COMBINATORICA

COMBINATORICA is an international journal of the J. Bolyai Mathematical Society (Anker köz 1—3, Budapest, Hungary H-1061), published jointly by Akadémiai Kiadó, Budapest and North-Holland Publishing Company, Amsterdam. COMBINATORICA is a quarterly journal.

COMBINATORICA publishes research papers in English from various branches of combinatorics and the theory of computing. Applications-oriented papers containing new mathematical results are also welcome.

Mailing address for editorial correspondence:
COMBINATORICA or
Mathematical Institute of the
Hungarian Academy of Sciences
Reáltanoda u. 13—15.
H-1053 Budapest, Hungary

COMBINATORICA
R. L. Graham
AT&T Bell Laboratories
600 Mountain Ave,
Murray Hill, NJ 07974 U.S.A.

Honorary Editor-in-Chief
P. Erdős
Mathematical Institute of the
Hungarian Academy of Sciences
H-1053 Budapest, Hungary

Advisory Board
R. L. Graham
AT&T Bell Laboratories
Murray Hill, N. J. 07974, U. S. A.

Editor-in-Chief
L. Lovász
Mathematical Institute
Eötvös University
H-1088 Budapest, Hungary

András Hajnal
Mathematical Institute of the
Hungarian Academy of Sciences
H-1053 Budapest, Hungary

Executive Editor
L. Babai
Mathematical Institute
Eötvös University
H-1088 Budapest, Hungary

G. O. H. Katona
Mathematical Institute of the
Hungarian Academy of Sciences
H-1053 Budapest, Hungary

Managing Editors
Ákos Seress
Mathematical Institute of the
Hungarian Academy of Sciences
H-1053 Budapest, Hungary

Donald E. Knuth
Stanford University
Stanford, CA 94305, U. S. A.

L. A. Székely
Mathematical Institute
Eötvös Loránd University
H-1088 Budapest, Hungary

Vera T. Sós
Mathematical Institute
Eötvös Loránd University
H-1088 Budapest, Hungary

Distributors for Albania, Bulgaria, China, Cuba, Czechoslovakia, German Democratic Republic, Korean People’s Republic, Mongolia, Poland, Romania, USSR, Viet-Nam, Yugoslavia:
Kultura
Hungarian Foreign Trading Co.
H-1389 Budapest 62, P. O. Box 149, Hungary

For all other countries:
North-Holland Publishing Company
P. O. Box 211, 1000 AE Amsterdam
The Netherlands

Subscription Information
Combinatorica (ISSN 0209—9683) is published in one volume of 4 issues a year. The subscription price for 1987 (Volume 7) is Dfl. 245,— + Dfl. 25. — p.p. h. = Dfl. 270,—. Our p.p.h. (postage, package and handling) charge includes surface delivery of all issues, except to subscribers in the USA, Canada and India, who receive all issues by air delivery (S.A.L. — Surface Air Lifted) at no extra cost. For the rest of the world, airmail and S.A.L. charges are available upon request. Claims for missing issues will be honoured free of charge within three months after inquiries to: Elsevier Science Publishers B.V., Journals Department, P O Box 211, 1000 AE Amsterdam, The Netherlands.
© Akadémiai Kiadó, Budapest
LARGE HOLES IN SPARSE RANDOM GRAPHS

A. M. FRIEZE and B. JACKSON

Received 18 October 1985

We show that there is a function \(\alpha(r) \) such that for each constant \(r \geq 3 \), almost every \(r \)-regular graph on \(n \) vertices has a hole (vertex induced cycle) of size at least \(\alpha(r)n \) as \(n \to \infty \). We also show that there is a function \(\beta(c) \) such that for \(c > 0 \) large enough, \(G_{n,p}, \ p = c/n \) almost surely has a hole of size at least \(\beta(c)n \) as \(n \to \infty \).

Introduction

This paper is concerned with the existence of large holes i.e. induced cycles, in random graphs. We study in particular random regular graphs and sparse random graphs with constant average degree.

