
Chapter 30 
An Efficient Algorithm for the Vertex-Disjoint Paths Problem in Random Graphs 

Andrei Z. Broder* Alan M. Frieze+ Stephen Suent Eli Upfals 

Abstract 

Given a graph G = (V, E) and a set of pairs of vertices 

in V, we are interested in finding for each pair (ui, b;) a 

path connecting ai to bi, such that the set of paths so 
found is vertex-disjoint, (The problem is M/P-complete for 

general graphs as well as for planar graphs. It is in P 

if the number of pairs is fixed.) Our model is that the 
graph is chosen first, then an adversary chooses the pairs 
of endpoints, subject, only to obvious feasibility constraints, 

namely, all pairs must be disjoint, no more than a constant 
fraction of the vertices could be required for the paths, and 

not “too many” neighbors of a vertex can be endpoints. 

We present a randomized polynomial time algorithm 
that works for almost all graphs; more precisely in the G,,, 

or G,,, models, the algorithm succeeds with high probability 

for all edge densities above the connectivity threshold. The 
set of pairs that can be accommodated is optimal up to 
constant factors. Although the analysis is intricate, the 
algorithm itself is quite simple and suggests a practical 
heuristic. 

We include two applications of the main result, one in 
the context of circuit switching communication, the other in 

the context of topological embeddings of graphs. 

1 Introduction 

Given a graph G = (V, E) with n vertices, and m edges, 
and a set of IC pairs of vertices in V, we are interested 
in finding for each pair (ai, bi), a path connecting ai to 
bi, such that the set of paths so found is vertex-disjoint. 

Finding vertex-disjoint paths in graphs is a basic 
computational question with a variety of algorithmic 
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applications. For arbitrary graphs the related decision 
problem is AfP-complete, and it remains in n/P even 
when the input is restricted to planar graphs [3]. The 
problem is in P if K; is fixed - Robertson and Seymour 
[S], through the graph minors technique. A more 
efficient algorithm is known only for the case K: = 
2 [lo]. For large k it is natural to look for sub- 
optimal algorithms, that is, algorithms that can solve 
the problem provided that k is within a certain factor 
of an obvious upper bound or within a fraction of 
the maximum achievable, but few results have been 
obtained so far. 

The situation is similar for the edge-disjoint prob- 
lem. However the problem is solvable in polynomial 
time on strong expanders (up to a polynomial-log factor 
of a trivial upper bound [7, 2]), and in random graphs 
(up to a constant factor of a trivial upper bound [l]). 
For a certain class of planar graphs, Kleinberg and Tar- 
dos [5] developed an algorithm that can find O(l/log n) 
fraction of the number of achievable paths. See refer- 
ences therein for other special cases. 

Returning to the vertex-disjoint case, Hochbaum 
143, and Shamir and Upfal [9], have studied the vertex- 
disjoint paths problem in the random graph models 
G n,p and G,,,. Both papers show (using different 
techniques) that there exists a constant C > 1 such that 
for p > F (or m > %n log n) a set of O(G) disjoint 
pairs of vertices can be connected whp’ by vertex 
disjoint paths. In the model used in these two papers the 
pairs of vertices are fixed before the edges of the random 
graphs are chosen. These results are relatively weak 
in two respects: (1) The number of paths is far from 
optimal: a random graph with Q(n log n) random edges 
has whp diameter O(logn), thus O(fi paths use only 
a vanishing fraction of the vertices. (2) Since the set 
of pairs is fixed before the random edges are chosen, 
the result does not model the typical communication 
problem where the underlying graph is fixed. 

Here we obtain a significantly stronger result: we 

show that with high probability a random graph is such 

‘A sequence of events E, is said to occur with high probability, 

abbreviated whp, if lim,,, Pr(En) = 1 
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that our algorithm will be able to find vertex-disjoint 
paths for any set of pairs of endpoints in the graph, 
subject to constraints that are optimal up to constant 
factors. In other words in our model the graph is chosen 
first, then an adversary chooses the pairs of endpoints 
to be connected. 

