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Abstract. Two classic “phase transitions” in discrete mathematics are the emergence of a giant
component in a random graph as the density of edges increases, and the transition of a random
2-SAT formula from satisfiable to unsatisfiable as the density of clauses increases. The random-
graph result has been extended to the case of prescribed degree sequences, where the almost-
sure nonexistence or existence of a giant component is related to a simple property of the degree
sequence. We similarly extend the satisfiability result, by relating the almost-sure satisfiability or
unsatisfiability of a random 2-SAT formula to an analogous property of its prescribed literal-degree
sequence.

The extension has proved useful in analyzing literal-degree-based algorithms for (uniform) ran-
dom 3-SAT.

1. Introduction

There is considerable interest at present in displaying sharp transitions of probabilistic properties
in combinatorial settings. One case of interest is that of random k-SAT formulae. In this note we
discuss a model of random 2-SAT. In the standard model we have n variables and m random
clauses. This model is well understood. Chvatál and Reed [CR92] showed that if m = cn, c < 1
constant then a random instance is satisfiable with high probability (whp) and that if c > 1 then a
random instance is unsatisfiable whp. This result was sharpened by Goerdt [Goe96], Fernandez de
la Vega [FdlV92] and Verhoeven [Ver99]. The tightest results are due to Bollobás, Borgs, Chayes,
Kim and Wilson [BBC+01].

In this paper, we obtain interesting results by considering random 2-SAT models in which the
number of occurrences of each literal is prescribed. The correspondence between the classic 2-
SAT phase transition and our results is exactly analogous to the correspondence between the
giant-component phase transition in the classic Erdős-Rényi model and the results of Molloy and
Reed [MR95] for a random graph with given degree sequence.

1.1. Notation.

Certain formalisms become confusing if not dealt with at once. An n-variable formula is built on
a set of variables V = {x1, . . . , xn} and their complements {x̄1, . . . , x̄n}, all 2n of which compose
the set L of literals. Complementation is an involution, and for an arbitrary literal u we denote
the complement by ū: if u = xi then ū = x̄i, and if u = x̄i then ū = xi. We say that two literals u
and v arise from distinct variables if neither u = v nor ū = v. A truth assignment σ : V → {0, 1}
assigns each variable a value of 1 (true) or 0 (false), and extends naturally to the set of literals
by σ(x̄i) = 1 − σ(xi). (We will often elide the function σ, simply writing for example xi = 0; the
complementarity condition then is that xi + x̄i = 1.)

A clause C is an unordered pair of literals {u, v}, and C is satisfied by a truth assignment σ if
σ(u) + σ(v) ≥ 1. A 2-SAT formula F on n variables with m clauses consists of clauses C1, . . . , Cm

over the literals {x1, x̄1, . . . , xn, x̄n}; it is satisfiable if there exists a truth assignment σ satisfying
every clause. We say that F is simple if all the clauses are distinct and, in each clause Ci = {ui, vi},
ui and vi arise from distinct variables.
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For w ∈ L let dF (w) denote the degree of w, that is, the number of times w appears in the
formula F . Suppose now that we fix a degree sequence d = d1, d̄1, . . . , dn, d̄n and define the set of
all formulas with degree sequence d,

Ωd =
{

F : dF (xi) = di, dF (x̄i) = d̄i, i = 1, 2, . . . , n
}

.

Denote the maximum degree by ∆d = max
{

d1, d̄1, . . . , dn, d̄n

}

, and let

D1 =

n
∑

i=1

(di + d̄i) = 2m

D2 =
n

∑

i=1

did̄i

where m is the number of clauses in F .
We can assume that di+d̄i ≥ 1 for all i. (Otherwise we can remove variable i from consideration.)

Thus D1 ≥ n. Our random model is that

F is chosen uniformly at random from Ωd.

A degree sequence d is ∆-proper if

• ∆d ≤ ∆.
• D1 = 2m, i.e., D1 is even.

We will write f ¿ g to mean f = o(g) and f À g for f = ω(g) whenever convenient.

1.2. Results and significance.

Our main theorem formalizes the notion that a random formula conditioned upon a literal-degree
sequence is whp satisfiable if D2 < (1 − ε)D1, and whp unsatisfiable if ∆2 > (1 + ε)D1.

Theorem 1. Let 0 < ε < 1 be constant; let d be any ∆-proper literal-degree sequence over n
variables, with ∆ = n1/11; and let pd be the probability that a formula F chosen uniformly at
random from simple formulas with degree sequence d is satisfiable.

(A): If 2D2 < (1 − ε)D1 then
lim

n→∞
min
d

pd = 1.

(B): If 2D2 > (1 + ε)D1 then
lim

n→∞
max

d

pd = 0.

For example in the case of the usual uniform model, with m = cn randomly chosen clauses, the
degree sequence almost surely approximates a Poisson density; this “Poisson” degree sequence has
the property that D1 = 2cn and whp D2 ≈ c2n; and we obtain the result of [CR92]. In this model

the maximum degree is Θ(ln n), much smaller than our upper bound of n1/11.

In the theorem’s maximum-degree bound of ∆ = n1/11, the exponent 1/11 can be replaced by
any constant strictly less than 1/10; we use 1/11 merely for notational convenience and because
anyway we have made no attempt to optimize the constant.

