Digraphs

In this chapter we study the random digraph $D_{n,p}$. This has vertex set $[n]$ and each of the $n(n-1)$ possible edges occurs independently with probability p. We will first study the size of the strong components of $D_{n,p}$.
Case 1: \(p = \frac{c}{n}, \ c < 1 \)

We will show that in this case

Theorem 1

Whp

1. all strong components of \(G_{np} \) are either cycles or single vertices.

2. The number of vertices on cycles is at most \(\omega \), for any \(\omega = \omega(n) \to 0 \).
Proof

The expected number of cycles is

\[\sum_{k=2}^{n} \binom{n}{k} (k-1)! \left(\frac{c}{n} \right)^k \leq \sum_{k=2}^{n} \frac{c^k}{k} = O(1). \]

Part (ii) now follows from the Markov inequality.
To tackle (i) we argue that if there is a component that is not a cycle or single vertex then there is a cycle C and vertices $a,b \in C$ and a path P from a to b that is internally disjoint from C.
However, the expected number of such sub-graphs is bounded by

\[\sum_{k=2}^{n} \sum_{l=1}^{n-k} \frac{n}{k} (k-1)! \left(\frac{c}{n} \right)^k (\frac{n}{l}) l! \left(\frac{c}{n} \right)^{l+1} \]

\[\sum_{k=2}^{\infty} \sum_{l=1}^{\infty} \frac{c^{k+l+1}}{k n} = O\left(\frac{1}{n} \right). \]

Here \(l \) is the number of vertices on the path \(P \), excluding \(a, b \).
We now consider the case $p = \frac{c}{n}$ where $c \geq 1$.

We will prove the following theorem, that is a directed analogue of the existence of a giant component in $G_{n,p}$.

Theorem 2

Let ω be defined by $0 < \omega < 1$ and $\omega \in (0, \frac{1}{n})$. Then with $D_{n,p}$ contains a unique strong component of size $\Omega(n(1-\omega)^2)$. All other strong components are of logarithmic size.
General Strategy: For a vertex \(v \) let
\[
D^+(v) = \{ w : \exists \text{ path } v \to w \in D_{n,p} \}
\]
\[
D^-(v) = \{ w : \exists \text{ path } w \to v \in D_{n,p} \}.
\]

We will first prove

Lemma 1
There exist constants \(\alpha, \beta \) (dependent only on \(c \)) such that w.h.p.

\[\exists v \text{ such that } |D^+(v)| \in [\alpha \log n, \beta n]. \]
Proof

If there is a \(v \) such that \(|D^+(v)| = s \) then \(O_{v,p} \) contains a line \(Q \) of size \(s \), rooted at \(v \) such that (i) all arcs are oriented away from \(v \) and (ii) there are no arcs oriented from \(V(T) \) to \(E(T) \backslash V(T) \).

The expected number \(f \) such lines is bounded above by
\[\left(\frac{n}{S} \right)^{S-2} \left(\frac{c}{n} \right)^{S-1} (1 - \frac{c}{n})^{S(n-S)} \leq \]
\[\frac{n}{cS^2} \left(ce^{1-c} + s/n \right)^S. \]

Now \(ce^{1-c} < 1 \) for \(c + 1 \) and so there exists \(\beta \) such that when \(S \leq \beta n \) we can bound \(ce^{1-c} + s/n \) by some constant \(\delta < 1 \) (\(\delta \) depends only on \(c \)). In which case
\[\frac{n}{cS^2} \delta^S \leq n^{-3} \text{ for } S \geq \frac{4}{\log^{1/3} \log n}. \]
Fix a vertex \(v \in [n] \) and consider a directed breadth-first search from \(v \).

Let \(S_0^+ = \{ v \} \) and given \(S_0^+, S_1^+, \ldots, S_k^+ \subseteq [n] \) let \(T_k^+ = \bigcup_{i=1}^{k} S_i^+ \), and let

\[
S_{k+1}^+ = \{ w \in T_k^+ : \exists x \in T_k^+ \text{ s.t. } (x, w) \in \{(D_{n, p})^2 \} \}.
\]

Not surprisingly, we can show that the sub-graph \(\Gamma_k^+ \) induced by \(T_k^+ \) is close in distribution to the tree defined by
the first \(k+1 \) levels of a Galton-Watson branching process with \(\mathcal{P}_0(c) \) as the distribution of the number of offspring from a single parent.