Our main result is formuIated in the following 
theorem. 

THEOREM 1.1. Suppose that G = G,,, and m > 
5(lnn + w), where u(n) + co. Let d = 2m/n. Then 
there exist two positive constants CY,~ such that whp 
there are vertex-disjoint paths connecting ai to bi for 
any set of pairs 

F={(ai,bi)]ai,bi~V, i=l, . . . . K} 

satisfying: 

Al. 

A2. 

A3. 

The pairs (ai, b;) for i = 1, . . . . . . . , K, are disjoint; 

The total number of pairs, K, is not greater than 
onlnd/lnn. 

For every vertex v E V, no more than a p- 
fraction of its set of neighbors, N(v), are prescribed 
endpoints, that is JN(v)n(AUB)[ 5 PIN(V where 
A = {ai} and B = {b;}. 

Furthermore, these paths can be constructed by an 
(explicit) randomized algorithm in polynomial time. 

Note that the three conditions above are implied, up 
to constant factors, by the following obvious constraints: 
(Al.) A vertex can be the end-point of no more than 
one vertex-disjoint path. 
(A2.) Most pairs of vertices in G are, whp, at distance 
R(log n/ log d); h ence in general, with n vertices we can 
connect at most O(n log d/ log n) pairs. 
(A3.) If vertices are allowed to have all of their 
neighbors is A U B, then an adversary can choose 
a vertex u and all vertices at distance 2 from u as 
endpoints. Then, clearly u cannot be connected to a 
vertex at distance 3. However a weaker, more “global” 
condition might be possible here - this is an open 
problem. (On the other hand such a global condition 
might not be checkable in polynomial time.) 

Thus, we get a tight (up to constant factors) 
characterization of the sets of pairs of vertices that 
can be connected by vertex disjoint paths in a random 
graph. 

The techniques used in the proofs build on our re- 
sults in [l], where we obtained an optimal construction 
of edge-disjoint paths in random graphs. Our construc- 
tion was based on the analysis of random walks on 
certain subgraphs of a random graphs, through tight 
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bounds on the eigenvalues of these subgraphs. Here 
we push this technique further to allow the analysis of 
vertex-disjoint paths construction (i.e., vertices rather 
then edges are eliminated from the graph during the 
construction of the paths). But the algorithm remains 
very simple, in essence: 

From all endpoints in parallel go to a random vertex 
using flow techniques so that the set of pairs to be 
connected becomes a random set. 

Remove from the graph all vertices used in the flow 
phase. 

Connect each random pair in turn by a random 
path removing vertices as you go. 

This of course suggests a very simple heuristic for 
practical problems. 

One application of the disjoint paths problem is in 
the context of circuit switching communication, where 
the pairs of stations that request connection have to be 
assigned disjoint paths. Depending on the particular 
communication model, the circuit switching problem is 
translated to either an edge-disjoint or a vertex-disjoint 
paths problem. Communication algorithm are usually 
measured in terms of routing an arbitrary permutation 
request (that is, each node is the source or destination 
of one communication request). In the context of circuit 
switching the goal is to minimize the number of rounds 
required to realize an arbitrary permutation. 

Our technique leads to an optimal (up to constant 
factors) algorithm for this question on random graphs. 
Let K = n/2, and assume that n is even. A partition 
of a set S into Al, AZ,. . . , Ak is an equipartition if 
(Ai-Aj(~lforalli#j. 

COROLLARY 1.1. Suppose that G = G,,,, n is 

even, and m = y > ;(lnn + w), where W(n) + 

co. Then there exists an absolute constant y > 0 
such that whp the following holds: For every partition 

(al, bl), (~2, b), . . . , (a,+, b/2) of [nl into 742 pairs, a 
random equipartition of [n/2] into r = [rlnn/ lnd sets 

x1,x2,... ,X,. is such that for each Xi there exists in 
G a set of vertex disjoint paths Pi joining the pairs in 

Xi. Furthermore these paths can be constructed by a 
(explicit) randomized algor+thm in polynomial time. 