In a recent paper [5] we showed that such graphs have large induced trees with high probability. For the model of random graphs with constant average degree this confirmed a conjecture of Erdős and Palka [3]. This conjecture was confirmed independently and contemporaneously by Fernandez de la Vega [4]. Thus this paper strengthens the above results by specifying that the induced tree can be taken to be a path.

For a graph \(G \) let \(\sigma(G) \) denote the size of its largest hole. Our first result concerns random regular graphs. Let \(R(r, n) \) denote the set of regular graphs of degree \(r \) with vertex set \(V_n = \{1, 2, \ldots, n\} \). We turn \(R(r, n) \) into a probability space by giving each graph in \(R(r, n) \) the same probability.

Theorem 1. Let \(r \geq 3 \) be fixed and let \(R(r, n) \) be chosen randomly from \(R(r, n) \). Then where \(q = q(r) = (2r-3)(2r-4) \) we have

\[
\lim_{n \to \infty} \Pr(\sigma(R(r, n)) \leq nr(r-2)^{-1}(1-q \log_e (1+q^{-1}-\varepsilon))) = 1
\]

for any fixed \(\varepsilon > 0 \).

The second result concerns the model \(G_{n,p}, \ p = c/n \) where \(c \) is a constant.

AMS subject classification (1980):
Here each of the \(\binom{n}{2} \) possible edges is independently included with probability \(p \) and excluded with probability \(1-p \).

We prove

Theorem 2. For large enough \(c \), and \(q=q(4c) \),

\[
\lim_{n \to \infty} \Pr(\sigma(G_n,c,n)) \equiv (n/4c)(1 - c^6 e^{-c})(1 - q \log_e (1 + q^{-1}) - \varepsilon) = 1
\]

for any fixed \(\varepsilon > 0 \).

The restriction, for large enough \(c' \) in the above theorem comes from our method of proof. We conjecture that a similar result holds for any \(c > 1 \).

Regular graphs

We prove Theorem 1 by analysing a simple algorithm FINDPATH that searches for a long induced path. We show that FINDPATH almost surely finds a path of the stated length. (By almost surely, a.s., we simply mean with probability \(\to 1 \) as \(n \to \infty \).) It is then a simple matter to show there is a.s. a large hole.

FINDPATH keeps a path \(P_k=(v_1, v_2, \ldots, v_k) \) such that \(P_{k-1} \) is induced. It checks as to whether or not \(P_k \) itself is induced and if so it tries to grow its path from \(v_k \). It searches the currently available edges \(A(v_k) \) which are incident with \(v_k \) and then proceeds as follows:

1. \(A(v_k)=\emptyset \) or there is an edge in \(A(v_k) \) of the form \((v_k, v_i) \), \(i \leq k-2 \). In this case FINDPATH backtracks i.e. removes vertices \(v_k, v_{k-1}, \ldots \) from \(P \) until a \(v_i \) is found for which \(A(v_i) \neq \emptyset \), otherwise

2. FINDPATH chooses an edge \((v_k, w_1) \in A(v_k) \), extends \(P_k \) by making \(v_{k+1}=w_1 \) and removes edge \((v_k, w_1) \) from \(A(v_k) \).

More formally we define

Algorithm FINDPATH

Input graph \(G=(V_n, E) \);

begin
\(k:=1; \quad v_1:=1; \quad \text{for } v=1 \text{ to } n \text{ do } A(v):=\{e \in E: v \in e \} \)

repeat
\(W:=\{v \neq v_k: e \in A(v_k) \text{ and } v \in e \} = \{w_1, w_2, \ldots, w_p\} \);

if \(W=\emptyset \) or \(W \cap \{v_1, v_2, \ldots, v_{k-2}\} \neq \emptyset \) then

begin
\(v_{k+1}=w_1; \) remove \((v_k, w_1)\);
end
else

begin
\(v_{k+1}=w_1; \) remove \((v_k, w_1)\);
\(k:=k+1 \)
end

until forever
end;
procedure backtrack;
begin
 repeat
 \(k := k - 1; \)
 if \(k = 1 \) then STOP;
 until \(A(v_k) \neq \emptyset \)
end;

procedure remove \((e: \text{ edge})\);
begin
 let \(e = (x, y); \)
 \(A(x) := A(x) \setminus \{e\}; \)
 \(A(y) := A(y) \setminus \{e\} \)
end.