Lemma 2

If \(\hat{S}_0, \hat{S}_1, \ldots, \hat{S}_k \) and \(\hat{T}_k \) are defined with respect to the branching process and if \(k < k_0 = \log^3 n \) and \(s_0, s_1, \ldots, s_k \leq \log^{4} n \), then
\[\Pr\left(|\hat{S}_i^+| = s_i, 0 \leq i \leq k \right) = \left(1 + o\left(\frac{1}{n^{k-1}}\right)\right) \Pr\left(|\hat{S}_i^-| = s_i, 0 \leq i \leq k \right). \]

Proof

\[\Pr\left(|\hat{S}_i^-| = s_i, 0 \leq i \leq k \right) = \prod_{i=1}^{k} \frac{(c_{s_{w-1}})^{s_i} e^{-c_{s_{w-1}}}}{s_i!}. \]

Furthermore, putting \(t_i = s_o + s_1 + \ldots + s_i \) we have

\[\Pr\left(|\hat{S}_i^+| = s_i, 0 \leq i \leq k \right) = \prod_{i=1}^{k} \left(\frac{\binom{s_{w-1}(n-t_i)}{s_i}}{s_i!} \right) \left(\frac{c_{s_i} s_{w-1}(n-t_i) - s_i}{n} \right) \]

and the lemma follows by simple estimations. \(\square \)
Lemma 3

(a) \(\Pr (|S_v^+| \geq s \log n \mid |S_{v^-}| = s) \leq n^{-10} \).

(b) \(\Pr (|S_v^-| \geq s \log n \mid |S_{v^-}| = s) \leq n^{-10} \).

Proof

(a)
\[
\Pr (|S_v^+| \geq s \log n \mid |S_{v^-}| = s) \leq \Pr (B(sn, \frac{e}{n}) \geq s \log n) \leq \left(\frac{sn}{s \log n} \right)^s \log n \leq \left(\frac{en}{s n \log n} \right)^s \log n \leq \left(\frac{e c}{\log n} \right)^s \log n .
\]

(b) is similar.
Next let
\[\mathcal{F} = \left\{ \exists i : \left| \mathcal{F}_i^+ \right| > \log^2 n \right\} \]

Lemma 4
\[\Pr(\mathcal{F}) = 1 - \frac{n}{n} + o(1) \]

Proof
\[\Pr(\mathcal{F}) = \Pr(\mathcal{F}_1) + o(1) \]
where
\[\mathcal{F}_1 = \left\{ \exists i : \log^2 n : \left| \mathcal{F}_i^+ \right| > \log^2 n < \left| \mathcal{F}_i^+ \right| \right\} \]

This follows from Lemma 3.
Applying Lemma 2 (on p. 12) we see that
\[P_r(\hat{F}_1) = P_r(\hat{F}_1^+) + o(1) \]
where \(\hat{F}_1^+ \) is defined w.r.t. the branching process.

Now let \(\hat{E} \) be the event that the branching process becomes extinct.

We write
\[P_r(\hat{F}_1) = P_r(\hat{F}_1 | \neg \hat{E}) P_r(\neg \hat{E}) + P_r(\hat{F}_1 \land \hat{E}). \tag{1} \]
To estimate (1) we first define
\[\rho = \rho_S(\mathcal{E}) \]
\[= \sum_{k=0}^{\infty} \frac{c^k e^{-c}}{k!} \rho^k. \]

This is the origin of the process having \(k \) children if each of the processes spawned by them must become extinct for \(\mathcal{E} \) to occur. Thus
\[\rho = e^{c \rho - c}. \]

Substituting \(\rho = \frac{\mathcal{E}}{c} \) proves that
\[P(\hat{E}) = \frac{\delta_0}{c} \quad \text{where} \quad \frac{\delta_0}{c} = e^{-c} \]

and so \(\delta = 2c \).

The lemma will follow from (1) \([\rho 16]\)

and this and \(P(\hat{F} \mid \neg E) = 1 - o(1) \)

(see Lemma 3 \([\rho 14]\)) and

\[P(\hat{F} \land E) = o(1). \quad (2) \]
Let us break the first \(\log n \) generations of the branching process into \(\log n \) rounds of length \(\log n \).

