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Abstract

In the random k-uniform hypergraph Hn,p;k of order n each possible k-tuple appears

independently with probability p. A loose Hamilton cycle is a cycle of order n in which

every pair of adjacent edges intersects in a single vertex. We prove that if pnk−1/ log n

tends to infinity with n then

lim
n→∞

2(k−1)|n
Pr(Hn,p;k contains a loose Hamilton cycle) = 1.

This is asymptotically best possible.

1 Introduction

The threshold for the existence of Hamilton cycles in the random graph Gn,p has been known

for many years, see, e.g., [1], [3] and [9]. There have been many generalizations of these results

over the years and the problem is well understood. It is natural to try to extend these results

to hypergraphs and this has proven to be difficult. The famous Pósa lemma fails to provide

any comfort and we must seek new tools. In the graphical case, Hamilton cycles and perfect

matchings go together and our approach will be to build on the deep and difficult result of

Johansson, Kahn and Vu [8], as well as what we have learned from the graphical case.

A k-uniform hypergraph is a pair (V,E) where E ⊆
(
V
k

)
. In the random k-uniform hypergraph

Hn,p;k of order n each possible k-tuple appears independently with probability p. We say that

a k-uniform hypergraph (V,E) is a loose Hamilton cycle if there exists a cyclic ordering of the

vertices V such that every edge consists of k consecutive vertices and every pair of consecutive

edges intersects in a single vertex. In other words, a loose Hamilton cycle has the minimum

possible number of edges among all cycles on |V | vertices. In a recent paper the second author

proved the following:
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Theorem 1 (Frieze [4]) There exists an absolute constant K > 0 such that if p ≥ K(log n)/n2

then

lim
n→∞
4|n

Pr(Hn,p;3 contains a loose Hamilton cycle) = 1.

In this paper we refine the above theorem to k ≥ 4. Here we state our main result.

Theorem 2 Let k ≥ 3. If pnk−1/ log n tends to infinity together with n then

lim
n→∞

2(k−1)|n
Pr(Hn,p;k contains a loose Hamilton cycle) = 1.

Thus (log n)/nk−1 is the asymptotic threshold for the existence of loose Hamilton cycles, at

least for n a multiple of 2(k − 1). This is because if p ≤ (1 − ε)(k − 1)!(log n)/nk−1 and ε > 0

is constant, then whp1 Hn,p;k contains isolated vertices.

Notice that the necessary divisibility requirement for a k-uniform hypergraph to have a loose

Hamilton cycle is (k − 1)|n. In our approach we needed to assume more, namely, 2(k − 1)|n
(the same is true for Theorem 1).

There are other ways of defining Hamilton cycles in hypergraphs, depending on the size of the

intersection of successive edges. As far as we know, when these intersections have more than

one vertex, nothing significant is known about existence thresholds.

Our proof uses a second moment calculation on a related problem. We cannot apply a second

moment calculation directly to the number of Hamilton cycles in Hn,p;k, this does not work.

2 Proof of Theorem 2

Fix an integer k ≥ 3. Set κ = k− 2 and let n = 2(k− 1)m. We immediately see the divisibility

requirement 2(k − 1)|n. Let pnk−1/ log n tend to infinity together with n (or equivalently

together with m). From on now, all asymptotic notations are with respect to m.

We start with a special case of the theorem of [8]. Let S and T be disjoint sets. Let Γ = Γ(S, T, p)

be the random k-uniform hypergraph such that each k-edge in
(
S
2

)
×
(
T
κ

)
is independently

included with probability p. Assuming that |S| = 2m and |T | = κm for some positive integer

m, a perfect matching of Γ is a set of m k-edges {s2i−1, s2i, ti,1, . . . , ti,κ}, 1 ≤ i ≤ m, such that

{s1, . . . , s2m} = S and {t1,1, . . . , tm,κ} = T .

Theorem 3 (Johansson, Kahn and Vu [8]) There exists an absolute constant K > 0 such that

if p ≥ K(log n)/nk−1 then whp Γ contains a perfect matching.

This version is not actually proved in [8], but can be obtained by straightforward changes to

their proof.

Now we (deterministically) partition [n] into X = [2m] and Y = [2m + 1, n], where clearly

|X| = 2m and |Y | = 2κm. We show that Γ(X,Y, p), which can be viewed as the subgraph

1An event En occurs with high probability, or whp for brevity, if limn→∞Pr(En) = 1.
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of Hn,p;k induced by
(
X
2

)
×
(
Y
κ

)
, contains a loose Hamilton cycle whp. Such a Hamilton cycle

will consist of 2m edges of the form {xi, xi+1, yi,1, . . . , yi,κ}, where 1 ≤ i ≤ 2m, x2m+1 = x1,

{x1, . . . , x2m} = X and {y1,1, . . . , y2m,κ} = Y .