It is clear that \((v_1, v_2, \ldots, v_{k-1})\) is always an induced path, any \(v_k \) that stops the path from being induced is immediately discarded.

We now turn to the performance of FINDPATH on random regular graphs. In order to obtain a result for \(G_{n,c/n} \), \(c \) constant, we shall prove a slightly stronger result.

Thus let \(A \geq 3 \) be an integer constant and let \(d = d_1, d_2, \ldots, d_n \) satisfy \(3 \leq d_i \leq A \) for \(i = 1, 2, \ldots, n \). Let \(\mathcal{G}(d) \) denote the set of simple graphs with vertex set \(v_n \) satisfying \(d(i) = d_i \) (degree of vertex \(i \)) for \(i = 1, 2, \ldots, n \). Thus graphs in \(\mathcal{G}(d) \) have no loops or multiple edges. Assume that \(d \) is graphic i.e. \(\mathcal{G}(d) \neq \emptyset \).

We turn \(\mathcal{G}(d) \) into a probability space by giving all members of \(\mathcal{G}(d) \) the same probability \(1/|\mathcal{G}(d)| \). Theorem 1 follows immediately from Lemma 1.

Lemma 1. Let \(G \) be chosen randomly from \(\mathcal{G}(d) \), Then

\[
\lim_{n \to \infty} \Pr \left(\sigma(G) \geq (2m/A)(A-2)^{-1}(1-q \log_e(1+q^{-1})-\varepsilon) \right) = 1
\]

where \(q = q(A) \) and \(\varepsilon > 0 \) is arbitrary.

Proof. In order to study \(\mathcal{G}(d) \) we consider the model defined in Bollobás [1]. Let \(D_1, D_2, \ldots, D_n \) be disjoint sets with \(|D_i| = d_i \) and set

\[
D = \bigcup_{i=1}^{n} D_i
\]

and \(2m = |D| \).

A configuration \(C \) is a partition of \(D \) into \(m \) pairs, the edges of \(C \). Let \(\Phi \) be the set of all \(N(2m) = (2m)!/2^m m! \) configurations. Turn \(\Phi \) into a probability space by giving all members of \(\Phi \) the same probability. For \(C \in \Phi \) let \(\Phi(C) \) be the multigraph with vertex set \(V_n \) in which \(i \) is joined to \(j \) whenever \(C \) has an edge with one end vertex in \(D_i \) and the other in \(D_j \). Clearly \(\mathcal{G}(d) \subseteq \Phi(\Phi) \) and

\[
|\Phi^{-1}(G)| = \prod_{i=1}^{n} d_i!
\]

for every \(G \in \mathcal{G}(d) \).

Let \(Q \) be a property of the graphs in \(G(d) \) and let \(Q^* \) be a property of the configurations in \(\Phi \). Suppose these properties are such that for \(G \in \mathcal{G}(d) \) and \(C \in \Phi^{-1}(G) \) the configuration \(C \) has \(Q^* \) if and only if \(G \) has \(Q \). All we shall need from [2] is that if almost every \(C \) has \(Q^* \) then almost every \(G \) has \(Q \).
We shall thus be able to prove '90%' of the lemma if we can show that FINDPATH applied to a multigraph $\Phi(C)$, C chosen randomly from Φ, almost surely finds an induced path of the required size. It will then be straightforward to show that a large hole a.s. exists.

In the following analysis we do not assume that the C chosen randomly from Φ is given to us completely. Instead we assume that C is constructed by an oracle and we have to ask the oracle to get information about C. Done this way we can easily handle the conditioning introduced by the knowledge that the path $(v_1, v_2, \ldots, v_{k-1})$ is induced.