If \(\overline{E} \) occurs then we start each round with a non-zero population.

Claim 1

Each member of this population has a probability \(\geq \log 2n \) of producing \(\log n \) descendants at depth \(\log n \). Here \(\geq \) depends only on \(C \) and so

\[
P(\overline{E} \cap \overline{E}) \leq (1 - \epsilon)^{\log n} = O(1).
\]
If the current population of the process is s then the probability that it reach size at least $\frac{c+1}{2} s$ in the next round is

$$\sum_{k = \frac{c+1}{2} s}^{\infty} \frac{(cs)^k}{k!} e^{-cs} \geq 1 - e^{-\alpha s}$$

for some constant $\alpha > 0$ provided $s \geq \text{100}$, say.

Now there is a positive probability ε, say, that a single object spawns at least 100 descendants and so there is a probability ε of at least

$$\varepsilon_1 \left(1 - \sum_{s = 100}^{\infty} e^{-\alpha s}\right)$$
That a single object spawns

\[(c+1)^{\log n} \geq \log^2 n\]

descendants at depth \(\log n\).

This proves Claim 1 ([p19]) and completes the proof of Lemma 4.

We state for future reference that the above argument supports the following claim.

Claim 2
\(\Pr(\exists i : |S_i^+| \geq \log^2 n \text{ and } |T_i^-|) \)
We must now consider the probability that both $O^+(v)$ and $O^-(v)$ are large.

Lemma 5

$$P(|O^-(v)| \geq \log^2 n | |O^+(v)| \geq \log^2 n) = 1 - \frac{\alpha}{c} + o(1).$$

Proof

Expose $S_0^+, S_1^+, \ldots, S_{\rho}^+$ until either $S_{\rho}^+ = \emptyset$ or we see that $|T_k^+| \geq \log^2 n$.

Now let S denote the set of edges/nodes defined by $S_0^+, S_1^+, \ldots, S_{\rho}^+$, we see that (see Lemma 2 [p.127])
Let \(C \) be the event that there are no edges from \(T_e \) to \(S_e \), where \(T_e \) is the set of vertices we reach through our BFS until \(v \), up to the point where we first find that \(|D^-(v)| < \log^2 n \) or \(\geq \log^2 n \). Then

\[
P(C) = 1 - \frac{1}{n^{1 - o(1)}}
\]

end

\[
P_e(1 \leq s_i \leq s_i, 0 \leq k \leq n') = \prod_{i=1}^{k} \left(\frac{s_{i-1}(n'-k_i)}{s_i} \right) \left(\frac{s_i}{n} \right) \left(1 - \frac{s_{i-1}(n'-k_i) - s_i}{n} \right)
\]

where \(n' = n - |T_e^+| \).

Given this, we can prove a conditional version of Lemma 2 and continue as before.
We have now shown that if
\[S = \{ v \in V : |D^+(v)|, |D^-(v)| > a \log n \} \]
then
\[\mathbb{E}(1 \leq |S|) \leq (1 + o(1)) (1 - \frac{n}{c})^2 n. \]

We also claim that for any two vertices \(v, w \)
\[Pr [v, w \in S] = (1 + o(1)) Pr (v \in S) Pr (w \in S) \] (3)

and therefore the Chebyshev inequality implies that when
\[|S| \leq (1 + o(1)) (1 - \frac{n}{c})^2 n. \]
But (3) follows in a similar manner to the proof of Lemma 5 (p22).

All that remains of the proof of Theorem 2 is to show that

\[\text{why } S \text{ is a strong component.} \tag{4} \]

(Any \(v \notin S \) is in a strong component of size \(\leq 2 \log n \)).
We prove (4) by arguing that

$$\Pr(\exists \nu, \omega \in S : \omega \in D^+(\nu)) = o(1). \quad (5)$$

For this we expose $S^+_0, S^+_1, \ldots, S^+_k$ until we find that $|T^+_k(\omega)| \geq n^{\frac{1}{2}} \log n$.

At the same time we expose $S^-_0, S^-_1, \ldots, S^-_k$ until $|T^-_k(\omega)| \geq n^{\frac{1}{2}} \log n$.