This means that the number of rounds needed for 
routing an arbitrary permutation is O(ln n/ lnd) on 
almost all graphs. 

Our second corollary concerns topological embed- 
dings of graphs, a subject that has been extensively 
studied in the context of communication networks for 
parallel computers [6]. A graph G = (V, E) contains a 
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topological copy of H = (W, F) if there exists an injec- 
tion f : W H V and paths P = {P, : e E E} such that 
(i) if e = (2, y} then P, is a path from 2 to y and (ii) 
the paths P are internally vertex disjoint. s2. 

COROLLARY 1.2. Suppose that G = G,,,, and 
m= % 2 t(lnn + w), where w(n) -+ CO. Then 
there exist positive constants p and u such that whp ~3. 
G contains a topological copy of any graph H = (W, F) 
provided that 
(i) The size of the vertex set of H satisfies JWJ 5 n/2. 
(ii) The size of the edge set of H satisfies IFI < 
pnlnd/Inn. 
(iii) The maximum degree in H is bounded by ud. 

In this abstract we will present only an outline proof 
of Theorem 1.1 for the case m 2 Cn In n, where C > 0 is 
some large constant. This will allow us to give the main 
ideas of the proof without dealing with the technicalities 
caused by vertices of low degree. The proofs of the 

s4 
* 

corollaries are given in Section 5. 

2 Notations 

As usual, let G,,p denote a random graph with vertex 
set {1,2,... , n} = [n] in which each possible edge 
is included independently with probability p, and let 
G n,m denote a random graph also with vertex set [n] 
and exactly m edges, all sets of m edges having equal 
probability. The degree of a vertex v is denoted by 
dG(v). 

For a set of vertices S C V we denote its set of 
neighbors in T by N(S : T) = NG(S : T) = {v E T \ S : 
Elur E S with (‘u,‘uI) E E}. We let N(S) = N(S : V) and s5’ 
N(v) = N({v)). Finally, th e subgraph of G induced by 
S z V is denoted G[q = (S, Es) where Es is the set of 
edges in E that have both endpoints in S. 

3 The algorithm 

We present a procedure, PATHS, that under the premises 
of the theorem, constructs the required paths in poly- 
nomial time. Our algorithm divides naturally into two 
phases: In Phase 1 (steps Sl-S3) we aim to replace the 

S6. 

given sets of endpoints A and B by two random sets 2 
and 2; and in Phase 2 (steps S4 and S5) we connect 
these random endpoints using certain random walks. 

We will view the paths notationally as sequences of 
vertices (as opposed to sequences of edges). 

Algorithm PATHS 

(Thus whp (X1/ z n/3.) 

LetX=XluAuB. 

Choose a random 2rc-subset K = {WI, ~2,. . , wsn) 
of Xr by choosing wi uniformly at random from 

Xl \ { Wl,7JJ2,..., W-1). 

Find, using a network flow algorithm, 2~ vertex 
disjoint paths from A U B to IC in the graph 
r = G[X]. 

For 1 5 i < K; let tis (resp. bi) denote the other 
endpoint of the path with one endpoint ai (resp. 

bd). Denote the path from ai to Tii by W!‘) and the 

path from ii to bi by W/‘) for 1 < i < K;. - - 

Note that if ai E I< (resp. bi E Ii) the flow 
construction is simply zli = ai (resp. & = bi). 

Randomly partition Y = [n]\X into two sets .Zl,Zz 
by placing w E Y into Zr with probability l/2. 

