Department of Mathematical Sciences Carnegie Mellon University
 21-366 Random Graphs
 Test 1: Solutions

Name:

Problem	Points	Score
1	40	
2	30	
3	30	
Total	100	

Q1: (40pts)
Suppose that $p=d / n$ where d is constant. Prove that w.h.p., in $G_{n, p}$, no vertex belongs to more than one triangle.
Solution: If there is a vertex v that lies in more than one triangle, then there is a set of $k=4,5$ vertices that contain at least $k+1$ edges. The probability of this can be bounded by

$$
\sum_{k=4}^{5}\binom{n}{k} 2^{k}\left(\frac{d}{n}\right)^{k+1} \leq \frac{1}{n} \sum_{k=4}^{5} \frac{2^{k} d^{k+1}}{k!}=o(1)
$$

Q2: (30pts)

Suppose that $c \neq 1$ is constant and that $\epsilon_{n}=1 / \log \log n$. Show that w.h.p. the length of the longest path component in $G_{n, p}, p=\frac{c}{n}$ is $\left(1 \pm \epsilon_{n}\right) \frac{\log n}{c-\log c}$.
Solution: Let $L_{ \pm}=\left(1 \pm \epsilon_{n}\right) \frac{\log n}{c-\log c}$ and let X_{-}denote the number of components that are paths of length L_{-}and let X_{+}denote the number of components that are paths of length at least L_{+}.
Now we know that w.h.p. there are no path components of length more than $A \log n$ for some constant $A>0$. This is because (a) there are no components of size greater than $A \log n$ and (b) the giant component has too many edges to be a path. Thus,

$$
\begin{aligned}
\mathbf{P}\left(X_{+}>0\right) & \leq o(1)+\sum_{k=L_{+}+1}^{A \log n}\binom{n}{k} k!\left(\frac{c}{n}\right)^{k-1}\left(1-\frac{c}{n}\right)^{k(n-k)} \\
& \leq o(1)+\frac{(1+o(1)) n}{c} \sum_{k=L_{+}+1}^{A \log n}\left(c e^{-c}\right)^{k} \\
& \leq o(1)+\frac{2 A n \log n}{c} \cdot\left(c e^{-c}\right)^{L_{+}} \\
& \leq o(1)+\frac{2 A n \log n}{c} \cdot \frac{\left(c e^{-c}\right)^{\epsilon_{n} L_{+}}}{n} \\
& =o(1) .
\end{aligned}
$$

Now, with $X=X_{-}$and $L=L_{-}$,

$$
\begin{aligned}
\mathbf{E}(X) & =\binom{n}{L+1}(L+1)!\left(\frac{c}{n}\right)^{L}\left(1-\frac{c}{n}\right)^{L(n-L)-\binom{L+1}{2}+L} \\
& \geq(1-o(1)) n\left(c e^{-c}\right)^{L} \\
& =(1-o(1))\left(c e^{-c}\right)^{-\epsilon_{n} L} \\
& \rightarrow \infty
\end{aligned}
$$

Furthermore, if $P_{1}, P_{2}, \ldots, P_{M}$ is an enumeration of the paths of length L in K_{n} and X_{i} is thge indicator for P_{i} being a path component then

$$
\begin{aligned}
\mathbf{E}\left(X^{2}\right) & =\mathbf{E}(X)+\sum_{i \neq j} \mathbf{P}\left(X_{i}=X_{j}=1\right) \\
& \leq \mathbf{E}(X)+\mathbf{E}(X)^{2}
\end{aligned}
$$

This is because if $i \neq j$ then

$$
\mathbf{P}\left(X_{i}=X_{j}=1\right)= \begin{cases}\mathbf{P}\left(X_{i}=1\right) \mathbf{P}\left(X_{j}=1\right) & P_{i} \cap P_{j}=\emptyset \\ 0 & P_{i} \cap P_{j} \neq \emptyset\end{cases}
$$

Thus

$$
\mathbf{P} X>0 \geq \frac{\mathbf{E}(X)^{2}}{\mathbf{E}\left(X^{2}\right)} \geq \frac{1}{\frac{1}{\mathbf{E}(X)}+1} \rightarrow 1
$$

Q3: (30pts)

Let \mathcal{C} denote the set of connected unicyclic graphs on vertex set [n]. Suppose that Z is the length of the unique cycle C_{H} in a randomly chosen member $H \in \mathcal{C}$. Show that, where $N=\binom{n}{2}$,

$$
\mathbf{E} Z=\frac{n^{n-2}(N-n+1)}{|\mathcal{C}|}
$$

Hints: Count the number X of pairs (H, e) in two ways, where $e \in C_{H}$ and $H \in \mathcal{C}$. Let X_{k} denote the number of $H \in \mathcal{C}$ with $\left|C_{H}\right|=k$.
Solution: First,

$$
X=\sum_{\text {spanning trees } T}|\{e \notin E(T)\}|=n^{n-2}(N-n+1) .
$$

This is because there are n^{n-2} spanning trees and each $e \notin E(T)$ creates a cycle when added to T.
On the other hand,

$$
X=\sum_{k=1}^{n} k X_{k}
$$

since each H with $\left|C_{H}\right|=k$ gives rise to k pairs, by deleting an edge of the unique cycle. Thus,

$$
|\mathcal{C}| \mathbf{E}(Z)=|\mathcal{C}| \sum_{k=1}^{n} k \frac{X_{k}}{|\mathcal{C}|}=n^{n-2}(N-n+1)
$$

