Isomorphism for Random k-Uniform Hypergraphs

Debsoumya Chakraborti, Alan Frieze, Simi Haber, Mihir Hasabnis

February 16, 2020

Abstract

We study the isomorphism problem for random hypergraphs. We show that it is polynomially time solvable for the binomial random k-uniform hypergraph $H_{n,p,k}$, for a wide range of p. We also show that it is solvable w.h.p. for random r-regular, k-uniform hypergraphs $H_{n,r,k}$, $r = O(1)$.

1 Introduction

In this note we study the isomorphism problem for two models of random k-uniform hypergraphs, $k \geq 3$. A hypergraph is k-uniform if all of its edges
are of size k. The graph isomorphism problem for random graphs is well understood and in this note we extend some of the ideas to hypergraphs.

The first paper to study graph isomorphism in this context was that of Babai, Erdős and Selkow [12]. They considered the model $G_{n,p}$ where p is a constant independent of n. They showed that w.h.p. $G = G_{n,p}$ has a canonical labelling and that this labelling can be constructed in $O(n^2)$ time. In a canonical labelling we assign a unique label to each vertex of a graph such that labels are invariant under isomorphism. It follows that two graphs with the same vertex set are isomorphic, if and only if the labels coincide. (This includes the case where one graph has a unique labeling and the other does not. In which case the two graphs are not isomorphic.) The failure probability for their algorithm was bounded by $O(n^{-1/7})$. Karp [9], Lipton [11] and Babai and Kucera [3] reduced the failure probability to $O(c^n), c < 1$. These papers consider p to be constant and the paper of Czajka and Pandurangan [13] allows $p = p(n) = o(1)$. We use the following result from [13]: the notation $A_n \gg B_n$ means that $A_n/B_n \to \infty$ as $n \to \infty$.

Theorem 1. Suppose that $p \gg \log_4 n$ and $p \leq \frac{1}{2}$. Then $G_{n,p}$ has a canonical labeling q.s.

Our first result concerns the random hypergraph $H_{n,p,k}$, the random k-uniform hypergraph on vertex set $[n]$ in which each of the possible edges $\binom{[n]}{k}$ occurs independently with probability p. We say that two k-uniform hypergraphs H_1, H_2 are isomorphic if there is a bijection $f : V(H_1) \to V(H_2)$ such that \{x_1, x_2, \ldots, x_k\} is an edge of H_1 if and only if \{f(x_1), f(x_2), \ldots, f(x_k)\} is an edge of H_2. We extend the notion of canonical labelling to hypergraphs.

Theorem 2. Suppose that $k \geq 3$ and $p, 1 - p \gg n^{-(k-2)} \log n$ then $H_{n,p,k}$ has a canonical labeling w.h.p.

1 A sequence of events $\mathcal{E}_n, n \geq 1$ occurs with high probability (w.h.p.) if $\lim_{n \to \infty} P(\mathcal{E}_n) = 1$.

2 A sequence of events $\mathcal{E}_n, n \geq 1$ occurs quite surely (q.s.) if $P(\mathcal{E}_n) = O(n^{-K})$ for any positive constant K.
A hypergraph is regular of degree \(r \) if every vertex is in exactly \(r \) edges. We denote a random \(r \)-regular, \(k \)-uniform hypergraph on vertex set \([n]\) by \(H_{n,r,k} \).

Theorem 3. \(H_{n,r,k} \) has a canonical labeling w.h.p.

2 Proof of Theorem 2

Given \(H = H_{n,p,k} \) we let \(H_i \) denote the \((k-1)\)-uniform hypergraph with vertex set \([n] \setminus \{i\}\) and edges \(\{e \in E(H) : i \in e\} \). Let \(\mathcal{E}_k \) denote the event \(\{ \exists i, j : H_i \cong H_j \} \).

Lemma 4. Suppose that \(k \geq 3 \) and \(\omega \to \infty \) and \(p, 1 - p \geq \omega n^{-(k-2)} \log n \). Then \(\mathcal{E}_k \) occurs q.s.

Proof.

\[
\mathbb{P}(\exists i, j : H_i \cong H_j) \leq \binom{n}{2} (n-1)! (p^2 + (1-p)^2)^{\binom{n-2}{k-1}} \\
\leq \sqrt{2\pi n^{5/2}} \left(\frac{n}{e} \right)^n (p^2 + (1-p)^2)^{\binom{n-2}{k-1}} p \\
\leq n^{-\omega/k!}.
\]

Explanation: There are \((n-1)!\) possible isomorphisms and for every \((k-1)\)-set of vertices \(S \) that includes neither \(i \) nor \(j \), the probability for there to be an edge or non-edge in both \(H_i \) and \(H_j \) is given by the expression \(p^2 + (1-p)^2 \).