For j = 1,2,..., 2~ construct a random walk r/ir, 
of length T = [41n rz/ In d] starting at a random 
Zl-neighbour &j of wj in the graph l?j = G[Yj], 
where 

j-l 

+=Zl\U~. 
5=1 

Let tij be the endpoint of the walk r/irj. NOW 
for 1 < i 5 K if 6i = Wj we let hi = Clj and 

w.2) = Wj + @j and if ii = wk we let & = tik and 

wd(4) = @k(reversed) + wk 

For 1 5 i 5 K; construct, using the subroutine 
WALK described in section 4.2.2, a random walk 
lJd3) of length 7, from a random Zz-neighbour at 

of Ld to a random Zz-neighbour bf of & in the graph 
f’i = G[fi] where 

i-l 

s$ = 22 \ u wJ3). 

t=1 

Output the paths 

wi = (W/l), wj2), w;(3), wj4), W,‘“‘), 1 5 i 5 K, 

after cycles (if any) have been removed. (Cycles 
are possible only within a walk - the walks do not 
intersect.) 

By construction Wi goes from ai to bi and these 
paths are vertex disjoint. 

Sl. Choose a random subset X1 of [n] by placing each Further details of Steps S3, S4, and S5 are given in the 
v E V independently in X1 with probability l/3. next section. 
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4 Proof of Theorem 1.1 in the case m > Cn In n 

4.1 Analysis of the flow phase: Sl - S3. Let 
Bin(n,p) be a binomial random variable 
ters n and p. We will use the well known 

Pr( ]Bin(n, p) - npl 2 cnp) 5 2e--ranp/3, 

(4.1) 

with parame- 
bound 

O<E<l. 

Let S(G) = min,Ev d(v) and A(G) = 
It is easy to show that if C is sufficiently large then whp 
G = Gn,, has the following properties: 

Pl. d/2 < d(G) < A(G) < 2d. 

P2. For any set of vertices S 2 V with ISI 5 20n/d the 
number of its neighbors satisfies IN(S)] 2 dJSl/40. 

P3. For any two sets of vertices Si,Sz E V with 
5’1 n SZ = 0 and )Si( x (Sz( 2 2n2/d there is at 
least one .S’l : Sz edge. 

From now on we assume then that our graph G has 
these three properties. 

LetS=(AUB)\KandTFK\(AUB). Suppose 
that S cannot be joined to T by s = ]S( vertex disjoint 
paths. Then (by Menger’s theorem) there exists a set 
W,with]W]=s-1 such that no component of I? \ W 
contains a vertex of both S and T. Let L = W\(SuT), 
a = JSnWl, and b = ITnWl, so that IL/ = s-a-b-l. 

Let the components of I’ \ W be Ci, Cz, . . . , C,. and 
suppose that S \ W C Di = Ci U Cz U . .. U Ce and 
T \ W c DZ = CL+~ U Cl+2 U . . . U C,. (We must 
have 1 1 1, otherwise W _> S which implies ]W] >_ s. 
Similarly r > fJ.> Let ni = ]Di] for i = 1,2, and let 
v = min{ ni , nz}. Condition P3 implies that 

2n2 
7 > v(nl + 732 - v) 2 v/(121 + n2)/2 2 un/lO. 

Thus v _< 20n/d. Assuming without loss of generality 
that v = n1 we see from P2 that IN(&)] 2 dv/40. 

Now for any set D c V, the size of its neighborhood 
(N(D : X)( is distributed as Bin(]N(D)], l/3). Let Ii 
denote the event 

(30 c V : 15 IDI 5 20n/d and 

IWJ : X)l I lNWl/61. 
Then by P2 and (4.1), 

for large enough C. So we can assume JN(Di : X)] _> 
dv/240. On the other hand ]N(Di : AU B)) 5 2pdv, 
by assumption A3 of Theorem 1.1 and Pl. So Di must 
have ((l/240) - 2P)dv distinct neighbours in L. But 
\LJ < u and we have a contradiction for ,S sufficiently 
small. 

Thus Steps Sl-S3 will be successful whp on any 
graph with properties Pl-P3. 