Let d be an arbitrarily large even positive integer constant. Let X be a set of size 2dm rep-

resenting d copies of each x ∈ X. Denote the jth copy of x ∈ X by x(j) ∈ X and let

Xx =
{
x(j), j = 1, 2, . . . , d

}
. Then let X1, X2, . . . , Xd be a uniform random partition of X

into d sets of size 2m. Define ψ1 : X → X by ψ1(x
(j)) = x for all j and x ∈ X. Similarly,

we let Y be a set of size dκm representing d/2 copies of each y ∈ Y . Denote the jth copy

of y ∈ Y by y(j) ∈ Y and let Yy =
{
y(j), j = 1, 2, . . . , d/2

}
. Then let Y1, Y2, . . . , Yd be a

uniform random partition of Y into d sets of size κm. Define ψ2 : Y → Y by ψ2(y
(j)) = y

for all y ∈ Y . Finally, let ψ :
(X
2

)
×
(Y
κ

)
→ X2 × Y κ be such that ψ(ν1, ν2, ξ1, ξ2, . . . , ξκ) =

(ψ1(ν1), ψ1(ν2), ψ2(ξ1), ψ2(ξ2), . . . , ψ2(ξκ)).

Define p1 by p = 1− (1− p1)α where α = e2κd. With this choice, we can generate Hn,p;k as the

union of α independent copies of Hn,p1;k. Similarly, define p2 by p1 = 1 − (1 − p2)d. Finally

define p3 by p2 = 1 − (1 − p3)
β where β = d2(d/2)κ. Observe that pin

k−1/ log n → ∞ for

i = 1, 2, 3 as n→∞. In this way, Hn,p;k is represented as the union of dαβ independent copies

of Hn,p3;k.

Now let an edge {ν1, ν2, ξ1, ξ2, . . . , ξκ} of Γ(Xj , Yj , p2), 1 ≤ j ≤ d, be spoiled if ψ1(ν1) = ψ1(ν2)

or there exist 1 ≤ r < s ≤ κ such that ψ2(ξr) = ψ2(ξs). Let Γ̂(Xj , Yj , p2) be obtained from

Γ(Xj , Yj , p2) by removing all spoiled edges.

As we already mentioned Hn,p;k is represented as the union of dαβ independent copies of Hn,p3;k.

We group the dαβ copies of Hn,p3;k together into α sets A1,A2, . . . ,Aα in such a way that each

collection Ai, 1 ≤ i ≤ α, consists of d sub-collections Bi,j , 1 ≤ j ≤ d, where Bi,j comprises β

independent copies of Hn,p3;k. Let Λi,j denote the union of these β copies in Bi,j and let Σi

denote the union of Λi,j over all 1 ≤ j ≤ d. Basically Λi,j and Σi can be viewed as copies of

Hn,p2;k and Hn,p1;k, respectively.

Now for fixed 1 ≤ i ≤ α and 1 ≤ j ≤ d, we couple an independent copy of Γ̂(Xj , Yj , p2) with a

sub-hypergraph (induced by
(
X
2

)
×
(
Y
κ

)
) of the union of β independent copies of Hn,p3;k in Bi,j

as follows. First we enumerate these β copies of Hn,p3;k as Hj1,...,jk , where 1 ≤ j1, j2 ≤ d and

1 ≤ j3, . . . , jk ≤ d/2. Next we place {x1 < x2, y1 < y2 < · · · < yκ} in Hj1,...,jk , whenever there

exist j1, . . . , jk such that {x(j1)1 , x
(j2)
2 , y

(j3)
1 , . . . , y

(jk)
κ } is an edge in Γ̂(Xj , Yj , p2).