If $\omega \in D^+(\nu)$ then this experiment will have tried at least $\left(n^{\frac{1}{2}} \log n \right)^2$ lines to find an edge from $D^+(\nu)$ to $D^-(\omega)$ and failed everytime.
The probability is at most
\[(1 - \frac{c}{n})^n \log^2 n = o(n^{-2}).\]

This completes the proof of Theorem 2.
\[\square\]
Strong Connectivity Threshold

Here we prove

Theorem 3

Suppose that \(\rho = \frac{\log n + c_n}{n} \). Then

\[
\lim_{n \to \infty} \mathbb{P}(D_{n, \rho} \text{ is strongly connected}) = \begin{cases}
0 & c_n \to -\infty \\
\exp(-2e^{-c}) & c_n \to c \\
1 & c_n \to +\infty
\end{cases}
\]

\[
= \lim_{n \to \infty} \mathbb{P}(1 \neq v \text{ such that } d^+(v) = 0 \iff d^-(v) = 0).
\]
Proof

We leave it as an exercise to prove that

$$\lim_{n \to \infty} P\left(\exists v \text{ such that } d^+(v) = 0 \lor d^-(v) = 0 \right) = \begin{cases} 1 & \text{if } c_n \to -\infty \\ 1 - e^{-2e^{c_n}} & \text{if } c_n \to c \\ 0 & \text{if } c_n \to \infty \end{cases}$$

Given this, one only has to show that if $c_n \to -\infty$ then why there does not exist a vertex v such that $2 \leq |d^+(v)| \leq \eta_2$ or $2 \leq |d^-(v)| \leq \eta_2$.
But, here with \(s+1 = 10^2(w) \),

\[
P(\mathcal{F}_w) \leq 2n \sum_{s=1}^{n/2} \left(\binom{n}{s} (s+1) \left(\frac{e}{n} \right)^s (1-p)^{s+1} (n-1-s) \right)
\]

\[= O(1). \quad (Exercise)\]
Hamilton Cycles

Here we prove the following remarkable inequality:

Theorem 4

\[P_r(O_{n,p} \text{ is Hamiltonian}) \geq P_r(G_{n,p} \text{ is Hamiltonian}) \]

Proof

Remark: This shows that if \(p = \frac{\log n \cdot \log \log n + 60}{n} \), then \(O_{n,p} \) is Hamiltonian w.h.p. This result has been strengthened but it requires a much more difficult argument. The \(\log \log n \) can be eliminated.
Proof

We consider a sequence of random digraphs \(\Gamma_0, \Gamma_1, \Gamma_2, \ldots, \Gamma_N \), \(N = \binom{2}{2} \) defined as follows:

Let \(e_1, e_2, \ldots, e_N \) be an enumeration of the edges of \(K_n \). Each \(e_i = (v_i, w_i) \) gives rise to two directed edges \(\overrightarrow{e_i} = (v_i, w_i) \) and \(\overleftarrow{e_i} = (w_i, v_i) \).

In \(\Gamma_i \) we include \(\overrightarrow{e_j} \) and \(\overleftarrow{e_j} \) independently of each other, with probability \(p \), for \(j \leq i \). While for \(j > i \) we include both or neither with probability \(p \).
Thus Γ_0 is just $G_{n,p}$ with each edge (i,j) replaced by a pair of directed edges (i, j), (j, i), and $\Gamma_N = G_{n,p}$. Theorem 4 follows from

$$P(\Gamma_i \text{ is Hamiltonian}) \geq P(\Gamma_{i-1} \text{ is Hamiltonian})$$

To prove this we condition on the existence of otherwise directed edges associated with $e_i, \ldots, e_{i+1}, e_{i+2}, \ldots, e_N$.

Let C denote this conditioning.
Either C is such that
(a) C gives us a Hamilton cycle without any associated
with C_i or there is no Hamilton cycle even if both
$\overline{C_i}, \overline{C}_i$ occur
or C is such that:
(b) If a Hamilton cycle y at least one of $\overrightarrow{C_i}, \overleftarrow{C}_i$
occurs.
In Γ_{w_i} this happens with probability p
In Γ_i this happens with probability $1 - (1-p)^2 > p$

[We will never require that both $\overline{C_i}, \overline{C}_i$ occur.]