The reason a condition such as as the maximum-degree bound is needed is explained by Molloy
and Reed [MR95] for the random-graph model analogous to our random-formula one. They give an
example where most vertices have degree 1 but a vanishing small fraction have degree d√n e. This
degree sequence obeys their basic condition for a random graph almost surely not to have a giant
component (the analogy of our Theorem 1 condition (A)), when in fact it almost surely does; thus,
some further hypothesis is needed. Molloy and Reed find an appropriate restriction by considering
what is essentially a sequence of degree sequences, and demanding that it obey certain hypothesis,
notably a uniform convergence property they call “well behavedness”. Our restriction to maximum
degree ≤ n1/11 plays the same role, in a simpler way.
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1.3. Applications.

Constraint satisfaction problems are of interest in many fields, notably artificial intelligence, and
there is a natural hope that understanding random formulas will help in understanding the instances
that arise in those fields. By relaxing the assumption of uniform randomness, we increase the chance
of making such a connection.

Theorem 1 has already been useful in a computer science-theoretic setting. In analogy to the
2-SAT phase transition result of [CR92], it is conjectured that there is a similar transition density
for 3-SAT. While this remains unresolved, bounds are known: n-variable formulas with fewer than
3.4n clauses are almost surely satisfiable [KKL02], and those with greater than 4.596n clauses
almost surely unsatisfiable [JSV00].

The 3.4n result follows from analyzing an algorithm which, essentially, chooses high-degree lit-
erals and sets them to 1. As with previous satisfiability bounds such as the 3.26n of [AS00], the
algorithmic analysis relies on the “differential equation method” [Wor95], and it is in the nature
of this method (which works in an open set) that the last part of the job generally must be done
by some other technique. In the case of [AS00], the completion relies on the fact that a uniform
random formula with fewer than n 2-clauses and (2/3)n 3-clauses is almost surely satisfiable. For
[KKL02], the completion comes from taking a now-sparse random formula with a given degree
sequence (which is predictable almost surely, almost exactly), treating its 3-clauses as if they were
2-clauses by ignoring a random literal, and applying our main theorem.

2. Random Formulas

This section is devoted to a statement and proof of a lemma which parallels Theorem 1, but
for formulas generated by a random configuration model to be described, rather than for simple
random formulas. In Section 3 we will use this lemma (Lemma 2) to prove Theorem 1.

Graphical Representation

A clause {uj , vj} corresponds naturally to a pair of logical implications: for F to be satisfied, if uj

is 0 (false) then vj must be 1 (true), and vice-versa; that is, ūj “implies” vj , and v̄j implies uj .
Given a formula F = {{uj , vj} : j = 1, 2, . . . , m} we define a digraph Γ = Γ(F ) = (L, A) whose

vertices are F ’s literals, and whose directed edges consist of the two implications derived from each
of F ’s clauses: A = {(ūj , vj), (v̄j , uj) : j = 1, 2, . . . , m}.

It is well known (see for example Aspvall, Plass and Tarjan [APT79]) that F is unsatisfiable
if and only if there is a variable xj such that Γ(F ) contains a directed path from xj to x̄j and a
directed path from x̄j to xj .

Configuration Model

Our model for generating a random F ∈ Ωd is based on the configuration model for graphs,
Bollobás [Bol80]. We have a universe Z consisting of D1 points, partitioned into subsets Z(x), x ∈ L,
with |Z(xi)| = di, |Z(x̄i)| = d̄i, i = 1, 2, . . . , n; the points in Z(x) are thought of as representatives,
or occurrences, of literal x. “Inversely” to Z(x), define φ : Z → L by φ(w) = x iff w ∈ Z(x),
so that φ associates a point with the literal it represents. Let Ψ denote the set of configurations:
partitions of Z into m disjoint 2-element sets. From a configuration P ∈ Ψ, we construct a formula
FP straightforwardly: for each 2-element set S = {p, q} ∈ P we create a clause CS = {φ(p), φ(q)}.

An algorithmic description of the generation of a uniformly random P ∈ Ψ can be useful:
In the random-configuration model we choose P uniformly at random from Ψ and let FP be

the associated formula. FP may not be simple, i.e., it may contain repeated clauses and/or clauses
which contain 2 copies of the same literal. If however P is simple, then FP is uniformly sampled from
Ωd: each simple formula is represented by exactly

∏n
i=1 di! d̄i! distinct configurations. (By contrast,

not-necessarily-simple formulas are not all represented by the same number of configurations, and
here we do not consider the uniform distribution over such formulas.)
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Algorithm 1 construct

Initialize paired-up points P0 := ∅; free points R0 := Z.
for i = 1 to m do

Choose ui ∈ Ri−1 arbitrarily.
Choose vi uniformly at random from Ri−1 \ {ui}.
Set Pi := Pi−1 ∪ {{ui, vi}}; Ri := Ri−1 \ {ui, vi}.

end for
Output P := Pm.

The distinction between random formulas and random simple formulas is typically unimportant
in the usual (non-degree-sequence) model, because there, a constant fraction of formulas are simple.
That is not the case in the degree-sequence model, and so the distinction is more important. We
will first study the likely satisfiability of FP — a formula which is not necessarily simple — and
later, in Section 3, show how to deal with the issue of simplicity.