4.2 Analysis of the random walks phase. A 
random walk on an undirected graph G = (V, E) is a 
Markov chain {X,} on V associated with a particle that 
moves from vertex to vertex according to the following 
rule: The probability of a transition from vertex ZI, of 
degree d, to a vertex w is l/d,, if {w, w} E E and 0 
otherwise. Its stationary distribution, denoted by K or 
n(G), is given by r,, = d,/(2(EI). A trajectory W of 
length 7 is a sequence of vertices [wc, wi, . . . , w,] such 
that {zuf, wi+i} E E for 1 5 t < 7. The Markov chain 
induces a probability distribution on trajectories in the 
usual way. We use P$‘(u, V) to denote the probability 
that a random walk of length T starting at u terminates 
at 0. 

It is well known that the second eigenvalue X of the 
transition matrix determines the rate of convergence of 
a Markov chain to its steady state. A useful form of this 
result was obtained by Sinclair and Jerrum ill]: 

We will need the following result from [I]: 

THEOREM 4.1. Let d = dl, dz, . . . , d, be a degree 
sequence with maximum degree A = o(n1i2) and min- 
imum degree S such that A/S < f? for some constant 
6 > 0. Let G be chosen randomly from the set of sim- 
ple graphs with degree sequence d. Let 0 < c < 1 be 
an arbitrary constant and G be the set of vertex induced 
subgraphs H of G which have degree at least cd. Let 
K > 0 be an arbitrary constant. Then with probability 
1 - O(nBK) every graph H in &Y has second eigenvalue 
at most y/G where y = y(B, c, K). 

To apply this theorem and (4.2) we will first deal 
with the condition A(G) = o(n1i2), then show that 
whp we can restrict our random walks to vertex induced 
sub-graphs H of G,,, with 

(4.3) S(H) > d/10. 

Note that although Theorem 4.1 is couched in terms of 
random graphs with a fixed degree sequence, it applies 
to Gn,, since given its degree sequence, G,,, is still 
randomly chosen. 
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We handle A(G) = o(nl/‘) by assuming from now 
on that d < nl/lo. If d > nl/io we simply choose a 
random set of [n 11/1o/2] edges from the m previously 
chosen and delete the rest. Since for any initial d we 
have lnnlllo 2 (lnd)/lO this assumption only affects 
the constants cry,/? in the statement of Theorem 1.1. We 
must now show that (4.3) holds during steps S4 and S5. 

4.2.1 Analysis of Step S4. If C is large and cr,/? 
are small then whp for i = 1,2 and any v E [n] 

(4.4) d/4 5 )N(w : Zi)l I d/2. 

Thus whp (4.3) holds for H = Ii. Consider the j’th 
walk of Step S4. For v E Yj U Xi, let Zj,, denote the 
number of vertices in N(w : Yj) that are visited by the 
j’th walk. Let qt = Pr(Zj,v = /z). We claim that 
independent of previous walks, 

(4.5) 
ab”-’ log 72 

qk s dk-Zn log d’ 

for some constants a, b > 0 

To prove (4.5) for L = 1, let h,(t) be the probability 
that the walk is at a neighbour of v E Zi at time t. We 
claim that 

(4.6) h,(O) = O(d/n). 

Indeed for 21 E Z1, 

Pr(t$ E N(” : Zl)) 

= c Pr(tzj = w’) 

= c c Pr(Gj = Zu’, Wj = [) 

w’EN(u:Z1) EEN(w’:XI) 

c c Pr(z?rj = W’ 1 Wj = 5) 

w’EN(u:Z1) ,fEN(w’:XI) 

= W/n), 

assuming that for 1 5 j 5 2~ 

IN(wj : I;)] 2 d/10. 

This is true for j = 1 by (4.4) and for the remaining j’s 
it is part of the induction, based on the use of (4.5) and 
(4.10). 

Now given (4.6) we show inductively that for all 

w E V, we have h,(t) = O(di$)) where ii(j) is the 
stationary distribution of a random walk on Yj. This 
follows from the stationarity equations: suppose that 

h,(t) _< cd%?), then 

fz,(t + l)= c 
WEN(W:Yj) 

y 

4 cd c 

&’ 

WEN(V:Yj) 
z = cd%?) = O(d/n). 