Fix 1 ≤ i ≤ α for the moment and consider Λi,j for all 1 ≤ j ≤ d. Let Mj , 1 ≤ j ≤ d, be a

perfect matching of Γ(Xj , Yj , p2) as promised by Theorem 3. At this point what we can say is

that X1, X2, . . . , Xd is a uniform random partition of X and Y1, Y2, . . . , Yd is a uniform random

partition of Y. Furthermore, if Mj exists then by symmetry we can assume that it is a uniformly

random matching of Γ(Xj , Yj , p2). What we want though are unspoiled matchings. Fortunately,

it is reasonably likely that Mj contains no spoiled edges. Our argument will be (see Lemma 5

below) that there is a probability of at least e−κd that Mj ⊆ Γ̂(Xj , Yj , p2) simultaneously for

all 1 ≤ j ≤ d. That means that with the same probability ψ(Mj) ⊆ Λi,j simultaneously for all

1 ≤ j ≤ d, i.e., ψ(M1 ∪M2 ∪ · · · ∪Md) ⊆ Σi. It follows that then with probability at least

1− ((1− o(1))(1− e−κd))α ≥ 1− e−eκd (1)
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there is an i such that Σi contains a copy of the following hypergraph Λd = ψ(M1∪M2∪· · ·∪Md),

where each Mj is a random perfect matching of Γ̂(Xj , Yj , p1), i.e., Mj has no spoiled edges.

(The first 1 − o(1) factor in (1) comes from the use of Theorem 3). We will choose such an i

for constructing Λd. These matchings are still independently chosen, once we have fixed the

partitions X1, X2, . . . , Xd and Y1, Y2, . . . , Yd and each Mj is uniformly random from Γ̂(Xj , Yj , p1)

by symmetry. On the other hand, the partitions of X ,Y are no longer uniform. Their probability

of selection depends on how many unspoiled matchings they contain.

Our main auxiliary result, see Theorem 6, shows that the hypergraph Λd contains a loose

Hamilton cycle with probability at least 1− 3κ/d. Because we have pnk−1/ log n→∞ we can

make d arbitrarily large and consequently this and (1) imply that

lim
n→∞

Pr(Hn,p;k has no Hamilton cycle) ≤ lim
d→∞

(
e−e

κd
+

3κ

d

)
= 0.

This completes the proof of Theorem 2.

Remark 4 It is important to understand the distribution of Λd. It is the union of matchings

M1,M2, . . . ,Md obtained by repeating the following experiment until the occurrence of U :

(i) choose uniform random partitions of X ,Y; and then

(ii) choose uniform random matchings Mj of Γ(Xj , Yj , p2).

Lemma 5 shows that we should not have to wait too long until U occurs. We do not choose one

set of partitions and then choose the matchings conditional on U .

3 Auxiliary results

We will use a configuration model type of construction to analyze Λd (see, e.g., [2] or Section 9.1

in [6]). X is represented as 2dm points partitioned into 2m cells Xx, x ∈ X of d points.

Analogously Y is represented as dκm points partitioned into 2κm cells Yy, y ∈ Y of d/2 points.

To construct Λd we take a random pairing of X into dm sets e1, e2, . . . , edm of size two and a

random partition f1, f2, . . . , fdm of Y into dm sets of size κ. The edges of Λd will be ψ(e` ∪ f`)
for ` = 1, 2, . . . ,md. We condition on U .

We will now argue that this model is justified. First of all ignore the event U . To generate

M1,M2, . . . ,Md, we can take a random permutation π1 of X and a random permutation π2
of Y. We let Xj = {π1(2(j − 1)m+ i), i = 1, . . . , 2m} and then Mj,X will consist of e` =

{π1(2`− 1), π1(2`)} for ` = (j − 1)m + 1, . . . , jm. We construct the f` and Yj and Mj,Y in a

similar way from π2. So π1, π2 generate the same hypergraph when viewed either as originally

described in terms of M1,M2, . . . ,Md or as described in terms of a configuration model. Each

sequence M1,M2, . . . ,Md is equally likely in both models. The relationship between models

will therefore continue to hold even if we condition on the event U .

As already noted in Remark 4, Λd is the above model conditioned on the event U . We generate

a conditioned sample by repeatedly generating M1,M2, . . . ,Md until the event U occurs. In our
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analysis of the configuration model we deal with U directly. We use a second moment method

and compute our moments conditional on U .

3.1 Spoiled edges

Suppose that for every 1 ≤ j ≤ d there exists a perfect matching Mj of Γ(Xj , Yj , p2). We show

that it is reasonably likely that M1 ∪ · · · ∪Md contains no spoiled edges.

Let U be the event:

{Mj ⊆ Γ̂(Xj , Yj , p2), for each j = 1, 2, . . . , d} = {M1 ∪ · · · ∪Md contains no spoiled edges}.

Lemma 5 Suppose that κ ≥ 1 and d is a positive even integer. Then, 2

Pr(U |Mj exists for each j = 1, 2, . . . , d) ∼ exp

{
−d− 1

2
− (κ− 1)(d− 2)

4

}
≥ e−κd.

