2. An analysis of the second moment raises an interesting question about conditional
probabilities of logconcave marginals. Namely, for X € RY drawn from an isotropic down-
monotone logconcave density, is it true that

P(Xpy1>p| X1, X >p) < (1 4+ cp®)P(Xpp1 > p)
for some constant c¢?

1. Random graphs with prescribed structure. We can generate interesting classes of random
graphs with prescribed structure. For example, let us consider H-free subgraphs of a fixed
graph G. Let Py C [0, I]E(G) be defined as follows: Let Hq, Ho,..., Hs; be an enumeration of
the copies of H in G. Fix some pg. Py is the set of solutions to a linear program.

Z Xe > |E(H)|po fori=1,2,...,s. (33)
eEE(HZ‘)

0<X.<1, Yee E(G).

It is easy to see that Gp,, p, is H-free, indeed }_ c ) Xe < |E(H)|po for any H in Gpy p,.
It would be interesting to analyze important properties of Gp, ,,,. For example, when H is
the list of all triangles of the complete graph, we get triangle-free graphs. Similarly when
H is a path of length 2, we get matchings (and we can get matchings of any fixed graph by
including only the edges as coordinates).

A related question is whether this formulation can be used to generate such H-free graphs
uniformly at random. Logconcave distributions can be sampled, but the thresholding process
might give a (slightly?) nonuniform distribution.
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2. Thresholds for monotone properties Do monotone graph properties have sharp thresholds
for logconcave densities as they do for Erdés-Rényi random graphs?

3. Giant Component. When does G, have a giant component? We have barely scratched the
surface of this problem.

4. Smoothed Analysis. Smoothed Analysis as proposed by Spielman and Teng [20] can be
viewed as choosing the costs X uniformly from a unit ball. This is a special case of what we
are proposing and it is natural to ask what can be proved about this generalisation, e.g. for
Linear Programming.

5. Hamilton Cycles. Can we remove the lln InInn_ f5ctor from the proof of Theorem 2.47

nininlnn

6. Degree Sequence. This is a fundamental parameter and we know very little about it.
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