Hence 

q1 <k/z,(t) = 0 
t=1 

Fix l?j and for vertex v let pV be the probability 
that a random walk of length 7 from N(v : Yj) ever 
returns to N(v : Yj). We claim that 

(4.7) pv = O(d-l). 

This gives (4.5) since 

(4.8) Qk < (p~)~--l &(t). 

t=1 

Let Vtj91 for 2 < t’ 5 t - 2 be the event that the 
walk is at distance 2 from N(v : Yi) at time t’, at a 
neighbour of N( v:Yj)attimest’+l,...,t-1,andat 
N(w : Yj) at time t. Let Ds be the event that the walk 
never gets further than one away from N(v : Yj) before 
its first return to N(v : Yj). Then 

(4.9) Pv 5 Pr(D0) + ‘e 2 Pr(Dv,t). 
t’=2 t=t’+2 

Assuming d 2 nl/ro it is easy to show that in G,,,, 

wb 

l No vertex is in more than one triangle. 

l No pair of vertices are joined by more than two 
distinct paths of length at most three. 

This implies that 

Pr(ZJo) = O(d”) 

and 
Pr(i!h-k,t) = O(dAk). 

This proves (4.5) and therefore for any constant c > 0, 
as n ‘-, 00 we have 

<l+ 
2aecdlogn 

nlogd 
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It follows that for t > 0, subroutine WALK(U~, bz , f’i, rj, wj) 

(4.10) 
j=l 

I exp 
-et + zK: 2ae”dlog n 

nlogd > 

begin 

I* BY construction, wj = &, and by 
definition V(f’a) = Yi and V(l?j) = Y;. */ 

p, + I$yuf ) v) for v E Yj 

if t = d/10, and c and LY are suitably chosen. Since the 

5 exp(-ct + 4aae’d) = O(nB2), 

minimum degree in Pi is at least d/4 whp, this proves 
that whp ~3(I’2~) > d/10 and so (4.3) holds for H = rj. 

Now if cr,,B are small then ]Yj] 2 n/4 and n(j), 
the stationary distribution on rj, is almost uniform i.e. 
there exist constants a, b > 0 such that whp 

(4.11) a/n < ~$1 < b/n. - - 

Next let $1 = pA;)cwj, .). Since we have chosen 
7 = [4lnn/lndl, Theorem 4.1, with 0 = 5, c = l/10, 
and K = 2, and equations (4.2) and (4.11), imply that 
5 is also nearly uniform, in other words the points tij, 
are nearly uniformly distributed. 

/* & = the distribution of br */ 

pmin t min{p, : V E pi::); 
n 
pm,, + max{fi, : 2, E Yj} 

Choose T from the geometric distribution 
with probability of success s = pmin/&x 

for k from 1 to T - I do 

Choose tk according to Pr(zr, = v) = 
(2% - hPmin /Ijmax)/ (1 - S) 

od 

x, c b; 

for k from 1 to T do 

4.2.2 Analysis of Step S5. The analysis of Step 
S5 is complicated by the fact that we specify both 
endpoints of the walk. It helps for us to think in 
the following terms. At the start of Step S5 we have 
I%’ = {Gl,@, . . . , G,rn} c 21. Furthermore, &j has 
been chosen randomly from 21 \ (61, tia, . , , , Gjj_r } in 
such a way that if v @ 21 \ {tii,tiz, . . . ,tij-1) then 
the conditional distribution 6(j) defined by @(j)(v) = 
Pr(v = tij 1 tiJl,&?,..., @j-r) is nearly uniform. The 
analysis of [l] shows that algorithm WALK depicted in 
Figure 1 generates a random walk from u$ to br in r^i. 

Note that assuming (4.3) holds for I’i we have from 
Theorem 4.1 that p, is nearly uniform and in fact s will 
be bounded below by some absolute constant u > 0. 