Lemma 2. Under the hypotheses of Theorem 1, but with F = FP a formula given by a random
configuration, precisely the same conclusions (A) and (B) follow.

The remainder of this section is devoted to a proof of Lemma 2; Part (A) is easy, Part (B) harder.

2.1. Case A: 2D2 < (1 − ε)D1.

In this section we prove the result of part (A) of Lemma 2.
Chvátal and Reed [CR92] define a bicycle as a sequence of clauses {u, w1} , {w̄1, w2} , . . . , {w̄r, v}

where w1, w2, . . . , wr arise from distinct variables and, for some 1 ≤ i, j ≤ r, u ∈ {wi, w̄i} and
v ∈ {wj , w̄j}. That is, a bicycle is a chain of implications on distinct variables, except that
some two middle literals, or their complements, also serve as the start and end literals. (It is the
distinctness of the variables that makes bicycles a useful concept, for it translates into probabilistic
independence.)

Chvátal and Reed argue that if an instance is infeasible then it contains a bicycle. We will show
that whp Γ(FP ) does not contain any bicycles. It is convenient first to show that whp Γ(FP ) does
not contain any long paths. Then we can restrict our attention to small bicycles.

Claim 3. Γ(FP ) has no long directed paths, whp.

Proof. Let k0 =
⌈

3ε−1 log n
⌉

and let X0 be the number of directed paths of length k0 − 1 in
Γ(FP ). In the estimation of P(w1 → w2 → · · · → wk0

∈ Γ) below, we do not use the procedure
construct. Rather, first, P(w1 → w2) ≤ E(#{w1 → w2}) = d(w̄1) · d(w2)/(D1 − 1). Then,
P(w2 → w3 | w1 → w2) has the same form, but in a random configuration where d(w̄1) and d(w2)
have both been reduced by 1; thus, P(w2 → w3 | w1 → w2) ≤ d(w̄2)d(w3)/(D1 − 3), and so forth.

E(X0) ≤
∑

w1,...,wk0
∈L

P(w1 → w2 → · · · → wk0
∈ Γ)

≤
∑

w1,...,wk0
∈L

d(w̄1)d(w2)

D1 − 1
× d(w̄2)d(w3)

D1 − 3
× · · ·

× d(w̄k0−1)d(wk0
)

D1 − 2k0 + 3

(1)

≤
∑

w1,wk0

∆2

D1 − 2k0

∑

w2,...,wk0−1

k0−1
∏

i=2

d(wi)d(w̄i)

D1 − 2k0
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≤ n2∆2

D1 − 2k0

(

2D2

D1 − 2k0

)k0−2

≤ (1 + o(1))n∆2 ((1 − ε)(1 + o(1))k0−2

= O(n∆2n−2.9)

= o(1).

So, whp, Γ has no directed path of length ≥ k0. ¤

From Claim 3 it follows immediately that whp, Γ contains no long bicycles, of length > k0.

Claim 4. Γ(FP ) has no short bicycles, whp.

Proof. Let Yr be the number of bicycles of length r, and Y =
∑k0

r=2 Yr. Then the probability that
Γ contains a short bicycle is

P(Y > 0) ≤ E(Y )

≤
k0
∑

r=2

∑

w1,...,wr
∈L

∑

u,v∈{w1,w̄1,
...,wr,w̄r}

d(w̄1)d(w2)

D1 − 1
× d(w̄2)d(w3)

D1 − 3
×

· · · × d(w̄r−1)d(wr)

D1 − 2r + 5

× ∆ d(w1)

D1 − 2r + 3

∆ d(w̄r)

D1 − 2r + 1
,

(2)

where we have summed over bicycle lengths r, and all possible bicycles of that length, the probability
that the bicycle is present in Γ. Re-pairing the degrees as d(wi)d(w̄i) (taking note of the terms in
the final line of the product), and observing that D1 − 2r = D1(1 − o(1)), shows this to be

≤ (1 + o(1))
∆2

D1

k0
∑

r=2

∑

w1,...,wr∈L

(2r)2
r

∏

i=1

d(wi)d(w̄i)

D1

= (1 + o(1))
4∆2

D1

k0
∑

r=2

r2

(

2D2

D1

)r

≤ (1 + o(1))
4∆2

D1

ε(1 + ε)

(1 − ε)3
(3)

= o(1).

Here we have used that ∆ = o(n1/2), much weaker than the hypothesis ∆ = n1/11. ¤

The preceding pair of claims shows that whp, Γ contains no bicycles and thus is satisfiable; this
verifies Part (A) of Lemma 2.

2.2. Case B: 2D2 > (1 + ε)D1.

For w ∈ L we let

span(w) = {v : Γ(FP ) contains a directed path from w to v} .

We show that whp there exists a literal w and variables x, y such that x, x̄ ∈ span(w) and y, ȳ ∈
span(w̄). This forces the formula to be unsatisfiable since

(4) w =⇒ x ∧ x̄ and w̄ =⇒ y ∧ ȳ.
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We do this by arguing that we can whp find a pair w, w̄ such that both span(w) and span(w̄)
are “large” and that whp large spans contain complementary pairs.