Proof. Our model for Mj will be a collection of sets {xj,2`−1, xj,2`, Zj,`}, where Mj,X =

{xj,1, xj,2} , . . . , {xj,2m−1xj,2m} is a random pairing of Xj and Mj,Y = Zj,1, Zj,2, . . . , Zj,m is a

random partition of Yj into sets of size κ. We can obtain all of the {xj,2`−1, xj,2`}, for all j

and `, by taking a random permutation of X and then considering it in dm consecutive sub-

sequences I1, I2, . . . , Idm of length 2. Let S1 denote the number of pairs ν1, ν2 of elements in

X with ψ1(ν1) = ψ1(ν2) that appear in some I`. Similarly, we can obtain all of the the Zj,`
by taking a random permutation of Y and then considering it in dm consecutive sub-sequences

J1, J2, . . . , Jdm of length κ. Let now S2 denote the number of pairs ξ1, ξ2 of elements in Y with

ψ2(ξ1) = ψ2(ξ2) that appear in some J`. Then for any constant t ≥ 1, we obtain

E(S1(S1 − 1) · · · (S1 − t+ 1)) ∼ t!
(
dm

t

)(
d− 1

2dm−O(1)

)t
∼
(
d− 1

2

)t
,

and

E(S2(S2 − 1) · · · (S2 − t+ 1)) ∼ t!
(
dm

t

)((
κ

2

)
d/2− 1

dκm−O(1)

)t
∼
(

(κ− 1)(d− 2)

4

)t
.

It follows that S1 and S2 are asymptotically Poisson with means (d−1)
2 and (κ−1)(d−2)

4 , respec-

tively. Now S1 and S2 are independent and so S1 + S2 is asymptotically Poisson with mean
(d−1)

2 + (κ−1)(d−2)
4 and

Pr(Mj ⊆ Γ̂(Xj , Yj , p2), for each j = 1, 2, . . . , d |Mj exists for each j = 1, 2, . . . , d)

= Pr(S1 + S2 = 0 |Mj exists for each j = 1, 2, . . . , d)

∼ exp

{
−d− 1

2
− (κ− 1)(d− 2)

4

}
≥ e−κd,

as required.

2We write Am ∼ Bm to signify that Am = (1 + o(1))Bm as m→∞.
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3.2 Loose Hamilton cycles in random bipartite hypergraphs

Recall that X is a set of size 2dm representing d copies of each x ∈ X and Y is a set of size dκm

representing d/2 copies of each y ∈ Y , where |X| = 2m and |Y | = 2κm. Let X1, X2, . . . , Xd

be a uniform random partition of X into d sets of size 2m and let Y1, Y2, . . . , Yd be a uniform

random partition of Y into d sets of size κm. For every 1 ≤ j ≤ d, let Mj be a random matching

of
(Xj

2

)
×
(
Yj
κ

)
conditioned on U i.e. without spoiled edges. That means Mj is a set of m disjoint

k-edges in
(Xj

2

)
×
(
Yj
κ

)
such that no edge contains two representatives of the same element of

X ∪ Y . Let Λd = ψ(M1 ∪ · · · ∪Md).

Theorem 6 Suppose that κ ≥ 1 and d is a sufficiently large positive even integer. Then,

Pr(Λd contains a loose Hamilton cycle) ≥ 2− (1 + o(1))

√
d

d− 2(κ+ 1)
≥ 1− 3κ

d
.

A similar result for κ = 1 was already established by Janson and Wormald [7] using a different

terminology.

Let H be a random variable which counts the number of loose Hamilton cycles in Λd such that

the edges only intersect in X. Note that every such loose Hamilton cycle induces an ordinary

Hamilton cycle of length 2m in X and a partition of Y into κ-sets.

Lemma 7 Suppose that κ ≥ 1 and d is a positive even integer. Then,

E(H) ∼ e(κ+1)/2π

√
κ(d− 2)

d

(
(d− 1)(d− 2)

κ+1
2

(d−2)

d
κ+1
2

(d−2)

)2m

.

Hence, limm→∞E(H) =∞ for every d > eκ+1 + 1.

The last conclusion holds since for d > eκ+1 + 1,

(d− 1)(d− 2)
κ+1
2

(d−2)

d
κ+1
2

(d−2)
= (d− 1)

(
1− 2

d

)κ+1
2

(d−2)

≥ (d− 1) exp

{
− 2

d− 2

κ+ 1

2
(d− 2)

}
= (d− 1) exp{−(κ+ 1)}
> 1.

Lemma 8 Suppose that κ ≥ 1 and d is a sufficiently large positive even integer. Then,

E(H2)

E(H)2
≤ (1 + o(1))

√
d

d− 2(κ+ 1)
.