To complete the proof we have to show that (4.3) 
remains true also during S5. The proof is similar to 
the one in subsection 4.2.1 except that now there the 
complication that we start several walks from the same 
point. We have shown in [l] that. the algorithm WALKS 
depicted in Figure 2 generates a path with the same 
output distribution as WALK. 

It is easier to analyse WALKS rather than WALK 
because the former is just a random sequence of random 
walks. In ordir to placate some additional correlation 
we make the algorithm choose another random at for 
each of the r walks on pi. 

Pick a walk I@k of length T in I’i 
according to the distribution on 
trajectories, conditioned on 
start point = ut and 
end point = xk 

od 

output I& 

end WALK 

Figure 1: Algorithm WALK 

of & every r steps. We distinguish between start visits 
to N(v : g) when a: E N(v : $) and free visits. The 
number of start visits, A,, is binomial random variable 
with parameters r and p, 5 a/d for some constant 
a > 0. Furthermore one can show with a proof similar 
to that of (4.7) the following 

LEMMA 4.1. Assume g satisfies (4.3) and consider 
a random walk W of length r in ?i. If W starts at vertex 
in N(v : pi) (rap. not in N(v : pi) U {v}) then the 
probability that the walk returns (resp. visits) N(v : $) 
k times is O(dSk>. 

Now let Af denote the number of free visits to N(v : g) 
and let Q^k = Pr(Af = k). Then Q^k is at most 

c h,(t) Pr(k - 1 free visits to v after t ] hi, Xt = v), 

Fix v E Yi. Consider the T walks as a single walk of t=l 
length ~7, which restarts at a random Yi-neighbour at where h,(t) = O(d/n) is the unconditional probability 
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subroutine WALK~(U~ , ?i, l?j, q) then 

begin 

/* By construction, wj = 8i, and by 
definition V(f’i) = R and V(I’j) = I$. */ 

/* l;,, = the distribution of bf */ 

pmin + min{p, : 21 E Yi}; 
^ 

Pmax + max{fi, : V E Yj } 

r + 0; 

forever do 

r+r+l; 

Pick a walk IV,* of length 7 according 
to the distribution on trajectories, 
conditioned on start point = a: 

Let x: be the endpoint vertex of IV,!; 

With probability $Z:pmi”/(p,:~,,,) 
accept IV,* and exitloop 

od 

output IV,* 

end WALKS 

Figure 2: Algorithm WALKI 

that the t’th vertex of the walk is in iV(w : Yi). 

5 2 (g3”” 5 ($$p-)“” = o(l,n), 

Now given P, the k: - 1 free visits to IV(u : Yi) can for large enough y. So we can assume 

be distributed among the T walks in at most (k:Iy”) (5.12) lN(v : -&>I < QlJqv)l, tlv E v. 
ways. So in view of Lemma 4.1 we have 

Thus we can apply Algorithm PATHS to compute the 
paths joining the pairs in each x. (There are o(ln n) 

Pr(k - 1 free visits to N(u : %) after t ) &,Xt = zI,r) sets Yi and the failure probability for PATHS is certainly 

5 (” 31; 2) ($-‘u(l - q-1, 
o(l/lnn).) 

for some constant c > 0. Hence 

5.2 Proof of Corollary 1.2. Choose a set 5’ of ]W] 
vertices of G of degree >_ d/2 and define a l-l mapping 
f : W H S. For each e = {x,y} E F randomly 
choose distinct neighbours x,, ye of f(z), f(y) in G. By 
Theorem 1.1, if p, c are sufficiently small, then for most 
choices of (x,, ye} we can find vertex disjoint paths 
joining 2, to ye for all e E F. 

for some constant c’ > 0. 
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for some a’, b’ > 0 and we can proceed as in subsection 
4.2.1. 
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5 Proof of the Corollaries 
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Pr(lN(v : Zi)l > ~9~1) 
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