Generating spans

In generating a configuration P , that is a pairing of the configuration points Z, we will consider
the set Z to be partitioned into three sets: a set D of “dead”, paired-up points (which only grows
with time); a set L of “live” points actively seeking pairs; and a set U of “untouched” points. We
will call L ∪ U the set of “unpaired” points.

We work in terms of the configuration model and make a series of passes of the following “trun-
cated span” algorithm, tspan. (If we were to repeat until all points are paired up, this would be a
particular version of construct; in fact we stop earlier.) tspan takes as arguments initial values
of D, L, and U , an iteration threshold s, and a live-size threshold `. The algorithm causes the sets
D, L, U to evolve, preserving the property that they are a partition of Z.

Algorithm 2 tspan(D, L, U, s, `)

while 0 < |L| ≤ ` (while there are live points but no more than ` of them) and for at most s
iterations do

Choose a live point p ∈ L.
Randomly choose an unpaired point p′ 6= p (p′ ∈ U ∪ L \ p).
Pair p with p′ and move them to the paired-up set. (Set D := D ∪ {p, p′}; L := L \ {p, p′};
U := U \ {p, p′}.)
Identify the literal v represented by p′. (Set v = φ(p′).)
Make live the free points associated with v̄. (Set L := L ∪ (U ∩ φ−1(v̄)); U := U ∩ φ−1(v)).

end while
Terminate by returning the live points to the untouched set. (Set U := U ∪ L; L := ∅; and
leave D unchanged.)

Observe that after one run of tspan, the next run starts with the existing set D of paired-up,
dead points, and with all other points (including the old live points) considered untouched. This
introduces no bias: it is consistent with the construct meta-algorithm.

Note that in a tspan pass starting with L = {p}, with u = φ(p), all the literals v identified in
the pass are implied by u: if u is 1 then v must be 1 to satisfy the formula FP (in particular, to
satisfy the subformula generated in the pass).

The Plan

Let us now outline our grand scheme. We will run a sequence of executions of tspan, doing it few
enough times and each with a short enough time bound that we can ensure that the number of
points we ever touch (pair up) is a small fraction of the total. More specifically, we will perform a
sequence of “pair iterations” as follows.

Select a pair of “complementary points” p, q ∈ Z, with φ(p) = φ(q). Define a run of tspan to
be a “success” if it terminates because the live set has grown to size |L| = `, rather than dying
out with |L| = 0 or reaching the iteration bound s. Run tspan with the set of dead points D left
from previous runs (if this is the first run, start with D = ∅), with L = {p}, and with U the rest
(U = Z \ (D ∪ L)). If the run fails, perform a new pair iteration. Also, if the run paired up q,
perform a new pair iteration. Claim 6 will show that the run succeeds with decent probability, and
Claim 5 shows that it is unlikely to pair up q in the process. If the run succeeds and q is not paired
up, run tspan with L = {q}. If the run on q fails, perform a new pair iteration.

Claim 7 shows that any pair p, q succeeds with decent probability. Once we find a pair p, q both
of which succeeded, Claims 8 and 10 (with Remark 9) show that with high probability both p and
q imply contradictions, and thus F is unsatisfiable.
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Let t = 1
2 |D| denote the number of point-pairings, a natural index of “time” as points are

repeatedly paired in a single or multiple executions of tspan, and let |L(t)| be the number of live
points at this time. We shall throughout respect the condition that

|D| + |L| = o(D2/∆2),(5)

which implies that t = o(D1).

Claim 5. Given condition (5), each pairing (“while”) step in tspan gives an expected increase in
the live points,

E(|L(t + 1)| − |L(t)|) ≥ ε

2
.(6)

Also, for any untouched point, q ∈ U(t), the probability q gets paired with p or made live is

P(q 6∈ U(t + 1)) ≤ (1 + ∆)/(D1 − 2t − 1).(7)

Proof. Start with the first property. Let d′j be the number of unpaired points representing literal xj .

The point p′ paired with p is equally likely to be any of the D1 − 2t− 1 other unpaired points. Call
a literal xj untouched if none of the points representing xj or x̄j is in D ∪L, i.e., j is untouched if
(Z(xj)∪Z(x̄j))∩ (D ∪L) = ∅. Note that the number of touched literals is ≤ |D∪L|. If xj = φ(p′)
was previously untouched, then all d̄j representatives of x̄j become new live points. At the same
time, at least one live point (p) gets paired up, and possibly a second (if p′ ∈ L(t)). Thus the
expected increase in the number of live points is

E(|L(t + 1)| − |L(t)|)

≥ −1 − |L|
D1 − 2t − 1

+
1

D1 − 2t − 1

∑

j untouched

(

dj d̄j + d̄jdj

)

≥ −1 +
2

D1 − 2t − 1



−1

2
|L| +

n
∑

j=1

dj d̄j −
∑

j touched

dj d̄j





≥ −1 +
2

D1 − 2t − 1

(

−1

2
|L| + D2 − |L ∪ D| · ∆2

)

= −1 +
2

D1 − o(D1)
(D2 − o(D2))

≥ −1 +
2D2

D1
(1 − o(1))

≥ −1 + (1 + ε)(1 − o(1))

≥ ε/2.