Now Theorem 6 easily follows from this, since

Pr(H = 0) ≤ Var(H)

E(H)2
≤ (1 + o(1))

√
d

d− 2(κ+ 1)
− 1.
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3.2.1 Expectation (the proof of Lemma 7)

Let a 2m-cycle in X be a set of 2m disjoint pairs of points of X such that they form a 2m-cycle

in X (i.e. a Hamilton cycle) when they are projected by ψ1 to X. Let p2m be the probability

that a given set of 2m disjoint pairs of points of X forming a 2m-cycle is contained in a random

configuration and that U holds.

First note that from the proof of Lemma 5 the number of configurations partioned into 2m cells

of d points for which U holds is asymptotically

∼ e−(d−1)/2(2dm− 1)!! = e−(d−1)/2
(2dm)!

2dm(dm)!
(2)

After fixing the pairs in a 2m-cycle we have to randomly pair up 2(d − 2)m points. In other

words, we want to compute the number of configurations partioned into 2m cells of (d − 2)

points for which U holds. Hence, again by Lemma 5 we get,

∼ e−(d−3)/2(2(d− 2)m− 1)!!

and

p2m ∼
e−(d−3)/2(2(d− 2)m− 1)!!

e−(d−1)/2(2dm− 1)!!
= e

(2dm− 4m− 1)!!

(2dm− 1)!!
.

Next, let a2m be the number of possible 2m-cycles on X . From (9.2) in [6] we get,

a2m =
(d(d− 1))2m(2m)!

4m
.

Let q2m be the probability that a randomly chosen set U of 2κm points of Y (represented by

2m κ-sets) is equal (after the projection ψ2) to Y , i.e., ψ2(U) = Y . Note that U must contain

precisely one copy of every element of Y . Hence, we have (d/2)2κm out of
(
κdm
2κm

)
choices for U .

Thus, again by the proof of Lemma 5 we get,

q2m ∼
e−(κ−1)(d−4)/4(d/2)2κm

e−(κ−1)(d−2)/4
(
κdm
2κm

) = e(κ−1)/2
(d/2)2κm(

κdm
2κm

) .

Consequently,

E(H) = a2mp2mq2m ∼ e(κ+1)/2d
(κ+1)2m(d− 1)2m(2m)!(2dm− 4m− 1)!!(2κm)!(κdm− 2κm)!

22κm+2m(2dm− 1)!!(κdm)!
.

Using the Stirling formula yields Lemma 7. Recall that (2N − 1)!! ∼
√

2
(
2N
e

)N
.

3.2.2 Variance (the proof of Lemma 8)

Let C1 and C2 be two 2m-cycles in X sharing precisely b pairs. Clearly, |C1 ∪ C2| = 4m − b.
Denote by p2m(b) the probability that C1 and C2 are contained in a random configuration of X
for which U holds. (Clearly, p2m(2m) = p2m). First note that if we ignore U then the number

of configurations containing C1 and C2 equals

(2dm− 2(4m− b)− 1)!!
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Next conditioning on U we obtain that the number of configurations containing C1 and C2 is

bounded from above by

e−(d−5)/2(2dm− 2(4m− b)− 1)!!

(The factor e−(d−5)/2 corresponds to the case when b = 0.) Hence,

p2m(b) ≤ (1 + o(1))
e−(d−5)/2(2dm− 2(4m− b)− 1)!!

e−(d−1)/2(2dm− 1)!!
∼ e2 (2dm− 8m+ 2b− 1)!!

(2dm− 1)!!
. (3)

Let U and W be two randomly chosen collections of 2m κ-sets in Y satisfying |W | = |U | = 2m

and |W \ U | = 2m − b. Let r2m(b) be the probability that both U and W are both equal

(after the projection ψ2) to Y , i.e., ψ2(U) = ψ2(W ) = Y . Conditioning on ψ2(U) = Y we have

(d/2− 1)2κm−κb out of
(
κdm−2κm
2κm−κb

)
choices for W . Thus, similarly as in (3) we obtain

r2m(b) ≤ (1 + o(1))q2m
e−(κ−1)(d−6)/4(d/2− 1)2κm−κb

e−(κ−1)(d−4)/4
(
κdm−2κm
2κm−κb

) ∼ e(κ−1)/2q2m
(d/2− 1)2κm−κb(

κdm−2κm
2κm−κb

) .

Moreover, let N(b) be the number of 2m-cycles in X that intersect a given 2m-cycle in b pairs.