Let \(\mathcal{G}_k \) be the event that \(H_{n,p,k} \) has a canonical labeling and that it can be constructed in \(O(n^{2k}) \) time. Now assume inductively that

\[
\mathbb{P}(H_{n,p,k} \not\in \mathcal{G}_k) \leq n^{-\omega/(k+1)!}.
\]

(1)

The base case, \(k = 2 \), for (1) are given by the results of [13], [9] and [11]. Let \(H'_i, i = 1, 2, \ldots, n \) denote the \((k-1)\)-uniform hypergraphs induced by the edges of \(H' \) that contain \(i \), (the link associated with vertex \(i \)). Let \(\mathcal{B}_i \) be the event that \(H_i \not\in \mathcal{G}_{k-1} \). Then

\[
\mathbb{P}(H_{n,p,k} \not\in \mathcal{G}_k) \leq \mathbb{P}(\mathcal{E}_k) + \sum_{i=1}^{n} \mathbb{P}(\mathcal{B}_i).
\]

(2)
Indeed, if none of the events in (2) occur then in time \(O(n^2 \times n^{2(k-1)}) = O(n^{2k}) \) we can by induction uniquely label each vertex via the canonical labeling of its link. After this we can confirm that \(\mathcal{E}_k \) has occurred. This confirms the claimed time complexity. Given that \(\mathcal{E}_k \) does not occur, this will determine the only possible isomorphism.

Going back to (2) we see by induction that

\[
P(H_{n,p,k} \notin \mathcal{G}_k) \leq n^{-\omega/k!} + n^2 \times (k-1)n^{2k-2}n^{-\omega/k!} \leq n^{-\omega/(k+1)!}.
\]

This completes the proof of Theorem 2.

3 Proof of Theorem 3

We extend the analysis of Bollobás [1] to hypergraphs. We use the configuration model for hypergraphs, which is a simple generalisation of the model in Bollobás [2]. We let \(W \) be a set of size \(rn \) where \(m = rn/k \) is an integer. Assume that it is partitioned into sets \(W_1, W_2, \ldots, W_n \) of size \(r \). We define \(f : W \to [n] \) by \(f(w) = i \) if \(w \in W_i \). A configuration \(F \) is a partition of \(W \) into sets \(F_1, F_2, \ldots, F_m \) of size \(k \). Given \(F \) we obtain the (multi)hypergraph \(\gamma(F) \) where \(F_i = \{w_1, w_2, \ldots, w_k\} \) gives rise to the edge \(\{f(w_1), f(w_2), \ldots, f(w_k)\} \) for \(i = 1, 2, \ldots, m \). It is known that if \(\gamma(F) \) has a graph property w.h.p. then \(H_{n,r;k} \) will also have this property w.h.p., see for example [4]. Let

\[
\rho = (r - 1)(k - 1).
\]

For a vertex \(v \) we let \(d_\ell(v) \) denote the number of vertices at hypergraph distance \(\ell \) from \(v \) in \(H_{n,r;k} \). We show that if \(\ell^* = \lceil \frac{3}{5} \log_\rho n \rceil \) then w.h.p. no two vertices have the same sequence \((d_\ell(v), \ell = 1, 2, \ldots, \ell^*) \). In the following \(H = H_{n,r;k} \). For a set \(S \subseteq [n] \), we let \(e_H(S) \) denote the number of edges of \(H \) that are contained in \(S \).

Lemma 5. Let \(\ell_0 = \lceil 100 \log_\rho \log n \rceil \). Then w.h.p., \(e_H(S) \leq \frac{|S|}{k-1} \) for all \(S \subseteq [n], |S| \leq 2\ell_0 \).
Proof. We have that

$$\mathbb{P}\left(\exists S : |S| \leq 2\ell_0, e_H(S) \geq \frac{|S|+1}{k-1} \right) \leq \sum_{s=4}^{2\ell_0} \binom{n}{s} \left(\frac{sr}{s+1} \right)^{\frac{s+1}{k-1}} \left(\frac{\left(\frac{sr}{k-1} \right)^{\frac{sr}{k-1}}}{(km-2k\ell_0)^{k-1}} \right)^{s+1}$$

$$\leq \sum_{s=4}^{2\ell_0} \left(\frac{ns}{s} \right)^{s} \left(er(k-1) \right)^{s+1} \left(\frac{rs}{rm-o(n)} \right)^{s+1} \leq \frac{1}{n^{1-o(1)}} \sum_{s=4}^{2\ell_0} s e^s (e(k-1)r)^{s+1} = o(1).$$

Let \mathcal{E} denote the high probability event in Lemma 5. We will condition on the occurrence of \mathcal{E}.