For the second property, the probability that q is paired with p is 1/(D1 − 2t − 1). For q to

become live, p has to be paired with one of at most ∆ points q′ with φ(q′) = φ(q). ¤

Claim 6. For s À ∆2ε−2 and s = o(D2/∆), if tspan is run starting with no more than t =
o(D2/∆2) paired-up points D, with any single live point L = {p}, with a time bound s and size
bound sε/4, then with probability P ≥ 1/(2s) it terminates with live size sε/4.

Proof. Fix an arbitrary linear order on the configuration points Z. Let σ1, σ2, . . . ∈ [0, 1) be
independent uniform random reals. Implement tspan by, in the ith iteration, choosing the “first”
point p ∈ L (in the fixed ordering), and pairing it with p′ ∈ L ∪ U \ p, where p′ is the dσi(|L| +
|U | − 1)eth element of L ∪ U \ p.



8 COLIN COOPER, ALAN FRIEZE, AND GREGORY B. SORKIN

The preceding process may terminate at i < s steps, if the live size |L| hits 0 or `; we now define
another process which always continues for s steps. If |L(i− 1)| > 0 (even if |L(i− 1)| ≥ sε/4), just
proceed with tspan as above, using σi. If |L(i − 1)| = 0, then restore D, L, and U to their initial
values before making a single step of tspan as above, using σi. We call the latter case a “restart”,
and define the jth “start time” by Ij = i − 1 (with I1 = 0).

Let ξj = 1 if during the jth start we ever achieve |L| ≥ sε/4 (“success”), and ξj = 0 if there is no
jth start or it fails to achieve this live-size. The probability of interest is P = P(ξ1 = 1), since this
is the probability that the original process tspan reaches the size bound sε/4. Note that the jth
start is (stochastically) just like the first, except with time bound s − Ij in lieu of s, and therefore
ξj is stochastically dominated by ξ1. In particular, if |L(s)| ≥ sε/4 then one of the starts (the last
one) was successful, and there are no more than s starts, which is to say that

P(|L(s)| ≥ sε/4) ≤ P(

s
∑

j=1

ξj ≥ 1) ≤ E

s
∑

j=1

ξj ≤ sEξ1 = sP(ξ1 = 1),

and thus

P = P(ξ1 = 1) ≥ P(|L(s)| ≥ sε/4)/s.(8)

It remains only to find a good bound on the latter quantity, which we do in a manner patterned
on the Azuma-Hoeffding inequality.

Define the differences

Xi = |L(i)| − |L(i − 1)|(9)

for the process above. Note that −2 ≤ Xi (at worst 2 live points get paired up and no new ones
created); Xi ≤ ∆ (at least 0 live points get paired up — 0 rather than 1 in the case of a restart
where the single live point p is reintroduced and immediately paired off again — and at most ∆
new ones created); and (whether or not we are making a restart), by (6),

E(Xi | σ1, . . . , σi−1) ≥ ε/2.(10)

In particular, if we set

λ = ε/(6∆2)(11)

then for any values σ1, . . . , σi−1,

E
(

e−λXi|σ1,...,σi−1

)

≤ 1 − λE(Xi | σ1, . . . , σi−1) + λ2∆2

≤ e−λε/2+λ2∆2

≤ e−λε/3.(12)

Note that X =
∑s

i=1 Xi = |L(s)|, and we are interested in P(X ≤ sε/4). For any bound w,

P(X ≤ w) = P(eλ(w−X) ≥ 1)

≤ E(eλ(w−X)) = eλwEe−λX

= eλwE

(

s
∏

i=1

e−λXi

)

= eλwEσ1,...,σs−1
Eσs

(

s−1
∏

i=1

e−λXi · e−λXs

)

= eλwEσ1,...,σs−1

(

s−1
∏

i=1

e−λXi · Eσs

(

e−λ(Xs|σ1,...,σs−1)
)

)

.
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Applying (12), this is

≤ eλwEσ1,...,σs−1

(

s−1
∏

i=1

e−λXi · e−λε/3

)

which, inductively, is

≤ eλw−λεs/3.(13)

Taking w = sε/4 as desired for (8), this is

≤ e−λεs/12

≤ e−sε2/(72∆2)(14)

for λ as in (11). With s ≥ 72∆2/ε2 as hypothesized, this is

≤ 1/2.(15)

Together with (8) this proves the claim. ¤

Claim 7. Given a set D of paired-up points with |D| = o(D2/∆), choose a pair of complementary

points p, q ∈ Z \ D, so φ(p) = φ(q). Run tspan with paired-up points D, a single live point
L = {p}, and U = Z \D ∪ {p}, with iteration bound s as prescribed in Claim 6 and also satisfying
s2 = o(D1/∆), and live-size bound sε/4, to produce a larger set D′ of paired-up points. If the live-
size bound was reached (the run was successful) and q 6∈ D′, similarly run tspan with paired-up
points D′, a single live point L = {q}, and U = Z \ D′ ∪ {q}.

Then, with probability ≥ 1/(5s2), both runs occur, and both succeed (reach live-size sε/4).

Proof. By (7), the probability that the tspan run starting from p “kills” q is ≤ s(1 + ∆)/(D1 −
|D|− 1) = o(1/s) by hypothesis. Let P be the event that tspan starting from p grows to size sε/4,
Q the same event for q, and K the event that p does not kill q. Then,

P(P ∧ ¬K) ≥ P(P ) − P(K) ≥ 1/(2s) − o(1/s).