We shall now give the version of FINDPATH applied to configurations in this context. At any stage $A(i) \subseteq D_i$ is the set of points of D_i whose pairings in C are not completely known to us, $i=1, 2, \ldots, n$. Initially $A(i)=D_i$ for $i=1, 2, \ldots, n$. $F \subseteq D$ is the set of free points, i.e. points associated with vertices that have never been on our path. For such vertices, $A(v) \subseteq F$ although $A(v)$ need not equal D_v as vertices removed from further consideration may have had v as a neighbour.

$$L = \bigcup_{i=1}^{k-1} A(v_i)$$

is the set of unpaired points associated with vertices on the induced path.

In the following, t is an iteration count.

Algorithm FINDPATH (applied to configurations)

begin

$k := 1$; $v_1 := 1$; $F := \{1, 2, \ldots, 2m\} \setminus A(1)$; $L := \emptyset$; $t := 1$

repeat

$x := A(v_k) = \{x_1, x_2, \ldots, x_p\}$

Case Analysis

(a) Answer YES: Ask oracle if any x_i is paired with anything in $L \cup X$.

Answer y_i, $i=1, 2, \ldots, p$.

for $i=1$ to p do remove (x_i, y_i);

backtrack.

(b) Answer NO: Ask oracle what is paired with x_1

Answer y_1.

Let $y_1 \in A(v); \text{ remove (}x_1, y_1\text{)}$;

$k := k + 1$; $v_k := v$; $L := L \cup (X - \{x_i\})$.

end of case analysis

$t := t + 1$

until forever

end;

procedure backtrack

begin

repeat

$k := k - 1$; if $k = 1$ then STOP

until $A(v_k) \neq \emptyset$

$L := L \setminus A(v_k)$

end;
procedure remove \((x, y)\);
begin
 let \(x \in A(v)\), \(y \in A(w)\);
 \(A(v) := A(v) - \{x\}\); \(A(w) := A(w) - \{y\}\);
 \(F := F - \{x, y\}\); \(L := L - \{x, y\}\)
end.

We note first that throughout the algorithm \(|L| \equiv (k-1)(\Delta - 2) + 1\) as \(|A(v_i)| \equiv \Delta - 1\) and \(|A(v_i)| \equiv \Delta - 2\), \(i = 2, \ldots, k - 1\) by construction. We use \(|L|/(\Delta - 2)\) as an estimate for \(k - 1\) in our analysis. The reason for this is that it is difficult to analyse the reductions in \(k\) caused by backtracking whereas \(|L|\) decreases by at most \(\Delta - 2\).

An execution of FINDPATH is used to define a random sequence \(s_1, s_2, \ldots, s_t, \ldots\) where \(s_t = 1\) means that case (b) with \(p \equiv 2\) occurred during the \(t^{th}\) iteration of the algorithm and \(s_t = 0\) otherwise.

Let \(l_t\) denote \(|L|\) at the beginning of iteration \(t\), then

\[
(1a) \quad s_t = 1 \rightarrow l_{t+1} \equiv l_t + 1 \\
(1b) \quad s_t = 0 \rightarrow l_{t+1} \equiv l_t - (2\Delta - 3)
\]

If case (b) occurs and \(p = 1\) then \(l_{t+1} = l_t\). If case (a) occurs then \(p \equiv \Delta - 1\) at this stage and so remove \((x_i, y_i)\), \(i = 1, 2, \ldots, p\) reduces \(|L|\) by at most \(\Delta - 1\). Backtracking reduces \(|L|\) by at most \(\Delta - 2\) more. So, if \(S_t = s_1 + \ldots + s_t\), then

\[
(2) \quad l_t \equiv t - (2\Delta - 3)(t - S_t).
\]

We now prove a lower bound for \(Pr(s_t = 1)\), for \(t \equiv 2\). Note that \(Pr(s_t = 1) \equiv 1 - \left(\frac{\Delta}{2}\right)/(2m - 1)\). Assume then that at the start of iteration \(t - 1\) we have \(l_{t-1} = l\). \(|F| = f\), \(f^* = \{x: x \in A(v) \subseteq F\} \text{ where } |A(v)| \equiv 3\} \text{ and } |X| = p\) as usual. We consider the case where backtrack was not called at the previous iteration. It can be seen that if backtrack had been called then the probability that \(s_t = 1\) increases slightly (\(\beta\) below decreases while \(\alpha\) is unchanged).

