Department of Mathematical Sciences Carnegie Mellon University

21-366 Random Graphs Test 2 $\,$

Name:_____

Problem	Points	Score
1	35	
2	35	
3	30	
Total	100	

Q1: (35pts)

Show that if 4 divides n and $np^4 \gg \log n$ then w.h.p. $G_{n,p}$ contains n/4 vertex disjoint copies of K_4 – the complete graph on 4 vertices. Solution: Partition [n] into 4 sets V_1, V_2, V_3, V_4 of size n/4. Because $\frac{n}{4}p \gg$

Solution: Partition [n] into 4 sets v_1, v_2, v_3, v_4 of size n/4. Because $\frac{1}{4}p \gg \log \frac{n}{4}$ there will w.h.p. be perfect matchings M_1, M_2 of the bipartite graphs induced by V_1, V_2 and V_3, V_4 respectively. Given these matchings, all edges not contained in a V_i are still unconditioned. We consider the bipartite graph H with vertices M_1, M_2 and an edge between $e \in M_1$ and $f \in M_2$ if $G_{n,p}$ completes e, f to a copy of K_4 . This happens with probability p^4 and because $\frac{n}{4}p^4 \gg \log \frac{n}{4}$, H will w.h.p. contain a perfect matching that corresponds to n/4 vertex disjoint copies of K_4 .

Q2: (35pts) Show that if $p \ge \frac{10 \log n}{n}$ then w.h.p. it contains a cycle of length exactly $\lfloor n/2 \rfloor$.

Solution: We have $\frac{n}{2}p \ge 5\log \frac{n}{2}$ and so w.h.p. $\lfloor \lfloor n/2 \rfloor \rfloor$ will contain a Hamilton cycle.

Q3: (30pts)

Show that if 4 divides n and $p \ge \frac{10 \log n}{n}$ then w.h.p. $G_{n,p}$ contains n/4 vertex disjoint copies of

$$K_{1,3}$$

Solution: Partition [n] into 4 sets V_1, V_2, V_3, V_4 of size n/4. Because $\frac{n}{4}p \gg \log \frac{n}{4}$ there will w.h.p. be perfect matchings M_1, M_2, M_3 between V_1 and $V_i, i = 2, 3, 4$. These matchings define n/4 vertex disjoint copies of $K_{1,3}$.