Then

P(Q ∧ (P ∧ ¬K)) = P(P ∧ ¬K) · P(Q | (P ∧ ¬K))

≥ [1/(2s) − o(1/s)] · 1/(2s) ≥ 1/(5s2).

¤

Claim 8. Starting with t = o(D2/∆2) paired-up points and sε/4 live points, run tspan with time
bound l − s and live-size bound lε/4. If s > 12 lnn ∆4/ε2 and l ≥ 2s and l = o(D2/∆2) then with
probability ≥ 1 − exp(−Ω(∆2)), tspan terminates with a live set of size lε/4.

Proof. Starting from live-size εs/4, and growing for l − s additional steps, we expect to reach size
roughly ε(l/2 − s/4), and ask that it reach the lesser size εl/4. This can fail in either of two ways:
first, by failing to have live-size ≥ εl/4 at step l − s, or second, by having live-size 0 at any of the
l − s steps.

We reason about the increments Xi = |L(i)| − |L(i − 1)| just as in (9) and (10). For any step i,
the probability of a second-type failure — of hitting |L(i)| = 0 — is

P(type-II failure at i) ≤ P(X1 + · · · + Xi + sε/4 ≤ 0)

which, as in (13) but with i in lieu of s, and bound w = −sε/4, is

≤ exp(−λsε/4 − λiε/3).
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Then the probability of any second-type failure is

P(any type-II failure) ≤ le−λsε/4

which, substituting λ = ε/(6∆2) from (11), and the bounds on s and l from the hypothesis, is

≤ 2n∆

∆2
exp(−2 lnn ∆2)

≤ n1−2∆2 ≤ n−∆2

.(16)

The probability of a first-type failure after l steps is

P(type-I failure) = P

(

l−s
∑

i=1

Xi < (l − s)ε/4

)

which by (14), with l − s substituted for s, is

≤ e−(l−s)ε2/(72∆2)

which under the hypothesis l ≥ 2s and the hypothesized bound on s is

≤ n−∆2/36.(17)

Summing (16) and (17) proves the claim. ¤

Remark 9. Starting from any point p and running tspan, if two live points are ever paired with
one another, then in any satisfying assignment of the formula F , φ(p) must be true.

Proof. For any live point q (including p itself), when q is paired with q′, this means F includes a
clause (φ(q), φ(q′)), so that if φ(q) is false then φ(q′) must be true. The points made live when q
is paired to q′ are those q′′ with φ(q′′) = ¬φ(q′), and so φ(q′′) must be false. Thus (inductively), if
the original live point p corresponds to a false literal, then every subsequent live point must also
be false. But then if two live points r1, r2 are paired, the clause (φ(r1), ρ(r2)) would be unsatisfied.
So if two live points are paired, F can only be satisfiable if φ(p) is true. ¤

Claim 10. Under condition (5), and for |L| ≥ 5, if tspan is run with no time nor live-size bound,
the probability that no two points in L get paired with one another is ≤ exp(−|L|2/(6D1)).

Proof. Let D, L, and U denote the initial sets of paired, live, and untouched points (rather than
the corresponding sets as tspan progresses). Perform tspan by successively pairing off points in
(the original set) L. The first point from L is paired “successfully” (to a point in U rather than
to another point in L) with probability |U |/(|L| + |U | − 1). Conditioned upon this, the second
point from L is paired successfully with probability (|U | − 1)/(|L| + |U | − 3), and similarly for the
following points. Thus the probability that all points in L are paired to points in U is

P(success) =

|L|−1
∏

i=0

|U | − i

|L| + |U | − 2i − 1
.

The terms are increasing with i: it is easily checked that this is so if |U | − |L| + 1 > 0, and this
follows from condition (5) which assures that |L| = o(|U |). Since each term is also ≤ 1, the product
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is dominated by the ith power of the ith term, for any i. Choosing i = (|L| − 1)/2 gives

P(success) ≤
( |U | − (|L| − 1)/2

|U |

)(|L|−1)/2

=

(

1 − |L| − 1

2|U |

)(|L|−1)/2

≤ exp(−(|L| − 1)2/(4|U |))
≤ exp(−|L|2/(5|U |)).

Since by definition D2 ≤ 1
2∆D1, D2/∆2 ≤ D1/∆ ≤ D1, and so from (5) it also follows that

|D| + |L| = o(D1). Then, as |D| + |L| + |U | = D1, |U | = D1 − o(D1), and 5|U | ≤ 6D1, giving
P(success) ≤ exp(−|L|2/(6D1)). ¤

We are now ready to prove the main result for random configurations, part B of Lemma 2.

Proof of Lemma 2 part B. Algorithmically, we will make k trials as in Claim 7, where we use tspan

to try to grow both of a complementary pair of points p and q to live-size sε/4, for appropriate
values of the parameters k and s. By Claim 7, each of the k trials succeeds with probability at
least 1/(5s2). We then reason probabilistically by Claims 8 and 9 that for any trial that succeeds,
p and q would each continue growing to live size lε/4 (for an appropriate value of l), and two points
in each live set would pair with one another, certifying the unsatisfiability of F . In particular we
will show that each of the k trials would certify the unsatisfiability of F , with probability at least
1/(6s2). Thus, if k is much larger than s2, with overwhelming probability, F must be unsatisfiable.
(It is an important subtlety that while we algorithmically grow the spans to live-size sε/4, we do
not actually continue growing them and look for a certificate, but just reason that we could do so
with high probability: if we actually did it we could touch on the order of kl points, while this way
we touch only on the order of ks + l points.)