Since each \(x \in L\) must be paired with an element of \(F \cup X\) the number of ways of continuing our pairings is

\[
\beta = (f + p)(f + p - 1) \cdots (f + p - l + 1) N(f + p - l)
\]

\[
= (f + p)! \left\{ \left(\frac{1}{2} f + \frac{1}{2} p - \frac{1}{2} l \right) \left[\frac{1}{2} f + \frac{1}{2} p - \frac{1}{2} l \right] \right\}. \]

The number of completions that lead to \(s_t = 1\) is at least

\[
\alpha = f^*(f - \Delta) \cdots (f - \Delta - l + 1)(f - l - 1) \cdots (f - l - p + 1) N(f - l - p)
\]

\[
= f^*(f - \Delta)! (f - l - 1)(f - l - 2) \cdots (f - l - \Delta + 1) \left\{ \left(\frac{1}{2} f - \frac{1}{2} l - \frac{1}{2} p \right) \left[\frac{1}{2} f - \frac{1}{2} l - \frac{1}{2} p \right] \right\}. \]

To see this we associate with each \(x \in A(v) \subseteq F\) a set \(B(x) \subseteq F\) such that \(A(v) \subseteq \subseteq B(x)\) and \(|B(x)| = \Delta\). Our expression for \(\alpha\) is the number of pairings in which
$x_i \in X$ is paired with $y_i \in A(v) \subseteq F$, $|A(v)| \equiv 3$; each $x \in L$ is paired with something in $F - B(y_i)$, x_2, x_3, \ldots, x_n are paired with elements of F and the remaining elements are paired arbitrarily. Each such pairing yields $s_i = 1$.

Thus

$$\Pr(s_i = 1 | |X| = p) \approx a/\beta \equiv \frac{f^*}{f} \left(1 - \frac{l + p}{f}\right)^p \left(1 - \frac{l}{f - \Delta}\right)^{\Delta - 1}$$

We now use the inequalities

$$l \equiv (t - 2)(\Delta - 2) + 1$$

$$f \equiv 2m - (t - 1)\Delta$$

$$f^* \equiv f - 2((t - 2)(\Delta - 2) + 1).$$

(4) and (5) are straightforward. To verify (6) let $f_i = |\{v: D(v) \subseteq F \text{ and } |A(v)| = i\}|$, $i = 1, 2$. Then $f_1 + f_2 \equiv (t - 2)(\Delta - 2) + 1$ and $f^* = f - (f_1 + f_2)$ and (4e) follows.

Using (4)–(6) in (3) and $p \equiv \Delta - 1$ (for $t \neq 1$) we deduce that for $t < 2m/\Delta$

$$\Pr(s_i = 1) \approx 1 - \frac{2\Delta(\Delta - 2)(t - 2) + \Delta^2 + 1}{2m - t\Delta}$$

given that at least t iterations are executed and regardless of the history of the algorithm.

Thus let $z_1, z_2, \ldots, z_t, \ t \equiv m/\Delta$ be independent Bernoulli random variables with

$$\Pr(z_i = 0) = \frac{2\Delta(\Delta - 2)(t - 2) + \Delta^2 + 1}{2m - t\Delta}$$

Let $Z_t = z_1 + z_2 + \ldots + z_t$. It follows that

$$\Pr(S_t \equiv a) \approx \Pr(Z_t \equiv a) \text{ for any } a \geq 0.$$

Our aim now is to show that FINDPATH a.s. executes at least something close to $t^* = 2m/(q + 1)\Delta$ iterations where $q = q(\Delta)$, and that a.s.,

$$l_t^* \equiv (1 - o(1))\frac{2m}{\Delta} \left(1 - q \log \left(1 + \frac{1}{q}\right)\right).$$

Let $\tau = \lceil n^{1/\beta} \rceil$ and note from (7) that

$$\Pr(S_t < \tau) = O(n^{-1/\beta}).$$

For $t > \tau$ we use the following result which is a simple corollary of Theorem 1 of Hoeffding [6]:

Let X_i, $0 \leq X_i \leq 1$, $i = 1, 2, \ldots, N$ be independent random variables and let $\mu = E(X_1 + X_2 + \ldots + X_N)/N$. Then

$$\Pr(|X_1 + X_2 + \ldots + X_N - N\mu| \geq \varepsilon\mu) \leq 2e^{-c\varepsilon^2 N^{1/\beta}}.$$
Now for $t \equiv \tau$

$$
\mu_t = E(z_1 + z_2 + \ldots + z_t)
= \left(1 + \left(\frac{1}{n}\right)\right) \sum_{i=1}^{t} \left(1 - \frac{2\Delta(A-2)i}{2m - \Delta i}\right)
= (1 - o(1)) \int_0^t \left(1 - \frac{2\Delta(A-2)x}{2m - \Delta x}\right) dx
= (1 - o(1)) \left(t + (2\Delta - 4) \left(t - \frac{2m}{\Delta} \log \frac{2m}{2m - \Delta t}\right)\right)
\equiv (1 - o(1)) \left(t + (2\Delta - 4) \left(t - \frac{2mt}{2m - \Delta t}\right)\right) \quad \text{(using } x \equiv \log(1 + x)\text{)}
\equiv (1 - o(1)) t \frac{2\Delta - 4}{2\Delta - 3} \quad \text{for } t \equiv t^* \\
\equiv t/2 \quad \text{for large } n.
$$

Using (8) and (11) we deduce that for $\varepsilon > 0$ and small

$$
\Pr(\exists t, \tau \equiv t \equiv t^*; S_t \equiv (1-\varepsilon)\mu_t) \equiv \Pr(\exists t, \tau \equiv t \equiv t^*; Z_t \equiv (1-\varepsilon)\mu_t) \equiv \sum_{t=1}^{t^*} e^{-\varepsilon^2 t/8} = O(e^{-\varepsilon^2 t/8}).
$$

Hence, using (2)

$$
\Pr(\exists t, \tau \equiv t \equiv t^*; l_t < t - (t-(1-\varepsilon)\mu_t)(2\Delta - 3) = O(e^{-\varepsilon^2 t/8}).
$$

Now for n large

$$
t - (2\Delta - 3)(t - (1-\varepsilon)\mu_t) \equiv t - (2\Delta - 3) \left(t - (1-2\varepsilon) \left(t + (2\Delta - 4) \left(t - \frac{2m}{\Delta} \log \frac{2m}{2m - \Delta t}\right)\right)\right)
\equiv t - 2\varepsilon(2\Delta - 3) t + \left(t - \frac{2m}{\Delta} \log \frac{2m}{2m - \Delta t}\right) q
\equiv t \left(1 - 2\varepsilon(2\Delta - 3) - \frac{q\Delta t}{2m - \Delta t}\right) \quad \text{using } \log(1 + x) \equiv x \quad \text{for } t \equiv t' = \frac{2m}{(q+1+\varepsilon')\Delta}
\equiv \varepsilon t \quad \text{if } \varepsilon' = (q+1)(4\Delta - 5)\varepsilon
$$

We deduce from (10) and (16) that FINDPATH a.s. executes t' iterations. However, since ε can be made arbitrarily small and the RHS of (14) is a continuous function of t, which is strictly positive at t^* we can extend the inequality (16) to t^*.
and deduce that t^* iterations a.s. take place. Substituting $t=t^*$ into (14) and using (13), yields (9).

In what follows $\varepsilon>0$ is arbitrarily small. For $u>\tau$, let $E_1(u)$ denote the event:

FINDPATH continues for at least u iterations, $S_t=\tau$ and

$$l_t \equiv t-(t-(1-\varepsilon)\mu_t)(2\Delta-3) \quad \text{for} \quad \tau \leq t \leq u.$$

Let $E_1=\{ t \geq t^* \}$. We have shown that $\Pr(E_1)=1-o(1)$. Let $t_1=\lceil(1-\varepsilon)t^* \rceil$ and $L_1(t)=\{ j \in \mathbb{N} : A(v_j) \neq 0 \text{ at the start of iteration } t \}$. If E_1 occurs then using (9) we have $l_t \geq \left(1-q \log (1+q^{-1})-ae\right)(2m/\Delta)>en$ for $t_1 \leq t \leq t^*$ where $a>0$ is a constant.

