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Q1: (30pts)
Suppose that p = n−3/5 and we randomly color the edges of Gn,p with two
colors, Red and Blue. Show that w.h.p. there is a Red-Blue-Red path in
Gn,p between every pair of vertices.
Hint: think diameter, not second moment.
Solution: Fix two vertices i, j. The red degree of vertex i is distributed as
Bin(n−1, p/2). This has expectation (n2/5−p)/2 and so the Chernoff bounds

imply that with probability e−Ω(n2/5) it has a red degree in I = [n2/5/4, n2/5].
Condition on the degree of i being in I. Now consider the number of neighbors
of j that are not neighbors of i. This is distributed as Bin(n−O(n2/5), p/2)

and so the Chernoff bounds imply that with probability e−Ω(n2/5) it has a red
degree in I. It follows that

Pr(there is no RBR path from i to j) ≤ e−Ω(n2/5) +
(

1− p

2

)n4/5/16

= o(n−2).

Now use the union bound over choices of i, j.

Q2: (30pts)

Suppose that 0 < ε is a small constant and that α(1−logα)
1−α < ε. Show that if

p = (1+ε) logn
n

then w.h.p. the minimum degree in Gn,p is at least α log n.
Hint: no vertices of degree less than α log n.
Solution: Let X denote the number of vertices of degree less than a =
α log n. Then,

E(X) = n

a∑
k=0

(
n− 1

k

)
pk(1− p)n−1−k

≤ n
a∑
k=0

(ne
k

)k ((1 + ε) log n

n

)k
n−(1+ε+o(1))

= n

a∑
k=0

(
e(1 + ε) log n

k

)k
n−(1+ε+o(1)).

Let f(x) = (eA/x)x. Then f ′(x) = f(x) log(A/x) and so f increases from
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x = 0 to x = A and f(A) = eA. So,

E(X) ≤ αn log n× na log(e(1+ε)/a)−(1+ε+o(1)) = na(1+log(1+ε)/a)−ε+o(1) ≤
na(1+ε−log a)−ε+o(1) = o(1).

Q3: (40pts)
Suppose that p = ω

n
where ω →∞ and we randomly color the edges of Gn,p

with three colors, Red, Blue and Green. Show that w.h.p. there is a triangle
in Gn,p with every edge a different color.
Solution: Assume first that np = ω ≤ log n where ω = ω(n) → ∞ and let
Z be the number of multicolored triangles in Gn,p. Then

EZ =

(
n

3

)
p3 × 2

9
≥ (1− o(1))

ω3

27
→∞.

Next let T1, T2, . . . , TM ,M =
(
n
3

)
denote the triangles of Kn. Then if Ti ∈m

Gn,p means that Ti is in Gn,p and is multicolored then

EZ2 =
M∑
i,j=1

P(Ti, Tj ∈m Gn,p)

=
M∑
i=1

P(Ti ∈m Gn,p)
M∑
j=1

P(Tj ∈m Gn,p | Ti ∈m Gn,p) (1)

= MP(T1 ∈m Gn,p)
M∑
j=1

P(Tj ∈m Gn,p | T1 ∈m Gn,p) (2)

= EZ ×
M∑
j=1

P(Tj ∈m Gn,p | T1 ∈m Gn,p).

Here (2) follows from (1) by symmetry.
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Now suppose that Tj, T1 share σj edges. Then

M∑
j=1

P(Tj ∈m Gn,p | T1 ∈m Gn,p)

= 1 +
∑
j:σj=1

P(Tj ∈m Gn,p | T1 ∈m Gn,p)+∑
j:σj=0

P(Tj ∈m Gn,p | T1 ∈m Gn,p)

= 1 + 3(n− 3)p2 × 2

9
+

((
n

3

)
− 3n+ 8

)
p3 × 2

9

≤ 1 +
2ω2

3n
+ EZ.

It follows that

VarZ ≤ (EZ)

(
1 +

2ω2

3n
+ EZ

)
− (EZ)2 ≤ 2EZ.

Applying the Chebyshev inequality we get

P(Z = 0) ≤ P(|Z − EZ| ≥ EZ) ≤ VarZ

(EZ)2
≤ 2

EZ
= o(1).

This proves the theorem for p ≤ logn
n

. For larger p we can use monotonicity.
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