By [6] (cf. last equation on page 253), we get

N(b) =

min{b,2m−b}∑
a=0

2am

b(2m− b)
2a−1(d− 2)2m+a−b(d− 3)2m−a−b(2m− b− 1)!

(
b

a

)(
2m− b
a

)
,

where for a = b = 0 we set a
b = 1.

Consequently,

E(H2)

E(H)2
≤ 1

E(H)
+

2m−1∑
b=0

N(b)p2m(b)r2m(b)

a2mp22mq
2
2m

≤ 1

E(H)
+ (1 + o(1))

2m−1∑
b=0

min{b,2m−b}∑
a=0

(
a(2m)2

b(2m− b)2
2a(d(d− 1))−2m(d− 2)2m+a−b(d− 3)2m−a−b

×
(
b

a

)(
2m− b
a

)
(2m− b)!(2dm− 8m+ 2b− 1)!!(2dm− 1)!!

(2m)!(2dm− 4m− 1)!!2
(d/2− 1)2κm−κb(

κdm−2κm
2κm−κb

) (
κdm
2κm

)
(d/2)2κm

)
.

Below we ignore all cases for which a = 0, a = b or a + b = 2m since their contribution is

negligible as can be easily checked by the reader. Using the Stirling formula, the terms in the

sum can be written as

1

4πm
h(a/(2m), b/(2m)) exp{2m·g(a/(2m), b/(2m))}

(
1 +O

(
1

min{a, b− a, 2m− a− b}+ 1

))
,

where

g(x, y) = x log(2)− log(d)− log(d− 1) + (1 + x− y) log(d− 2)

+ (1− x− y) log(d− 3) + y log(y) + 2(1− y) log(1− y)

− (y − x) log(y − x)− 2x log(x)− (1− x− y) log(1− x− y)

+ (d/2− 2 + y) log(d− 4 + 2y) + (d/2) log(d)− (d− 2) log(d− 2)

+ κ(d/2− 1) log(d) + κ(1− y) log(1− y) + κ(d/2− 2 + y) log(d− 4 + 2y)

− κ(d− 3 + y) log(d− 2)
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and

h(x, y) =

√
d(−4 + d+ 2y)√

(d− 2)2y(1− y)(1− x− y)(y − x)
.

Although the next computations may be verified by hand, the reader might find the assistance

of Mathematica useful. We give the definitions of g(x, y) and h(x, y) in Mathematica format in

Appendix A.

Now we analyze function g(x, y) in the domain

S = {(x, y) : 0 < x < y < 1− x}.

First, we compute the first derivatives:

∂g

∂x
= log(2)− log(d− 3) + log(d− 2)− 2 log(x) + log(−x+ y) + log(1− x− y)

∂g

∂y
= − log(d− 3)− (1 + κ) log(d− 2)− (2 + κ) log(1− y)

+ log(1− x− y) + log(y)− log(−x+ y) + (1 + κ) log(d− 4 + 2y).

Let (x0, y0) = (2(d − 2)/(d(d − 1)), 2/d). Note that since ∂g
∂x(x0, y0) = ∂g

∂y (x0, y0) = 0, (x0, y0)

is a critical point of g and g(x0, y0) = 0. Let D2g be the Hessian matrix of second derivatives.

Routine calculations show that

D2g(x, y) =

(
− 2
x + 1

x−y + 1
−1+x+y

1
−x+y + 1

−1+x+y
1

−x+y + 1
−1+x+y

2+κ
1−y + 1

x−y + 1
y + 1

−1+x+y + 2(1+κ)
−4+d+2y

)

Hence,

D2g(x0, y0) =

(
− (d−1)2d

2(d−3)
(d−4)(d−1)2d
2(d−2)(d−3)

(d−4)(d−1)2d
2(d−2)(d−3) −d(16+d(−34+d(28+(−9+d)d−2κ)+6κ)

2(d−3)(d−2)2

)
One can verify that

Det(D2g(x0, y0)) =
d3(d− 1)2(d− 2(1 + κ))

4(d− 3)(d− 2)2
.

Since − (d−1)2d
2(d−3) < 0 and Det(D2g(x0, y0)) > 0 for d > 2(1 + κ), we conclude that D2g(x0, y0) is

negative definite at (x0, y0). Hence, g has a local maximum there. Now we show that (x0, y0)

is the unique global maximum point of g in S. Moreover, we argue that that g(x, y) has no

asymptote near the boundary of S, nor does it approach a limit which is greater than 0 (for d

large enough).