Let $E_2(t)$ denote the event: some $x \in A(v_k)$ is paired with some $y \in A(v_i)$ for some $i \in L_1(t)$ and no element of $A(v_k)-\{x\}$ is paired with an element of L. Let

$$E_2 = \bigcup_{t=t_1}^{t^*} E_2(t).$$

If $E_1 \cap E_2$ occurs then $\sigma(C) \geq (1-q \log (1+q^{-1})-be)(2m/\Delta)(\Delta-2)^{-1}$ where $b>0$ is a constant, and so we can prove the lemma by showing

$$\Pr(E_1 \cap E_2) = 1-o(1).$$

Next let E_3 denote the event: $|L_1(t)| \geq ee^{-1/q}n/2$, for $t_1 \leq t \leq t^*$. Then arguing similarly to the way we argued for (5) we can show

$$\Pr(E_2(t) \cap E_1 \cap E_3 \cap \bigcap_{k=t_1}^{t-1} E_2(k)) \equiv \frac{|L_1(t)|}{2m} \left(1-\frac{A(\Delta-2)t^*}{2m}\right) \left(1-o\left(\frac{1}{n}\right)\right)$$

$$\equiv \alpha(\varepsilon, \Delta) \quad \text{for } n \text{ large.}$$

Where $\alpha(\varepsilon, \Delta)$ is strictly positive and independent of n. Hence, where $\theta=1-\alpha(\varepsilon, \Delta)$ we have

$$\Pr(E_1 \cap E_3 \cap \bigcap_{k=t_1}^{t-1} E_2(k)) \equiv \theta \Pr(E_1 \cap E_3 \cap \bigcap_{k=t_1}^{t-1} E_2(k))$$

and hence

$$\Pr(E_1 \cap E_3 \cap E_2) \leq \theta t^*.$$

As $\Pr(E_2)=1-o(1)$, we can complete the proof of the lemma by showing that

(17) \hspace{1cm} \Pr(E_2) = 1-o(1).$$

Let now $t_2=\lceil(1+\varepsilon/(\Delta-2))en\rceil$. We find after some simplification using (15), that, for n large

$$t_2-(t_2-(1-\varepsilon)\mu_t)(2\Delta-3) \equiv (1-ae)t_2,$$

where $a>0$ is constant.
We thus deduce that if $E_1(t_2)$ occurs then

$$|L(t_2)| \geq (1 - a\varepsilon) t_2.$$

Now at time t_2 there are at most $(\Delta - 2)(t_2 - \eta n) \leq \varepsilon^2 n$ points in $L(t_2) - L_1(t_2)$ and hence if $E_1(t_2)$ occurs

(18) $$|L_1(t_2)| \geq (1 - (a + 1)\varepsilon) n.$$

Now fix a t, $t_1 \leq t \leq t^*$. For $x \in L_1(t_2)$ we now estimate a lower bound for the probability that $x \in L_1(t)$ which is independent of which other members of $L_1(t_2)$ are in $L_1(t)$. In fact

$$\Pr(x \in L_1(t)) \geq \prod_{u=t+1}^{t} \left(1 - \frac{\Delta - 1}{2m - \Delta u}\right)$$

$$(\Delta - 1)/(2m - \Delta u)$$ is an upper bound to the probability that x is paired with an element of $A(v_k)$ by the oracle in iteration u.

(19) $$\geq \left(1 - \frac{\Delta - 1}{2m q + (q + 1)\varepsilon}\right)$$

$$\geq e^{-1/q} \quad \text{for large } n.$$

Now (18) and (19) imply (17), and the lemma, since then $|L_1(t)|$ dominates probabilistically a binomial random variable with parameters $e(1 - (a + 1)\varepsilon)n$ and $e^{-1/q}$.