Now for $v \in [n]$ let $S_\ell(v)$ denote the set of vertices at distance ℓ from v and let $S_{\leq \ell}(v) = \bigcup_{j \leq \ell} S_j(v)$. We note that

$$|S_\ell(v)| \leq (k-1)r \rho^{\ell-1} \text{ for all } v \in [n], \ell \geq 1. \quad (3)$$

Furthermore, Lemma 3 implies that there exist $b_{r,k} < a_{r,k} < (k-1)r$ such that w.h.p., we have for all $v, w \in [n], 1 \leq \ell \leq \ell_0$,

$$|S_\ell(v)| \geq a_{r,k} \rho^{\ell-1}. \quad (4)$$

$$|S_\ell(v) \setminus S_\ell(w)| \geq b_{r,k} \rho^{\ell-1}. \quad (5)$$

This is because there can be at most one cycle in $S_{\leq \ell_0}(v)$ and the sizes of the relevant sets are reduced by having the cycle as close to v, w as possible.

Now consider $\ell > \ell_0$. Consider doing breadth first search from v or v, w exposing the configuration pairing as we go. Let an edge be dispensable if exposing it contains two vertices already known to be in $S_{\leq \ell}$. Lemma 5 implies that w.h.p. there is at most one dispensable edge in $S_{\leq \ell_0}$.

Lemma 6. With probability $1-o(n^{-2})$, (i) at most 20 of the first $n^{3/2}$ exposed edges are dispensable and (ii) at most $n^{1/4}$ of the first $n^{3/2}$ exposed edges are dispensable.
Proof. The probability that the σth edge is dispensable is at most $\frac{(\sigma-1)(k-1)x}{rn-\ell}$, independent of the history of the process. Hence,

$$\mathbb{P}(\exists 20\text{ dispensable edges in the first } n^{2/5}) \leq \left(\frac{n^{2/5}}{20}\right) \left(\frac{(k-1)rn^{2/5}}{rn - o(n)}\right)^{20} = o(n^{-2}).$$

$$\mathbb{P}(\exists n^{1/4}\text{ dispensable edges in first } n^{3/5}) \leq \left(\frac{n^{3/5}}{n^{1/4}}\right) \left(\frac{(k-1)rn^{3/5}}{rn - o(n)}\right)^{n^{1/4}} = o(n^{-2}).$$

Now let $\ell_1 = \lceil \log_{\ell} n^{2/5} \rceil$ and $\ell_2 = \lceil \log_{\ell} n^{3/5} \rceil$. Then, we have that, conditional on \mathcal{E}, with probability $1 - o(n^{-2})$,

$$|S_\ell(v)| \geq (ar, k^0 \ell_0 - 40)\ell - \ell_0 : \quad \ell_0 < \ell \leq \ell_1.$$
$$|S_\ell(v)| \geq (ar, k^0 \ell_0 - 40)\ell - \ell_0 : \quad \ell_0 < \ell \leq \ell_2.$$
$$|S_\ell(w) \setminus S_\ell(v)| \geq (br, k^0 \ell_0 - 40)\ell - \ell_0 : \quad \ell_0 < \ell \leq \ell_1.$$
$$|S_\ell(w) \setminus S_\ell(v)| \geq (br, k^0 \ell_0 - 40)\ell - \ell_0 : \quad \ell_0 < \ell \leq \ell_2.$$

We deduce from this that if $\ell_3 = \lceil \log_{\ell} n^{4/7} \rceil$ and $\ell = \ell_3 + a, a = O(1)$ then with probability $1 - o(n^{-2})$,

$$|S_\ell(w)| \geq (ar, k - o(1))\ell - a^0 n^{4/7}.$$
$$|S_\ell(w) \setminus S_\ell(v)| \geq (br, k - o(1))\ell - a^0 n^{4/7}.$$

Suppose now that we consider the execution of breadth first search up until we have exposed $S_\ell(v)$. Let $d_\ell(v)$ denote the number of vertices at distance ℓ from v. Then in order to have $d_\ell(w) = d_\ell(w)$, conditional on the history of the search, there has to be an exact outcome for $|S_\ell(w) \setminus S_\ell(v)|$. Now consider the pairings of the $W_x, x \in S_\ell(w) \setminus S_\ell(v)$. Now at most $n^{1/4}$ of these pairings are with vertices in $S_{\leq \ell}(w) \cup S_{\leq \ell}(w)$. Condition on these. There must now be $s = \Theta(n^{4/7})$ pairings between $W_x, x \in S_\ell(w) \setminus S_\ell(v)$ and $W_y, y \notin S_\ell(v) \cup S_\ell(w)$. Furthermore, to have $d_\ell(v) = d_\ell(w)$ these s pairings must involve exactly t of the sets $W_y, y \notin S_\ell(v) \cup S_\ell(w)$, where t is determined before the choice of these s pairings. The following lemma will easily show that w.h.p. H has a canonical labeling defined by the values of $d_\ell(v), 1 \leq \ell \leq \ell^*, v \in [n]$.