We will first derive appropriate parameter settings, and then fill in the few logical gaps. We
will introduce the notation f ≪ g (similarly f ≫ g) to mean that for some constant δ > 0,
f/g = o(n−δ) (respectively f/g = ω(n−δ)). In using this notation, we will sacrifice an arbitrarily
small amount in making ∆ as large as possible.

Since each trial will certify F unsatisfiable with probability 1/(6s2) and we wish k trials to give
an overwhelming probability of supporting such a certificate (probability ≤ exp(−∆2/4) will be
needed after (20) to prove Part B of Theorem 1) we will need k ≫ s2∆2, so (for some tiny constant

δ > 0) we may as well fix k = nδs2∆2 . (For emphasis, we typographically frame various parameter
constraints and their implications, leading to the optimized parameters in the main results.) To
satisfy (5), we need ks = nδs3∆2 ≪ D2/∆2. In choosing values to ensure this, we know little

about D2 beyond D2 ≥ D1 ≥ n, so we will ensure nδs3∆2 ≪ n/∆2 by setting s3 = n1−2δ∆−4

thereby constraining ∆ ≪ n1/4.
With s as above, s2 ≪ n/∆ and so Claim 7’s additional constraint s2 ≪ D1/∆ is satisfied.

Claim 6 requires s ≫ ∆2ε−2. Since ε is fixed it is irrelevant asymptotically, so we need s3 ≫ ∆6

which is to say n1−2δ∆−4 ≫ ∆6, thereby giving the still stronger constraint ∆ ≪ n1/10 .

In terms of s, for Claim 8 it suffices (and is more or less necessary) to have s ≫ ∆4, i.e.,
s3 = n1−2δ∆−4 ≫ ∆4 or n1−2δ ≫ ∆8, which is weaker than the preceding constraint on ∆.

We now consider a suitable value of the parameter l. To obtain a useful result from Claim 10
requires |L|2 ≫ D1. Assuming a successful outcome per Claim 8, the live set’s size is |L| = lε/4,
and again we know little about D1 beyond D1 ≤ 2n∆, so we are more or less forced to require
lε/4 ≫ n1/2∆1/2 which is equivalent to the simpler l ≫ n1/2∆1/2. This is stronger than the

constraint coming from Claim 8’s hypothesis l ≥ 2s, since s is only about n1/3∆−4/3. We must
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however respect Claim 8’s other constraint, that l ≪ D2/∆2, which we ensure by requiring l ≪

n/∆2. Thus for Claims 8 and 10 it suffices (and is more or less necessary) to have l2 ≫ n∆ and
l ≪ n∆−2 (or l2 ≪ n2∆−4), giving the constraint n ≫ ∆5; again this is strictly weaker than

a previous constraint. So setting l = n1−δ∆−2 satisfies the hypothesis of Claims 8 and 10, and
for Claim 10 gives an exponentially small probability that no two live points are paired with one
another.

After these calculations there is one small mathematical technicality to see to. Claim 7 shows
that complementary points p and q are both likely to grow to live-size sε/4 (call these events P
and Q); and Claims 8 and 10 show that, given event P , p would be likely to grow to live-size lε/4
and then imply that φ(p) must be true (call this event P ′), and similarly for Q and q (event Q′).
That is, we know that P ∧ Q is likely, and we know that P ′ is likely given P and that Q′ is likely
given Q, but we need to know that P ∧ Q ∧ P ′ ∧ Q′ is likely.

For arbitrary events,

P(P ∧ Q ∧ P ′ ∧ Q′) = P(P ∧ Q) − P(P ∧ Q ∧ ((¬P ′) ∨ (¬Q′)))

≥ P(P ∧ Q) − P(P ∧ Q ∧ ¬P ′) − P(P ∧ Q ∧ ¬Q′)

≥ P(P ∧ Q) − P(P ∧ ¬P ′) − P(Q ∧ ¬Q′)

≥ P(P ∧ Q) − P(¬P ′ | P ) − P(¬Q′ | Q).

For the particular events in question, and with the parameters chosen as above, Claim 7 shows that
P(P ∧ Q) ≥ 1/(5s2), while Claims 8 and 10 show that P(¬P ′ | P ) = exp(−Ω(nδ)) = o(1/5s2) and
likewise for Q′ and Q, yielding

P(P ∧ Q ∧ P ′ ∧ Q′) ≥ 1/(6s2).

That is, each complementary pair p and q would, with probability at least 1/(6s2), prove F
unsatisfiable, and so over our k = nδs2∆2 choices of such pairs, the chance no pair certifies F
unsatisfiable is at most exp(−nδ∆2). Thus,

P(F is satisfiable) ≤ exp(−nδ∆2).(18)

¤

3. Uniform Simple Formulas

We have now proved Theorem 1, but for random formulas FP generated according to the con-
figuration model, rather than for simple random formulas F chosen uniformly from Ωd.

