Department of Mathematical Sciences Carnegie Mellon University 21-366 Random Graphs
 Test 2

Name: \qquad

Problem	Points	Score
1	35	
2	35	
3	30	
Total	100	

Q1: (35pts)

Show that if 4 divides n and $n p^{4} \gg \log n$ then w.h.p. $G_{n, p}$ contains $n / 4$ vertex disjoint copies of K_{4} - the complete graph on 4 vertices.
Solution: Partition $[n]$ into 4 sets $V_{1}, V_{2}, V_{3}, V_{4}$ of size $n / 4$. Because $\frac{n}{4} p \gg$ $\log \frac{n}{4}$ there will w.h.p. be perfect matchings M_{1}, M_{2} of the bipartite graphs induced by V_{1}, V_{2} and V_{3}, V_{4} respectively. Given these matchings, all edges not contained in a V_{i} are still unconditioned. We consider the bipartite graph H with vertices M_{1}, M_{2} and an edge between $e \in M_{1}$ and $f \in M_{2}$ if $G_{n, p}$ completes e, f to a copy of K_{4}. This happens with probability p^{4} and because $\frac{n}{4} p^{4} \gg \log \frac{n}{4}$, H will w.h.p. contain a perfect matching that corresponds to $n / 4$ vertex disjoint copies of K_{4}.

Q2: (35pts)

Show that if $p \geq \frac{10 \log n}{n}$ then w.h.p. it contains a cycle of length exactly $\lfloor n / 2\rfloor$.
Solution: We have $\frac{n}{2} p \geq 5 \log \frac{n}{2}$ and so w.h.p. $[\lfloor n / 2\rfloor]$ will contain a Hamilton cycle.

Q3: (30pts)

Show that if 4 divides n and $p \geq \frac{10 \log n}{n}$ then w.h.p. $G_{n, p}$ contains $n / 4$ vertex disjoint copies of

Solution: Partition $[n]$ into 4 sets $V_{1}, V_{2}, V_{3}, V_{4}$ of size $n / 4$. Because $\frac{n}{4} p \gg$ $\log \frac{n}{4}$ there will w.h.p. be perfect matchings M_{1}, M_{2}, M_{3} between V_{1} and $V_{i}, i=2,3,4$. These matchings define $n / 4$ vertex disjoint copies of $K_{1,3}$.

