Homework 6

6.7.20 Consider the modified greedy matching algorithm where you first choose a random vertex \(x \) and then choose a random edge \(\{x, y\} \) incident with \(x \). Show that applied to \(G_{n,m} \), with \(m = cn \), that w.h.p. it produces a matching of size \(\approx \left(\frac{1}{2} - \frac{\log(2 - e^{-2c})}{4c} \right) n \).
(If you can set up the associated differential equation, that will suffice.)

7.6.1 Let \(p = d/n \) where \(d \) is a positive constant. Let \(S \) be the set of vertices of degree at least \(\frac{2 \log n}{n \log \log n} \). Show that \(S \) is an independent set w.h.p.

7.6.9 Suppose that \(H \) is obtained from \(G_{n,1/2} \) by planting a clique \(C \) of size \(m = n^{1/2} \log n \) inside it. describe a polynomial time algorithm that w.h.p. finds \(C \). (Think that an adversary adds the clique without telling you where it is).
(How does adding the clique change the degree sequence?)