First recall that the function

f(z) =

{
z log(z) if 0 < z < 1,

0 if z = 0 or z = 1
(4)

is continuous on [0, 1]. Consequently, function g(x, y) can be extended to a continuous function

on

T = {(x, y) : 0 ≤ x ≤ y ≤ 1− x}.
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Note that −1/e ≤ f(z) ≤ 0 (cf. (4)). Thus,

g(x, y) ≤ log(2)− log(d)− log(d− 1) + (1 + x− y) log(d− 2)

+ (1− x− y) log(d− 2) + 0 + 0

+ 1/e+ 2/e+ 1/e

+ (d/2− 2 + y) log(d− 2) + (d/2) log(d)− (d− 2) log(d− 2)

+ κ(d/2− 1) log(d) + 0 + κ(d/2− 2 + y) log(d− 2)

− κ(d− 3 + y) log(d− 2)

= −y log(d− 2) + o(log(d)),

where the last term o(log(d)) does not depend on x and y. Hence, there is a large enough d

such that g(x, y) < 0 for all points in the domain {(x, y) ∈ T : 1/2(3 + 2κ) ≤ y}. Denote by

∂T the boundary of T , i.e., ∂T = T \ S. In order to finish, it is enough to show that:

(i) the only critical point in {(x, y) ∈ T \ ∂T : y ≤ 1/2(3 + 2κ)} is (x0, y0), and

(ii) g(x, y) < 0 for all points in {(x, y) ∈ ∂T : y ≤ 1/2(3 + 2κ)}.

Solving the equation ∂g
∂y (x, y) = 0 for x, noting that the equation is linear in x, we obtain

x =
y(1− y)

(
(d− 3)(d− 2)κ+1(1− y)κ+1 − (d− 4 + 2y)κ+1

)
(1− y)κ+2(d− 3)(d− 2)κ+1 − y(d− 4 + 2y)κ+1

.

Substituting this expression for x in ∂g
∂x(x, y) = 0 (actually in exp{ ∂g∂x(x, y)} = 1) yields the

equation

0 = ψ(y) = 2(1− 2y)2(1− y)κ(d− 4 + 2y)κ+1(d− 2)κ+2 − y(1− y)2κ+2(6− 5d+ d2)2(d− 2)2κ

+ 2y(1− y)κ+1(d− 4 + 2y)1+κ(d− 3)(d− 2)κ+1 − y(d− 4 + 2y)2+2κ.

We see from our previous considerations that ψ(y0) = 0. It remains to show that for large d,

y0 is the only value in {y : 0 < y ≤ 1/2(3 + 2κ)} for which ψ(y) = 0. To this end we show that

ψ′(y) < 0 implying that ψ(y) is a monotone function (and clearly also continuous). From the

definition of ψ(y) we get,

ψ′(y) =
(
−y(1− y)2κ+2(6− 5d+ d2)2(d− 2)2κ

)′
+O(d2κ+3)

= (1− y)2κ+1(−1 + y(2κ+ 3))d2κ+4 +O(d2κ+3),

where the hidden constant in O(d2κ+3) does not depend on y. Hence, for a sufficiently large d

the derivative ψ′(y) < 0 for all 0 < y ≤ 1/2(3 + 2κ) (independently from d). This shows that

(i) holds.

We split (ii) into three cases. One is for 0 = x < y, one for 0 < x = y and the last one for

10



x = y = 0. Note that

g1(y) = g(0, y) = − log(d)− log(d− 1) + (1− y) log(d− 2)

+ (1− y) log(d− 3) + 2(1− y) log(1− y)− (1− y) log(1− y)

+ (d/2− 2 + y) log(d− 4 + 2y) + (d/2) log(d)− (d− 2) log(d− 2)

+ κ(d/2− 1) log(d) + κ(1− y) log(1− y) + κ(d/2− 2 + y) log(d− 4 + 2y)

− κ(d− 3 + y) log(d− 2).

Recall that 0 < y < 1/2(3 + 2κ). It is easy to check that

g′1(y) = − log(d) + o(log(d)),

where the last term o(log(d)) does not dependent on y. Thus, for d sufficiently large g1(y) is

a decreasing function. Hence, by continuity

g1(y) ≤ g1(0) = g(0, 0).

Later we show that g(0, 0) < 0.

Now let 0 < x = y ≤ 1/2(3 + 2κ). Define

g2(y) = g(y, y) = y log(2)− log(d)− log(d− 1) + log(d− 2)

+ (1− 2y) log(d− 3) + y log(y) + 2(1− y) log(1− y)

− 2y log(y)− (1− 2y) log(1− 2y)

+ (d/2− 2 + y) log(d− 4 + 2y) + (d/2) log(d)− (d− 2) log(d− 2)

+ κ(d/2− 1) log(d) + κ(1− y) log(1− y) + κ(d/2− 2 + y) log(d− 4 + 2y)

− κ(d− 3 + y) log(d− 2).