If d satisfies
∑n

i=1(d
2
i + d̄2

i ) = O(m), then the expected number of repeated clauses, and clauses
with a repeated literal, is O(1), and there is a positive probability that there are none and the
formula is simple. In that case, the high-probability results for the configuration model imply
high-probability results for the uniform model F ∈ Ωd.

To obtain the same conclusion with a weaker constraint on the degree sequence, namely for
all proper degree sequences with 2D2 < (1 − ε)D1, we use the idea of switchings; see [McK85,
MW91, CFRR02]. In a pairing P ∈ Ψ, a pair (u, v) is a loop if φ(u) = φ(v), it is a tautology if

φ(u) = φ(v), and if it is neither a loop nor a tautology then it is redundant if P contains another
pair {u′, v′}, u′ < v′ with φ(u′) = φ(u), φ(v′) = φ(v), and u < u′. The following algorithm will
remove loops, tautological edges and repeated clauses; it assumes some total ordering on the points
Z such that each Z(x) forms an interval.

The study of random graphs with a fixed degree sequence rests on the analysis of algorithms
similar to the one given next (at least for “small” maximum degree), based on an easy observation.
FP is simple iff the following multi-graph G = G(P ) is simple and has no tautological edges of the
form {u, ū}, u ∈ L. G has vertex set L, and contains an edge {φ(x), φ(y)} for every pair {x, y} ∈ P .
Our algorithm below differs from the graphical versions in that it removes tautological clauses as
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well. These can be handled in the same way as loops and so we will not provide a proof of our
claims. It suffices to refer the reader to the proofs of the graphical case.

Algorithm 3 simplify

Construct P using construct.
Let the a loops, b tautological edges and c redundant clauses be enumerated as {ui, vi} ⊆ Z,
i = 1, 2, . . . , a + b + c.
if a + b + c ≥ n1/5 then

terminate — Failure.
end if
for i = 1 to a + b + c do

Choose {x, y} randomly from P (Step A).
Replace the two pairs {ui, vi}, {x, y} by {ui, x}, {vi, y}, where ui < vi and we choose randomly
the order x < y or x > y.

end for
if FP is not simple then

terminate — Failure.
end if
return the simple formula FP

Let Q denote the output of simplify.
We remark that O(∆2) is a high-probability upper bound on a + b + c, and the algorithm’s cap

of n1/5 on a + b + c is chosen simply to satisfy n1/5 À ∆2 (which holds for ∆ = n1/11 or the

weaker condition ∆ ≪ n1/10 needed in the proof of part B of Lemma 2). It follows by routine
calculation that the probability the algorithm terminates in failure is o(1). Let Ψ? denote the set
of configurations P ∈ Ψ for which FP is simple.

For a proof of the following lemma (in the case of graphs with a fixed degree sequence) see e.g.
McKay [McK85] or Cooper, Frieze, Reed and Riordan [CFRR02].

Lemma 11. There exists Ψ̃ ⊆ Ψ? such that

(a):

|Ψ̃|
|Ψ?| = 1 − o(1).

(b):

P(Q ∈ Ψ̃) = 1 − o(1).

(c): For all P1, P2 ∈ Ψ̃,
P(Q = P1)

P(Q = P2)
= 1 ± o(1).

It follows from Lemma 11 that we need only prove the equivalent of Theorem 1 with Q in place
of F .

3.1. Proof of part A of main Theorem.

Consider the proof of Claim 3. We argue that in (1), we can replace the terms
d(w̄i)d(wi+1)

D1 − 2i + 1
by

(19)
d(w̄i)d(wi+1)

D1 − 2i + 1
+ O





(

∆n1/5

n

)2


 .

The extra term comes from considering the chance that the arc (wi, wi+1) is created by simplify.
For this to happen, (i) one of w̄i or wi+1 must be incident with a redundant pair or a loop, and (ii) the
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other one must be incident with a pair {x, y} chosen in Step A. (We say that {a, b} is incident with
{c, d} if the corresponding edges are incident in the graph G(P ), i.e., if {φ(a), φ(b)}∩{φ(c), φ(d)} 6=
∅.) Events (i) and (ii) each occur with probability O

(

∆n1/5

n

)

, and are approximately independent

of one another. The bound on the extra term applies in the context of Claim 3, where the relevant
probabilities are conditioned upon the existence of previous arcs in a path under consideration:
there are only O(log n) arcs in each path considered, and the new arc is by definition disjoint from
the old ones. The correction in (19) does not affect the conclusion of Claim 3.

A similar correction can be applied in the rest of the proof of part (A) of Theorem 1. In this case

the last two terms in (2) should be given a slightly larger correction, +O
(

∆n1/5

n

)

: condition (i)

may be implied by the existence of a previous arc, so we simply bound its probability by 1, while
the probability of condition (ii) is as in the preceding paragraph.

3.2. Proof of part B of main Theorem.

For part B of Theorem 1 we need (18) and

(20)
|Ψ?|
|Ψ| ≥ e−O(∆2).

Indeed, (18) and (20) imply that

P(F is satisfiable)

= P(FP is satisfiable | P is simple)

≤ P(FP is satisfiable) / P(P is simple)

≤ eO(∆2)n−∆2/5

= o(1).

For a proof of (a graph version of) (20), see [CFRR02].
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