Sparse graphs

Bollobás, Fenner and Frieze [3] proved the following result: for sufficiently large c, $G_n,c/n$ a.s. contains a vertex induced subgraph H such that, after relabelling the vertices of H as $\{1, 2, ..., h\}$.

(a) $h \geq n(1 - c^6 e^{-c})$.
(b) $6 \leq \delta(H) = \Delta(H) \leq 4c$.
(c) Conditional on the degree of vertex i in H being d_i, $i = 1, 2, ..., h$, H is equally likely to be any graph with such a degree sequence.

Theorem 2 follows from Lemma 1 and the above.

Note added in proof. Tomáš Luczak has proved the conjecture given after the statement of Theorem 2.

References

A. M. Frieze

Queen Mary College
London University
England

and

Carnegie Mellon University
Pittsburgh, USA

B. Jackson

Goldsmiths College
London University
England
Instructions to Authors

1. **Submission.** Manuscripts should be submitted (in triplicate) to the executive editor or to R. L. Graham (see inside front cover). Authors should retain a copy of everything submitted, since submitted material will usually not be returned along with the referees' reports and the galley proofs.

 In order to facilitate refereeing, copies of those papers (whether by the author or someone else) which are essentially referred to and are not conveniently accessible, should be enclosed.

2. **Form of Manuscript.** As a general rule, the length of the paper should not exceed 25 typewritten pages. The manuscript should be double-spaced, with about 25 lines to a page, about 50 characters to a line. Authors are requested to attach a separate sheet containing the title of the article, their names and affiliations, and a mailing address to which all correspondence will be sent. In addition, it should also contain a proposed running head (abbreviated form of the title) of at most 35 characters, a list of keywords, and primary and secondary AMS(1980) subject classification codes. On another separate sheet, the mathematical symbols and special characters used should be listed.

 In a paper divided into sections, it is desirable to number theorems, lemmas, definitions, corollaries, examples, etc. consecutively using double arabic numerals. (E.g., Section 3 may start with Definition 3.1, followed by Remark 3.2 and Theorem 3.3).

 Mark the end of proof by □. The same symbol, placed at the end of a statement, indicates the absence of proof.

3. **Abstract.** The manuscript should be accompanied by a brief abstract. Bear in mind that this might be the only part of the paper read by most of the readers.

4. **Style.** Even first-rate results in combinatorics and in the theory of computing can be presented in a way accessible to mathematicians working in other fields. Authors are requested to give clear motivation, background, exact references, and all definitions which are not generally known.

5. **Reprints.** 50 reprints are provided free of charge. Additional reprints may be ordered.

Some of the papers to appear in forthcoming issues

R. ANDERSON: A parallel algorithm for the maximal path problem

B. BOLLOBÁS, T. I. FENNER, A. M. FRIEZE: An algorithm for finding Hamilton cycles in a random graph

S. JIMBO, A. MARUOKA: Expanders obtained from affine transformations

L. A. LEVIN: One-way functions and pseudorandom generators

P. RAGHAVAN, C. D. THOMPSON: Randomized rounding: a technique for provably good algorithms and algorithmic proofs

U. VAZIRANI: Strong communication complexity or generating quasirandom sequences from two communicating semi-random sources
CONTENTS

M. Bern, M. Klawe, A. Wong: Bounds on the convex label number of trees 221
R. E. Bixby, C. R. Coullard: Finding a small 3-connected minor maintaining a fixed minor and a fixed element 231
A. Bouchet: Reducing prime graphs and recognizing circle graphs 243
P. Feoflof, D. H. Younger: Directed cut transversal packing for source-sink connected graphs .. 255
A. M. Frieze, B. Jackson: Large holes in sparse random graphs 265
D. W. Matula: Expase-and-merge exploration and the chromatic number of a random graph ... 275
J. E. Olson: A problem of Erdős on Abelian groups 285
S. S. Sane, M. S. Shrikhande: Quasi-symmetric 2, 3, 4-designs 291
M. Stiebitz: Subgraphs of colour-critical graphs 303

Index: 26100