6
Lemma 7. Let $R = \bigcup_{i=1}^{\mu} R_i$ be a partitioning of an $r \mu$ set R into μ subsets of size r. Suppose that S is a random s-subset of R, where $\mu^{5/9} < s < \mu^{3/5}$. Let X_S denote the number of sets R_i intersected by S. Then

$$\max_j \mathbb{P}(X_S = j) \leq \frac{c_0 \mu^{1/2}}{s},$$

for some constant c_0.

Proof. We may assume that $s \geq \mu^{1/2}$. The probability that S has at least 3 elements in some set R_i is at most

$$\frac{\mu \binom{r}{3} \binom{\mu - 3}{s - 3}}{\binom{\mu}{s}} \leq \frac{s^3}{6\mu^2} \leq \frac{\mu^{1/2}}{6s}.$$

But

$$\mathbb{P}(X_S = j) \leq \mathbb{P}\left(\max_i |S \cap R_i| \geq 3 \right) + \mathbb{P}\left(X_S = j \text{ and } \max_i |S \cap R_i| \leq 2 \right).$$

So the lemma will follow if we prove that for every j,

$$P_j = \mathbb{P}\left(X_S = j \text{ and } \max_i |S \cap R_i| \leq 2 \right) \leq \frac{c_1 \mu^{1/2}}{s},$$

for some constant c_1.

Clearly, $P_j = 0$ if $j < s/2$ and otherwise

$$P_j = \frac{\binom{\mu}{j} \binom{j}{s-j} r^{2j-s} \binom{r}{2}^{s-j}}{\binom{\mu}{s}}.$$

(7)

Now for $s/2 \leq j < s$ we have

$$\frac{P_{j+1}}{P_j} = \frac{(\mu - j)(s - j) 2r}{(2j + 2 - s)(2j + 1 - s) r - 1}.$$

(8)

We note that if $s - j \geq \frac{10\alpha^2}{\mu}$ then $\frac{P_{j+1}}{P_j} \geq \frac{10\alpha}{3(r-1)} \geq 2$ and so the j maximising P_j is of the form $s - \frac{\alpha s^2}{\mu}$ where $\alpha \leq 10$. If we substitute $j = s - \frac{\alpha s^2}{\mu}$ into (8) then we see that

$$\frac{P_{j+1}}{P_j} \leq \frac{2\alpha r}{r - 1} \left[1 \pm c_2 \frac{s}{\mu} \right].$$
for some absolute constant $c_2 > 0$.

It follows that if j_0 is the index maximising P_j then

$$\left| j_0 - \left(s - \frac{(r - 1)s^2}{2r \mu} \right) \right| \leq 1.$$

Furthermore, if $j_1 = j_0 - \frac{a}{\mu^{1/2}}$ then

$$\frac{P_{j_1 + 1}}{P_j} \leq 1 + c_3 \frac{\mu^{1/2}}{s} \quad \text{for } j_1 \leq j \leq j_0,$$

for some absolute constant $c_3 > 0$.

This implies that for all $j_1 \leq j \leq j_0$,

$$P_j \geq P_{j_0} \left(1 + c_3 \frac{\mu^{1/2}}{s} \right)^{-(j_0 - j_1)} = P_{j_0} \exp \left\{ -(j_0 - j_1) \left(c_3 \frac{\mu^{1/2}}{s} + O \left(\frac{\mu}{s^2} \right) \right) \right\} \geq P_{j_0} e^{-2c_3}.$$

It follows from this that

$$P_{j_0} \leq e^{2c_3} \min_{j \in [j_1, j_0]} P_j \leq \frac{e^{2c_3}}{j_0 - j_1} \sum_{j \in [j_1, j_0]} P_j \leq \frac{e^{2c_3} \mu^{1/2}}{s}.$$

We apply Lemma 7 with $\mu = n, s = \rho = \Theta(n^{4/7})$ to show that

$$\mathbb{P}(d_\ell(v) = d_\ell(w), \ell \in [\ell_3, \ell_3 + 14]) \leq \left(\frac{c_6 n^{1/2}}{n^{4/7}} \right)^{15} = o(n^{-2}).$$

This completes the proof of Theorem 3.

References

