# Department of Mathematical Sciences <br> Carnegie Mellon University 

21-366 Random Graphs
Test 1

You can use my book and you can quote theorems from the book.

| Problem | Points | Score |
| :--- | :--- | :--- |
| 1 | 30 |  |
| 2 | 30 |  |
| 3 | 40 |  |
| Total | 100 |  |

## Q1: (30pts)

Suppose that $p=n^{-3 / 5}$ and we randomly color the edges of $G_{n, p}$ with two colors, Red and Blue. Show that w.h.p. there is a Red-Blue-Red path in $G_{n, p}$ between every pair of vertices.
Hint: think diameter, not second moment.
Solution: Fix two vertices $i, j$. The red degree of vertex $i$ is distributed as $\operatorname{Bin}(n-1, p / 2)$. This has expectation $\left(n^{2 / 5}-p\right) / 2$ and so the Chernoff bounds imply that with probability $e^{-\Omega\left(n^{2 / 5}\right)}$ it has a red degree in $I=\left[n^{2 / 5} / 4, n^{2 / 5}\right]$. Condition on the degree of $i$ being in $I$. Now consider the number of neighbors of $j$ that are not neighbors of $i$. This is distributed as $\operatorname{Bin}\left(n-O\left(n^{2 / 5}\right), p / 2\right)$ and so the Chernoff bounds imply that with probability $e^{-\Omega\left(n^{2 / 5}\right)}$ it has a red degree in $I$. It follows that
$\operatorname{Pr}($ there is no RBR path from $i$ to $j) \leq e^{-\Omega\left(n^{2 / 5}\right)}+\left(1-\frac{p}{2}\right)^{n^{4 / 5} / 16}=o\left(n^{-2}\right)$.
Now use the union bound over choices of $i, j$.

## Q2: (30pts)

Suppose that $0<\epsilon$ is a small constant and that $\frac{\alpha(1-\log \alpha)}{1-\alpha}<\epsilon$. Show that if $p=\frac{(1+\epsilon) \log n}{n}$ then w.h.p. the minimum degree in $G_{n, p}$ is at least $\alpha \log n$.
Hint: no vertices of degree less than $\alpha \log n$.
Solution: Let $X$ denote the number of vertices of degree less than $a=$ $\alpha \log n$. Then,

$$
\begin{aligned}
\mathbf{E}(X) & =n \sum_{k=0}^{a}\binom{n-1}{k} p^{k}(1-p)^{n-1-k} \\
& \leq n \sum_{k=0}^{a}\left(\frac{n e}{k}\right)^{k}\left(\frac{(1+\epsilon) \log n}{n}\right)^{k} n^{-(1+\epsilon+o(1))} \\
& =n \sum_{k=0}^{a}\left(\frac{e(1+\epsilon) \log n}{k}\right)^{k} n^{-(1+\epsilon+o(1))} .
\end{aligned}
$$

Let $f(x)=(e A / x)^{x}$. Then $f^{\prime}(x)=f(x) \log (A / x)$ and so $f$ increases from
$x=0$ to $x=A$ and $f(A)=e^{A}$. So,

$$
\begin{aligned}
\mathbf{E}(X) \leq \alpha n \log n \times n^{a \log (e(1+\epsilon) / a)-(1+\epsilon+o(1))}=n^{a(1+\log (1+\epsilon) / a)-\epsilon+o(1)} & \leq \\
n^{a(1+\epsilon-\log a)-\epsilon+o(1)} & =o(1) .
\end{aligned}
$$

## Q3: (40pts)

Suppose that $p=\frac{\omega}{n}$ where $\omega \rightarrow \infty$ and we randomly color the edges of $G_{n, p}$ with three colors, Red, Blue and Green. Show that w.h.p. there is a triangle in $G_{n, p}$ with every edge a different color.
Solution: Assume first that $n p=\omega \leq \log n$ where $\omega=\omega(n) \rightarrow \infty$ and let $Z$ be the number of multicolored triangles in $G_{n, p}$. Then

$$
\mathbf{E} Z=\binom{n}{3} p^{3} \times \frac{2}{9} \geq(1-o(1)) \frac{\omega^{3}}{27} \rightarrow \infty
$$

Next let $T_{1}, T_{2}, \ldots, T_{M}, M=\binom{n}{3}$ denote the triangles of $K_{n}$. Then if $T_{i} \in_{m}$ $G_{n, p}$ means that $T_{i}$ is in $G_{n, p}$ and is multicolored then

$$
\begin{align*}
\mathbf{E} Z^{2} & =\sum_{i, j=1}^{M} \mathbf{P}\left(T_{i}, T_{j} \in_{m} G_{n, p}\right) \\
& =\sum_{i=1}^{M} \mathbf{P}\left(T_{i} \in_{m} G_{n, p}\right) \sum_{j=1}^{M} \mathbf{P}\left(T_{j} \in_{m} G_{n, p} \mid T_{i} \in_{m} G_{n, p}\right)  \tag{1}\\
& =M \mathbf{P}\left(T_{1} \in_{m} G_{n, p}\right) \sum_{j=1}^{M} \mathbf{P}\left(T_{j} \in_{m} G_{n, p} \mid T_{1} \in_{m} G_{n, p}\right)  \tag{2}\\
& =\mathbf{E} Z \times \sum_{j=1}^{M} \mathbf{P}\left(T_{j} \in_{m} G_{n, p} \mid T_{1} \in_{m} G_{n, p}\right)
\end{align*}
$$

Here (2) follows from (1) by symmetry.

Now suppose that $T_{j}, T_{1}$ share $\sigma_{j}$ edges. Then

$$
\begin{aligned}
& \sum_{j=1}^{M} \mathbf{P}\left(T_{j} \in_{m} G_{n, p} \mid T_{1} \in_{m} G_{n, p}\right) \\
& =1+\sum_{j: \sigma_{j}=1} \mathbf{P}\left(T_{j} \in_{m} G_{n, p} \mid T_{1} \in_{m} G_{n, p}\right)+ \\
& \quad \sum_{j: \sigma_{j}=0} \mathbf{P}\left(T_{j} \in_{m} G_{n, p} \mid T_{1} \in_{m} G_{n, p}\right) \\
& =1+3(n-3) p^{2} \times \frac{2}{9}+\left(\binom{n}{3}-3 n+8\right) p^{3} \times \frac{2}{9} \\
& \leq 1+\frac{2 \omega^{2}}{3 n}+\mathbf{E} Z .
\end{aligned}
$$

It follows that

$$
\operatorname{Var} Z \leq(\mathbf{E} Z)\left(1+\frac{2 \omega^{2}}{3 n}+\mathbf{E} Z\right)-(\mathbf{E} Z)^{2} \leq 2 \mathbf{E} Z
$$

Applying the Chebyshev inequality we get

$$
\mathbf{P}(Z=0) \leq \mathbf{P}(|Z-\mathbf{E} Z| \geq \mathbf{E} Z) \leq \frac{\operatorname{Var} Z}{(\mathbf{E} Z)^{2}} \leq \frac{2}{\mathbf{E} Z}=o(1)
$$

This proves the theorem for $p \leq \frac{\log n}{n}$. For larger $p$ we can use monotonicity.

