1. A tournament T is an orientation of the complete graph K_n. In a random tournament, edge $\{u, v\}$ is oriented from u to v with probability $1/2$ and from v to u with probability $1/2$. Show that w.h.p. a random tournament is strongly connected.

Solution: If T is not strongly connected then there exists a set S of size at most $n/2$ such that all edges in $S : \bar{S}$ are oriented the same way i.e all are S to \bar{S} or vice-versa. The probability of this is at most

$$2 \sum_{k=1}^{n/2} \binom{n}{k} \frac{1}{2^{k(n-k)}} \leq 2 \sum_{k=1}^{n/2} \left(\frac{ne}{k2^{n-k}} \right)^k = o(1).$$

2. Let T be a random tournament. Show that w.h.p. the size of the largest acyclic sub-tournament is asymptotic to $2 \log_2 n$. (A tournament is acyclic if it contains no directed cycles).

Solution: Let X_k denote the number of sets of size k that induce an acyclic tournament. If S is acyclic then S can be ordered x_1, x_2, \ldots, x_k so that if $i < j$ then the edge is oriented from x_i to x_j. Thus,

$$\mathbb{E}(X_k) \leq \binom{n}{k} k! \frac{1}{2^{k(k-1)/2}} \leq \left(\frac{ne}{2^{(k-1)/2}} \right)^k.$$

So, $\mathbb{E}(X_k) \to 0$ if $k \geq (2 + \varepsilon) \log_2 n$. If $k \leq (2 - \varepsilon) \log_2 n$ then the second moment method suffices.

3. Suppose that the edges of $G_{n,p}$ where $0 < p \leq 1$ is a constant, are given exponentially distributed weights with rate 1. Show that if X_{ij} is the shortest distance from i to j then

(a) For any fixed i, j,

$$\mathbb{P} \left(\left| \frac{X_{ij}}{\log n/n} - \frac{1}{p} \right| \geq \varepsilon \right) \to 0.$$

(b) $$\mathbb{P} \left(\left| \max_j X_{ij} \frac{1}{\log n/n} - \frac{2}{p} \right| \geq \varepsilon \right) \to 0.$$

Solution: one argues that the number of edges between any set S of size k and its complement \bar{S} is $(1 + o(1))k(n - k)p$. This follows from the Chernoff bounds. It follows that the expression for $\mathbb{E}(Y_n)$ in Chapter 19.2 of the book becomes $\mathbb{E}(Y_n) \approx \sum_{k=1}^{n-1} \frac{1}{k(n-k)p}$. The rest of the proof of this section is only changed by the factor $1/p$.

1