Consequently,

g′2(y) = log(2)−2 log(d−3)−κ log(d−2)+2 log(1−2y)−(2+κ) log(1−y)−log(y)+(1+κ) log(d−4+2y)

and

g′′2(y) = (2 + κ)/(1− y)− 1/y + 4/(−1 + 2y) + 2(1 + κ)/(d− 4 + 2y).

Note that since 0 < y ≤ 1/2(3 + 2κ) we get that for d large enough g′′2(y) < 0. Thus, g′2(y) is a

decreasing function. Moreover, since

lim
y→0+

g′2(y) =∞

and

g′2(2/d) = 2 log((d− 4)/(d− 3)) < 0,

we conclude that g2(y) has a local maximum at ξ ∈ (0, 2/d]. Clearly such local maximum is the

global maximum in the interval (0, 1/2(3+2κ)]. Unfortunately, it is not clear how to determine

ξ since the equation g′2(y) = 0 seems not to have any “nice” solution. Therefore, we define a

new auxiliary function

g3(y) = g2(y)− (2/3)(d/2)2 log((d− 4)/(d− 3))y3
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on (0, 2/d]. Clearly g2(y) ≤ g3(y). Thus in order to show that g2(ξ) < 0, it suffices to prove

that g3(y) < 0 for any y ∈ (0, 2/d]. Analogously to analyzing g2(y) one can show that g′′3(y) < 0

for d large enough. Moreover, since g′3(2/d) = 0, we get that g3(y) is an increasing function on

(0, 2/d]. Thus,

g3(y) ≤ g3(2/d) = (8/3d− 1) log((d− 4)/(d− 3)) + log((d− 2)/(d− 1)). (5)

As one can check the right hand side in (5) is negative for sufficiently large d, as required.

It remains to show that g(0, 0) < 0. By continuity we get

g(0, 0) = lim
y→0+

g2(y) ≤ g3(2/d) < 0.

This completes the proof of (ii) and so the proof of showing that (x0, y0) is the unique global

maximum in T .

The rest of argument is totally standard for such variance calculations (see, e.g., [5, 6]). Finally,

we obtain

E(H2)

E(H)2
≤ (1 + o(1))

1

2π

∫ ∞
−∞

∫ ∞
−∞

h(x0, y0) exp

{
−1

2
(z1, z2)D

2g(x0, y0)(z1, z2)
T

}
dz1 dz2

∼ h(x0, y0)

Det(D2g(x0, y0))1/2

=
(d− 1)d2

2(d− 2)
√
d− 3

· 2(d− 2)
√
d− 3

(d− 1)
√
d3(d− 2(1 + κ))

=

√
d

d− 2(κ+ 1)
,

as required.

4 Concluding remarks

In this paper, we showed that (log n)/nk−1 is the asymptotic threshold for the existence of loose

Hamilton cycles in Hn,p;k for n a multiple of 2(k − 1). It would be nice to drop this divisibility

requirement and replace it by the necessary (k−1)|n, as mentioned in Introduction. We address

this question in our future work.

5 Acknowledgment

We would like to thank the anonymous referee for carefully reading this manuscript, many

helpful comments and pointing out some errors in the previous version of this manuscript.

We are also very grateful to Svante Janson and Nick Wormald for fruitful discussions about

contiguity of random regular graphs (contiguity was used in the previous version of this paper).

12



References
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A Mathematica expressions

For convenience, we replace here κ by k.

g[x_,y_,d_,k_] = x Log[2] - Log[d] - Log[d - 1] + (1 + x - y) Log[d - 2] \

+ (1 - x - y) Log[d - 3] + y Log[y] + 2 (1 - y) Log[1 - y] \

- (y - x) Log[y - x] - 2 x Log[x] - (1 - x - y) Log[1 - x - y] \

+ (d/2 - 2 + y) Log[d - 4 + 2 y] + (d/2) Log[d] - (d - 2) Log[d - 2] \

+ k(d/2 - 1) Log[d] + k(1 - y) Log[1 - y] + k(d/2 - 2 + y) Log[d - 4 + 2 y] \

- k(d - 3 + y) Log[d - 2];

h[x_,y_,d_] = Sqrt[d(-4 + d + 2 y)] / Sqrt[(d-2)^2 y(1-y)(1 - x - y)(y-x)];
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